| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_ORTHOMETHODS_H |
| #define EIGEN_ORTHOMETHODS_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| // Vector3 version (default) |
| template <typename Derived, typename OtherDerived, int Size> |
| struct cross_impl { |
| typedef typename ScalarBinaryOpTraits<typename internal::traits<Derived>::Scalar, |
| typename internal::traits<OtherDerived>::Scalar>::ReturnType Scalar; |
| typedef Matrix<Scalar, MatrixBase<Derived>::RowsAtCompileTime, MatrixBase<Derived>::ColsAtCompileTime> return_type; |
| |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE return_type run(const MatrixBase<Derived>& first, |
| const MatrixBase<OtherDerived>& second) { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived, 3) |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived, 3) |
| |
| // Note that there is no need for an expression here since the compiler |
| // optimize such a small temporary very well (even within a complex expression) |
| typename internal::nested_eval<Derived, 2>::type lhs(first.derived()); |
| typename internal::nested_eval<OtherDerived, 2>::type rhs(second.derived()); |
| return return_type(numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)), |
| numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)), |
| numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0))); |
| } |
| }; |
| |
| // Vector2 version |
| template <typename Derived, typename OtherDerived> |
| struct cross_impl<Derived, OtherDerived, 2> { |
| typedef typename ScalarBinaryOpTraits<typename internal::traits<Derived>::Scalar, |
| typename internal::traits<OtherDerived>::Scalar>::ReturnType Scalar; |
| typedef Scalar return_type; |
| |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE return_type run(const MatrixBase<Derived>& first, |
| const MatrixBase<OtherDerived>& second) { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived, 2); |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived, 2); |
| typename internal::nested_eval<Derived, 2>::type lhs(first.derived()); |
| typename internal::nested_eval<OtherDerived, 2>::type rhs(second.derived()); |
| return numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0)); |
| } |
| }; |
| |
| } // end namespace internal |
| |
| /** \geometry_module \ingroup Geometry_Module |
| * |
| * \returns the cross product of \c *this and \a other. This is either a scalar for size-2 vectors or a size-3 vector |
| * for size-3 vectors. |
| * |
| * This method is implemented for two different cases: between vectors of fixed size 2 and between vectors of fixed |
| * size 3. |
| * |
| * For vectors of size 3, the output is simply the traditional cross product. |
| * |
| * For vectors of size 2, the output is a scalar. |
| * Given vectors \f$ v = \begin{bmatrix} v_1 & v_2 \end{bmatrix} \f$ and \f$ w = \begin{bmatrix} w_1 & w_2 \end{bmatrix} |
| * \f$, the result is simply \f$ v\times w = \overline{v_1 w_2 - v_2 w_1} = \text{conj}\left|\begin{smallmatrix} v_1 & |
| * w_1 \\ v_2 & w_2 \end{smallmatrix}\right| \f$; or, to put it differently, it is the third coordinate of the cross |
| * product of \f$ \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} \f$ and \f$ \begin{bmatrix} w_1 & w_2 & w_3 |
| * \end{bmatrix} \f$. For real-valued inputs, the result can be interpreted as the signed area of a parallelogram |
| * spanned by the two vectors. |
| * |
| * \note With complex numbers, the cross product is implemented as |
| * \f$ (\mathbf{a}+i\mathbf{b}) \times (\mathbf{c}+i\mathbf{d}) = (\mathbf{a} \times \mathbf{c} - \mathbf{b} \times |
| * \mathbf{d}) - i(\mathbf{a} \times \mathbf{d} + \mathbf{b} \times \mathbf{c})\f$ |
| * |
| * \sa MatrixBase::cross3() |
