blob: 6a8bee8901fc95e8855756177844145c9190880c [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner (benoit.steiner.goog@gmail.com)
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_COMPLEX_AVX_H
#define EIGEN_COMPLEX_AVX_H
// IWYU pragma: private
#include "../../InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
//---------- float ----------
struct Packet4cf {
EIGEN_STRONG_INLINE Packet4cf() {}
EIGEN_STRONG_INLINE explicit Packet4cf(const __m256& a) : v(a) {}
__m256 v;
};
#ifndef EIGEN_VECTORIZE_AVX512
template <>
struct packet_traits<std::complex<float> > : default_packet_traits {
typedef Packet4cf type;
typedef Packet2cf half;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size = 4,
HasAdd = 1,
HasSub = 1,
HasMul = 1,
HasDiv = 1,
HasNegate = 1,
HasSqrt = 1,
HasLog = 1,
HasAbs = 0,
HasAbs2 = 0,
HasMin = 0,
HasMax = 0,
HasSetLinear = 0
};
};
#endif
template <>
struct unpacket_traits<Packet4cf> {
typedef std::complex<float> type;
typedef Packet2cf half;
typedef Packet8f as_real;
enum {
size = 4,
alignment = Aligned32,
vectorizable = true,
masked_load_available = false,
masked_store_available = false
};
};
template <>
EIGEN_STRONG_INLINE Packet4cf padd<Packet4cf>(const Packet4cf& a, const Packet4cf& b) {
return Packet4cf(_mm256_add_ps(a.v, b.v));
}
template <>
EIGEN_STRONG_INLINE Packet4cf psub<Packet4cf>(const Packet4cf& a, const Packet4cf& b) {
return Packet4cf(_mm256_sub_ps(a.v, b.v));
}
template <>
EIGEN_STRONG_INLINE Packet4cf pnegate(const Packet4cf& a) {
return Packet4cf(pnegate(a.v));
}
template <>
EIGEN_STRONG_INLINE Packet4cf pconj(const Packet4cf& a) {
const __m256 mask = _mm256_castsi256_ps(_mm256_setr_epi32(0x00000000, 0x80000000, 0x00000000, 0x80000000, 0x00000000,
0x80000000, 0x00000000, 0x80000000));
return Packet4cf(_mm256_xor_ps(a.v, mask));
}
template <>
EIGEN_STRONG_INLINE Packet4cf pmul<Packet4cf>(const Packet4cf& a, const Packet4cf& b) {
__m256 tmp1 = _mm256_mul_ps(_mm256_moveldup_ps(a.v), b.v);
__m256 tmp2 = _mm256_mul_ps(_mm256_movehdup_ps(a.v), _mm256_permute_ps(b.v, _MM_SHUFFLE(2, 3, 0, 1)));
__m256 result = _mm256_addsub_ps(tmp1, tmp2);
return Packet4cf(result);
}
template <>
EIGEN_STRONG_INLINE Packet4cf pcmp_eq(const Packet4cf& a, const Packet4cf& b) {
__m256 eq = _mm256_cmp_ps(a.v, b.v, _CMP_EQ_OQ);
return Packet4cf(_mm256_and_ps(eq, _mm256_permute_ps(eq, 0xb1)));
}
template <>
EIGEN_STRONG_INLINE Packet4cf ptrue<Packet4cf>(const Packet4cf& a) {
return Packet4cf(ptrue(Packet8f(a.v)));
}
template <>
EIGEN_STRONG_INLINE Packet4cf pand<Packet4cf>(const Packet4cf& a, const Packet4cf& b) {
return Packet4cf(_mm256_and_ps(a.v, b.v));
}
template <>
EIGEN_STRONG_INLINE Packet4cf por<Packet4cf>(const Packet4cf& a, const Packet4cf& b) {
return Packet4cf(_mm256_or_ps(a.v, b.v));
}
template <>
EIGEN_STRONG_INLINE Packet4cf pxor<Packet4cf>(const Packet4cf& a, const Packet4cf& b) {
