| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <limits> |
| #include <Eigen/Eigenvalues> |
| |
| template <typename MatrixType> |
| void verifyIsQuasiTriangular(const MatrixType& T) { |
| const Index size = T.cols(); |
| typedef typename MatrixType::Scalar Scalar; |
| |
| // Check T is lower Hessenberg |
| for (int row = 2; row < size; ++row) { |
| for (int col = 0; col < row - 1; ++col) { |
| VERIFY_IS_EQUAL(T(row, col), Scalar(0)); |
| } |
| } |
| |
| // Check that any non-zero on the subdiagonal is followed by a zero and is |
| // part of a 2x2 diagonal block with imaginary eigenvalues. |
| for (int row = 1; row < size; ++row) { |
| if (!numext::is_exactly_zero(T(row, row - 1))) { |
| VERIFY(row == size - 1 || numext::is_exactly_zero(T(row + 1, row))); |
| Scalar tr = T(row - 1, row - 1) + T(row, row); |
| Scalar det = T(row - 1, row - 1) * T(row, row) - T(row - 1, row) * T(row, row - 1); |
| VERIFY(4 * det > tr * tr); |
| } |
| } |
| } |
| |
| template <typename MatrixType> |
| void schur(int size = MatrixType::ColsAtCompileTime) { |
| // Test basic functionality: T is quasi-triangular and A = U T U* |
| for (int counter = 0; counter < g_repeat; ++counter) { |
| MatrixType A = MatrixType::Random(size, size); |
| RealSchur<MatrixType> schurOfA(A); |
| VERIFY_IS_EQUAL(schurOfA.info(), Success); |
| MatrixType U = schurOfA.matrixU(); |
| MatrixType T = schurOfA.matrixT(); |
| verifyIsQuasiTriangular(T); |
| VERIFY_IS_APPROX(A, U * T * U.transpose()); |
| } |
| |
| // Test asserts when not initialized |
| RealSchur<MatrixType> rsUninitialized; |
| VERIFY_RAISES_ASSERT(rsUninitialized.matrixT()); |
| VERIFY_RAISES_ASSERT(rsUninitialized.matrixU()); |
| VERIFY_RAISES_ASSERT(rsUninitialized.info()); |
| |
| // Test whether compute() and constructor returns same result |
| MatrixType A = MatrixType::Random(size, size); |
| RealSchur<MatrixType> rs1; |
| rs1.compute(A); |
| RealSchur<MatrixType> rs2(A); |
| VERIFY_IS_EQUAL(rs1.info(), Success); |
| VERIFY_IS_EQUAL(rs2.info(), Success); |
| VERIFY_IS_EQUAL(rs1.matrixT(), rs2.matrixT()); |
| VERIFY_IS_EQUAL(rs1.matrixU(), rs2.matrixU()); |
| |
| // Test maximum number of iterations |
| RealSchur<MatrixType> rs3; |
| rs3.setMaxIterations(RealSchur<MatrixType>::m_maxIterationsPerRow * size).compute(A); |
| VERIFY_IS_EQUAL(rs3.info(), Success); |
| VERIFY_IS_EQUAL(rs3.matrixT(), rs1.matrixT()); |
| VERIFY_IS_EQUAL(rs3.matrixU(), rs1.matrixU()); |
| if (size > 2) { |
| rs3.setMaxIterations(1).compute(A); |
| VERIFY_IS_EQUAL(rs3.info(), NoConvergence); |
| VERIFY_IS_EQUAL(rs3.getMaxIterations(), 1); |
| } |
| |
| MatrixType Atriangular = A; |
| Atriangular.template triangularView<StrictlyLower>().setZero(); |
| rs3.setMaxIterations(1).compute(Atriangular); // triangular matrices do not need any iterations |
| VERIFY_IS_EQUAL(rs3.info(), Success); |
| VERIFY_IS_APPROX(rs3.matrixT(), Atriangular); // approx because of scaling... |
| VERIFY_IS_EQUAL(rs3.matrixU(), MatrixType::Identity(size, size)); |
| |
| // Test computation of only T, not U |
| RealSchur<MatrixType> rsOnlyT(A, false); |
| VERIFY_IS_EQUAL(rsOnlyT.info(), Success); |
| VERIFY_IS_EQUAL(rs1.matrixT(), rsOnlyT.matrixT()); |
| VERIFY_RAISES_ASSERT(rsOnlyT.matrixU()); |
| |
| if (size > 2 && size < 20) { |
| // Test matrix with NaN |
| A(0, 0) = std::numeric_limits<typename MatrixType::Scalar>::quiet_NaN(); |
| RealSchur<MatrixType> rsNaN(A); |
| VERIFY_IS_EQUAL(rsNaN.info(), NoConvergence); |
| } |
| } |
| |
| EIGEN_DECLARE_TEST(schur_real) { |
| CALL_SUBTEST_1((schur<Matrix4f>())); |
| CALL_SUBTEST_2((schur<MatrixXd>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 4)))); |
| CALL_SUBTEST_3((schur<Matrix<float, 1, 1> >())); |
| CALL_SUBTEST_4((schur<Matrix<double, 3, 3, Eigen::RowMajor> >())); |
| |
| // Test problem size constructors |
| CALL_SUBTEST_5(RealSchur<MatrixXf>(10)); |
| } |