| */ |
| template <typename Derived> |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| typename internal::cross_impl<Derived, OtherDerived>::return_type |
| #else |
| inline std::conditional_t<SizeAtCompileTime == 2, Scalar, PlainObject> |
| #endif |
| MatrixBase<Derived>::cross(const MatrixBase<OtherDerived>& other) const { |
| return internal::cross_impl<Derived, OtherDerived>::run(*this, other); |
| } |
| |
| namespace internal { |
| |
| template <int Arch, typename VectorLhs, typename VectorRhs, typename Scalar = typename VectorLhs::Scalar, |
| bool Vectorizable = bool((VectorLhs::Flags & VectorRhs::Flags) & PacketAccessBit)> |
| struct cross3_impl { |
| EIGEN_DEVICE_FUNC static inline typename internal::plain_matrix_type<VectorLhs>::type run(const VectorLhs& lhs, |
| const VectorRhs& rhs) { |
| return typename internal::plain_matrix_type<VectorLhs>::type( |
| numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)), |
| numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)), |
| numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0)), 0); |
| } |
| }; |
| |
| } // namespace internal |
| |
| /** \geometry_module \ingroup Geometry_Module |
| * |
| * \returns the cross product of \c *this and \a other using only the x, y, and z coefficients |
| * |
| * The size of \c *this and \a other must be four. This function is especially useful |
| * when using 4D vectors instead of 3D ones to get advantage of SSE/AltiVec vectorization. |
| * |
| * \sa MatrixBase::cross() |
| */ |
| template <typename Derived> |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC inline typename MatrixBase<Derived>::PlainObject MatrixBase<Derived>::cross3( |
| const MatrixBase<OtherDerived>& other) const { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived, 4) |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived, 4) |
| |
| typedef typename internal::nested_eval<Derived, 2>::type DerivedNested; |
| typedef typename internal::nested_eval<OtherDerived, 2>::type OtherDerivedNested; |
| DerivedNested lhs(derived()); |
| OtherDerivedNested rhs(other.derived()); |
| |
| return internal::cross3_impl<Architecture::Target, internal::remove_all_t<DerivedNested>, |
| internal::remove_all_t<OtherDerivedNested>>::run(lhs, rhs); |
| } |
| |
| /** \geometry_module \ingroup Geometry_Module |
| * |
| * \returns a matrix expression of the cross product of each column or row |
| * of the referenced expression with the \a other vector. |
| * |
| * The referenced matrix must have one dimension equal to 3. |
| * The result matrix has the same dimensions than the referenced one. |
| * |
| * \sa MatrixBase::cross() */ |
| template <typename ExpressionType, int Direction> |
| template <typename OtherDerived> |
| EIGEN_DEVICE_FUNC const typename VectorwiseOp<ExpressionType, Direction>::CrossReturnType |
| VectorwiseOp<ExpressionType, Direction>::cross(const MatrixBase<OtherDerived>& other) const { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived, 3) |
| EIGEN_STATIC_ASSERT( |
| (internal::is_same<Scalar, typename OtherDerived::Scalar>::value), |
| YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) |
| |
| typename internal::nested_eval<ExpressionType, 2>::type mat(_expression()); |
| typename internal::nested_eval<OtherDerived, 2>::type vec(other.derived()); |
| |
| CrossReturnType res(_expression().rows(), _expression().cols()); |
| if (Direction == Vertical) { |
| eigen_assert(CrossReturnType::RowsAtCompileTime == 3 && "the matrix must have exactly 3 rows"); |
| res.row(0) = (mat.row(1) * vec.coeff(2) - mat.row(2) * vec.coeff(1)).conjugate(); |
| res.row(1) = (mat.row(2) * vec.coeff(0) - mat.row(0) * vec.coeff(2)).conjugate(); |