return Packet4cf(_mm256_xor_ps(a.v, b.v));
}
template <>
EIGEN_STRONG_INLINE Packet4cf pandnot<Packet4cf>(const Packet4cf& a, const Packet4cf& b) {
return Packet4cf(_mm256_andnot_ps(b.v, a.v));
}
template <>
EIGEN_STRONG_INLINE Packet4cf pload<Packet4cf>(const std::complex<float>* from) {
EIGEN_DEBUG_ALIGNED_LOAD return Packet4cf(pload<Packet8f>(&numext::real_ref(*from)));
}
template <>
EIGEN_STRONG_INLINE Packet4cf ploadu<Packet4cf>(const std::complex<float>* from) {
EIGEN_DEBUG_UNALIGNED_LOAD return Packet4cf(ploadu<Packet8f>(&numext::real_ref(*from)));
}
template <>
EIGEN_STRONG_INLINE Packet4cf pset1<Packet4cf>(const std::complex<float>& from) {
const float re = std::real(from);
const float im = std::imag(from);
return Packet4cf(_mm256_set_ps(im, re, im, re, im, re, im, re));
}
template <>
EIGEN_STRONG_INLINE Packet4cf ploaddup<Packet4cf>(const std::complex<float>* from) {
// FIXME The following might be optimized using _mm256_movedup_pd
Packet2cf a = ploaddup<Packet2cf>(from);
Packet2cf b = ploaddup<Packet2cf>(from + 1);
return Packet4cf(_mm256_insertf128_ps(_mm256_castps128_ps256(a.v), b.v, 1));
}
template <>
EIGEN_STRONG_INLINE void pstore<std::complex<float> >(std::complex<float>* to, const Packet4cf& from) {
EIGEN_DEBUG_ALIGNED_STORE pstore(&numext::real_ref(*to), from.v);
}
template <>
EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float>* to, const Packet4cf& from) {
EIGEN_DEBUG_UNALIGNED_STORE pstoreu(&numext::real_ref(*to), from.v);
}
template <>
EIGEN_DEVICE_FUNC inline Packet4cf pgather<std::complex<float>, Packet4cf>(const std::complex<float>* from,
Index stride) {
return Packet4cf(_mm256_set_ps(std::imag(from[3 * stride]), std::real(from[3 * stride]), std::imag(from[2 * stride]),
std::real(from[2 * stride]), std::imag(from[1 * stride]), std::real(from[1 * stride]),
std::imag(from[0 * stride]), std::real(from[0 * stride])));
}
template <>
EIGEN_DEVICE_FUNC inline void pscatter<std::complex<float>, Packet4cf>(std::complex<float>* to, const Packet4cf& from,
Index stride) {
__m128 low = _mm256_extractf128_ps(from.v, 0);
to[stride * 0] =
std::complex<float>(_mm_cvtss_f32(_mm_shuffle_ps(low, low, 0)), _mm_cvtss_f32(_mm_shuffle_ps(low, low, 1)));
to[stride * 1] =
std::complex<float>(_mm_cvtss_f32(_mm_shuffle_ps(low, low, 2)), _mm_cvtss_f32(_mm_shuffle_ps(low, low, 3)));
__m128 high = _mm256_extractf128_ps(from.v, 1);
to[stride * 2] =
std::complex<float>(_mm_cvtss_f32(_mm_shuffle_ps(high, high, 0)), _mm_cvtss_f32(_mm_shuffle_ps(high, high, 1)));
to[stride * 3] =
std::complex<float>(_mm_cvtss_f32(_mm_shuffle_ps(high, high, 2)), _mm_cvtss_f32(_mm_shuffle_ps(high, high, 3)));
}
template <>
EIGEN_STRONG_INLINE std::complex<float> pfirst<Packet4cf>(const Packet4cf& a) {
return pfirst(Packet2cf(_mm256_castps256_ps128(a.v)));
}
template <>
EIGEN_STRONG_INLINE Packet4cf preverse(const Packet4cf& a) {