| res.row(2) = (mat.row(0) * vec.coeff(1) - mat.row(1) * vec.coeff(0)).conjugate(); |
| } else { |
| eigen_assert(CrossReturnType::ColsAtCompileTime == 3 && "the matrix must have exactly 3 columns"); |
| res.col(0) = (mat.col(1) * vec.coeff(2) - mat.col(2) * vec.coeff(1)).conjugate(); |
| res.col(1) = (mat.col(2) * vec.coeff(0) - mat.col(0) * vec.coeff(2)).conjugate(); |
| res.col(2) = (mat.col(0) * vec.coeff(1) - mat.col(1) * vec.coeff(0)).conjugate(); |
| } |
| return res; |
| } |
| |
| namespace internal { |
| |
| template <typename Derived, int Size = Derived::SizeAtCompileTime> |
| struct unitOrthogonal_selector { |
| typedef typename plain_matrix_type<Derived>::type VectorType; |
| typedef typename traits<Derived>::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef Matrix<Scalar, 2, 1> Vector2; |
| EIGEN_DEVICE_FUNC static inline VectorType run(const Derived& src) { |
| VectorType perp = VectorType::Zero(src.size()); |
| Index maxi = 0; |
| Index sndi = 0; |
| src.cwiseAbs().maxCoeff(&maxi); |
| if (maxi == 0) sndi = 1; |
| RealScalar invnm = RealScalar(1) / (Vector2() << src.coeff(sndi), src.coeff(maxi)).finished().norm(); |
| perp.coeffRef(maxi) = -numext::conj(src.coeff(sndi)) * invnm; |
| perp.coeffRef(sndi) = numext::conj(src.coeff(maxi)) * invnm; |
| |
| return perp; |
| } |
| }; |
| |
| template <typename Derived> |
| struct unitOrthogonal_selector<Derived, 3> { |
| typedef typename plain_matrix_type<Derived>::type VectorType; |
| typedef typename traits<Derived>::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| EIGEN_DEVICE_FUNC static inline VectorType run(const Derived& src) { |
| VectorType perp; |
| /* Let us compute the crossed product of *this with a vector |
| * that is not too close to being colinear to *this. |
| */ |
| |
| /* unless the x and y coords are both close to zero, we can |
| * simply take ( -y, x, 0 ) and normalize it. |
| */ |
| if ((!isMuchSmallerThan(src.x(), src.z())) || (!isMuchSmallerThan(src.y(), src.z()))) { |
| RealScalar invnm = RealScalar(1) / src.template head<2>().norm(); |
| perp.coeffRef(0) = -numext::conj(src.y()) * invnm; |
| perp.coeffRef(1) = numext::conj(src.x()) * invnm; |
| perp.coeffRef(2) = 0; |
| } |
| /* if both x and y are close to zero, then the vector is close |
| * to the z-axis, so it's far from colinear to the x-axis for instance. |
| * So we take the crossed product with (1,0,0) and normalize it. |
| */ |
| else { |
| RealScalar invnm = RealScalar(1) / src.template tail<2>().norm(); |
| perp.coeffRef(0) = 0; |
| perp.coeffRef(1) = -numext::conj(src.z()) * invnm; |
| perp.coeffRef(2) = numext::conj(src.y()) * invnm; |
| } |
| |
| return perp; |
| } |
| }; |
| |
| template <typename Derived> |
| struct unitOrthogonal_selector<Derived, 2> { |
| typedef typename plain_matrix_type<Derived>::type VectorType; |
| EIGEN_DEVICE_FUNC static inline VectorType run(const Derived& src) { |
| return VectorType(-numext::conj(src.y()), numext::conj(src.x())).normalized(); |
| } |
| }; |
| |
| } // end namespace internal |
| |
| /** \geometry_module \ingroup Geometry_Module |
| * |
| * \returns a unit vector which is orthogonal to \c *this |
| * |
| * The size of \c *this must be at least 2. If the size is exactly 2, |
| * then the returned vector is a counter clock wise rotation of \c *this, i.e., (-y,x).normalized(). |
| * |
| * \sa cross() |
| */ |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC typename MatrixBase<Derived>::PlainObject MatrixBase<Derived>::unitOrthogonal() const { |
| EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) |
| return internal::unitOrthogonal_selector<Derived>::run(derived()); |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_ORTHOMETHODS_H |