__m128 low = _mm256_extractf128_ps(a.v, 0);
__m128 high = _mm256_extractf128_ps(a.v, 1);
__m128d lowd = _mm_castps_pd(low);
__m128d highd = _mm_castps_pd(high);
low = _mm_castpd_ps(_mm_shuffle_pd(lowd, lowd, 0x1));
high = _mm_castpd_ps(_mm_shuffle_pd(highd, highd, 0x1));
__m256 result = _mm256_setzero_ps();
result = _mm256_insertf128_ps(result, low, 1);
result = _mm256_insertf128_ps(result, high, 0);
return Packet4cf(result);
}
template <>
EIGEN_STRONG_INLINE std::complex<float> predux<Packet4cf>(const Packet4cf& a) {
return predux(padd(Packet2cf(_mm256_extractf128_ps(a.v, 0)), Packet2cf(_mm256_extractf128_ps(a.v, 1))));
}
template <>
EIGEN_STRONG_INLINE std::complex<float> predux_mul<Packet4cf>(const Packet4cf& a) {
return predux_mul(pmul(Packet2cf(_mm256_extractf128_ps(a.v, 0)), Packet2cf(_mm256_extractf128_ps(a.v, 1))));
}
EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet4cf, Packet8f)
template <>
EIGEN_STRONG_INLINE Packet4cf pdiv<Packet4cf>(const Packet4cf& a, const Packet4cf& b) {
return pdiv_complex(a, b);
}
template <>
EIGEN_STRONG_INLINE Packet4cf pcplxflip<Packet4cf>(const Packet4cf& x) {
return Packet4cf(_mm256_shuffle_ps(x.v, x.v, _MM_SHUFFLE(2, 3, 0, 1)));
}
//---------- double ----------
struct Packet2cd {
EIGEN_STRONG_INLINE Packet2cd() {}
EIGEN_STRONG_INLINE explicit Packet2cd(const __m256d& a) : v(a) {}
__m256d v;
};
#ifndef EIGEN_VECTORIZE_AVX512
template <>
struct packet_traits<std::complex<double> > : default_packet_traits {
typedef Packet2cd type;
typedef Packet1cd half;
enum {
Vectorizable = 1,
AlignedOnScalar = 0,
size = 2,
HasAdd = 1,
HasSub = 1,
HasMul = 1,
HasDiv = 1,
HasNegate = 1,
HasSqrt = 1,
HasLog = 1,
HasAbs = 0,
HasAbs2 = 0,
HasMin = 0,
HasMax = 0,
HasSetLinear = 0
};
};
#endif
template <>
struct unpacket_traits<Packet2cd> {
typedef std::complex<double> type;
typedef Packet1cd half;
typedef Packet4d as_real;
enum {
size = 2,
alignment = Aligned32,
vectorizable = true,
masked_load_available = false,
masked_store_available = false
};
};
template <>
EIGEN_STRONG_INLINE Packet2cd padd<Packet2cd>(const Packet2cd& a, const Packet2cd& b) {
return Packet2cd(_mm256_add_pd(a.v, b.v));
}
template <>
EIGEN_STRONG_INLINE Packet2cd psub<Packet2cd>(const Packet2cd& a, const Packet2cd& b) {
return Packet2cd(_mm256_sub_pd(a.v, b.v));
}
template <>
EIGEN_STRONG_INLINE Packet2cd pnegate(const Packet2cd& a) {
return Packet2cd(pnegate(a.v));
}
template <>
EIGEN_STRONG_INLINE Packet2cd pconj(const Packet2cd& a) {
const __m256d mask = _mm256_castsi256_pd(_mm256_set_epi32(0x80000000, 0x0, 0x0, 0x0, 0x80000000, 0x0, 0x0, 0x0));
return Packet2cd(_mm256_xor_pd(a.v, mask));
}
template <>
EIGEN_STRONG_INLINE Packet2cd pmul<Packet2cd>(const Packet2cd& a, const Packet2cd& b) {
__m256d tmp1 = _mm256_shuffle_pd(a.v, a.v, 0x0);
__m256d even = _mm256_mul_pd(tmp1, b.v);
__m256d tmp2 = _mm256_shuffle_pd(a.v, a.v, 0xF);
__m256d tmp3 = _mm256_shuffle_pd(b.v, b.v, 0x5);
__m256d odd = _mm256_mul_pd(tmp2, tmp3);
return Packet2cd(_mm256_addsub_pd(even, odd));
}
template <>
EIGEN_STRONG_INLINE Packet2cd pcmp_eq(const Packet2cd& a, const Packet2cd& b) {
__m256d eq = _mm256_cmp_pd(a.v, b.v, _CMP_EQ_OQ);
return Packet2cd(pand(eq, _mm256_permute_pd(eq, 0x5)));
}
template <>
EIGEN_STRONG_INLINE Packet2cd ptrue<Packet2cd>(const Packet2cd& a) {
return Packet2cd(ptrue(Packet4d(a.v)));
}
template <>
EIGEN_STRONG_INLINE Packet2cd pand<Packet2cd>(const Packet2cd& a, const Packet2cd& b) {
return Packet2cd(_mm256_and_pd(a.v, b.v));
}
template <>
EIGEN_STRONG_INLINE Packet2cd por<Packet2cd>(const Packet2cd& a, const Packet2cd& b) {
return Packet2cd(_mm256_or_pd(a.v, b.v));
}
template <>
EIGEN_STRONG_INLINE Packet2cd pxor<Packet2cd>(const Packet2cd& a, const Packet2cd& b) {
return Packet2cd(_mm256_xor_pd(a.v, b.v));
}
template <>
EIGEN_STRONG_INLINE Packet2cd pandnot<Packet2cd>(const Packet2cd& a, const Packet2cd& b) {
return Packet2cd(_mm256_andnot_pd(b.v, a.v));
}
template <>
EIGEN_STRONG_INLINE Packet2cd pload<Packet2cd>(const std::complex<double>* from) {
EIGEN_DEBUG_ALIGNED_LOAD return Packet2cd(pload<Packet4d>((const double*)from));
}
template <>
EIGEN_STRONG_INLINE Packet2cd ploadu<Packet2cd>(const std::complex<double>* from) {
EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cd(ploadu<Packet4d>((const double*)from));
}
template <>
EIGEN_STRONG_INLINE Packet2cd pset1<Packet2cd>(const std::complex<double>& from) {
// in case casting to a __m128d* is really not safe, then we can still fallback to this version: (much slower though)
// return Packet2cd(_mm256_loadu2_m128d((const double*)&from,(const double*)&from));
return Packet2cd(_mm256_broadcast_pd((const __m128d*)(const void*)&from));
}
template <>
EIGEN_STRONG_INLINE Packet2cd ploaddup<Packet2cd>(const std::complex<double>* from) {
return pset1<Packet2cd>(*from);
}
template <>
EIGEN_STRONG_INLINE void pstore<std::complex<double> >(std::complex<double>* to, const Packet2cd& from) {
EIGEN_DEBUG_ALIGNED_STORE pstore((double*)to, from.v);
}
template <>
EIGEN_STRONG_INLINE void pstoreu<std::complex<double> >(std::complex<double>* to, const Packet2cd& from) {
EIGEN_DEBUG_UNALIGNED_STORE pstoreu((double*)to, from.v);
}
template <>
EIGEN_DEVICE_FUNC inline Packet2cd pgather<std::complex<double>, Packet2cd>(const std::complex<double>* from,
Index stride) {
return Packet2cd(_mm256_set_pd(std::imag(from[1 * stride]), std::real(from[1 * stride]), std::imag(from[0 * stride]),
std::real(from[0 * stride])));
}
template <>
EIGEN_DEVICE_FUNC inline void pscatter<std::complex<double>, Packet2cd>(std::complex<double>* to, const Packet2cd& from,
Index stride) {
__m128d low = _mm256_extractf128_pd(from.v, 0);
to[stride * 0] = std::complex<double>(_mm_cvtsd_f64(low), _mm_cvtsd_f64(_mm_shuffle_pd(low, low, 1)));
__m128d high = _mm256_extractf128_pd(from.v, 1);
to[stride * 1] = std::complex<double>(_mm_cvtsd_f64(high), _mm_cvtsd_f64(_mm_shuffle_pd(high, high, 1)));
}
template <>
EIGEN_STRONG_INLINE std::complex<double> pfirst<Packet2cd>(const Packet2cd& a) {
__m128d low = _mm256_extractf128_pd(a.v, 0);
EIGEN_ALIGN16 double res[2];
_mm_store_pd(res, low);
return std::complex<double>(res[0], res[1]);
}
template <>
EIGEN_STRONG_INLINE Packet2cd preverse(const Packet2cd& a) {
__m256d result = _mm256_permute2f128_pd(a.v, a.v, 1);
return Packet2cd(result);
}
template <>
EIGEN_STRONG_INLINE std::complex<double> predux<Packet2cd>(const Packet2cd& a) {
return predux(padd(Packet1cd(_mm256_extractf128_pd(a.v, 0)), Packet1cd(_mm256_extractf128_pd(a.v, 1))));
}
template <>
EIGEN_STRONG_INLINE std::complex<double> predux_mul<Packet2cd>(const Packet2cd& a) {
return predux(pmul(Packet1cd(_mm256_extractf128_pd(a.v, 0)), Packet1cd(_mm256_extractf128_pd(a.v, 1))));
}
EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet2cd, Packet4d)
template <>
EIGEN_STRONG_INLINE Packet2cd pdiv<Packet2cd>(const Packet2cd& a, const Packet2cd& b) {
return pdiv_complex(a, b);
}
template <>
EIGEN_STRONG_INLINE Packet2cd pcplxflip<Packet2cd>(const Packet2cd& x) {
return Packet2cd(_mm256_shuffle_pd(x.v, x.v, 0x5));
}
EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock<Packet4cf, 4>& kernel) {
__m256d P0 = _mm256_castps_pd(kernel.packet[0].v);
__m256d P1 = _mm256_castps_pd(kernel.packet[1].v);
__m256d P2 = _mm256_castps_pd(kernel.packet[2].v);
__m256d P3 = _mm256_castps_pd(kernel.packet[3].v);
__m256d T0 = _mm256_shuffle_pd(P0, P1, 15);
__m256d T1 = _mm256_shuffle_pd(P0, P1, 0);
__m256d T2 = _mm256_shuffle_pd(P2, P3, 15);
__m256d T3 = _mm256_shuffle_pd(P2, P3, 0);
kernel.packet[1].v = _mm256_castpd_ps(_mm256_permute2f128_pd(T0, T2, 32));
kernel.packet[3].v = _mm256_castpd_ps(_mm256_permute2f128_pd(T0, T2, 49));
kernel.packet[0].v = _mm256_castpd_ps(_mm256_permute2f128_pd(T1, T3, 32));
kernel.packet[2].v = _mm256_castpd_ps(_mm256_permute2f128_pd(T1, T3, 49));
}
EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock<Packet2cd, 2>& kernel) {
__m256d tmp = _mm256_permute2f128_pd(kernel.packet[0].v, kernel.packet[1].v, 0 + (2 << 4));
kernel.packet[1].v = _mm256_permute2f128_pd(kernel.packet[0].v, kernel.packet[1].v, 1 + (3 << 4));
kernel.packet[0].v = tmp;
}
template <>
EIGEN_STRONG_INLINE Packet2cd psqrt<Packet2cd>(const Packet2cd& a) {
return psqrt_complex<Packet2cd>(a);
}
template <>
EIGEN_STRONG_INLINE Packet4cf psqrt<Packet4cf>(const Packet4cf& a) {
return psqrt_complex<Packet4cf>(a);
}
template <>
EIGEN_STRONG_INLINE Packet2cd plog<Packet2cd>(const Packet2cd& a) {
return plog_complex<Packet2cd>(a);
}
template <>
EIGEN_STRONG_INLINE Packet4cf plog<Packet4cf>(const Packet4cf& a) {
return plog_complex<Packet4cf>(a);
}
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_COMPLEX_AVX_H