blob: 70e74c2e5864cd5d3c886879f6c639ccf7c90fb1 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_AUTODIFF_SCALAR_H
#define EIGEN_AUTODIFF_SCALAR_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
template <typename A, typename B>
struct make_coherent_impl {
static void run(A&, B&) {}
};
// resize a to match b is a.size()==0, and conversely.
template <typename A, typename B>
void make_coherent(const A& a, const B& b) {
make_coherent_impl<A, B>::run(a.const_cast_derived(), b.const_cast_derived());
}
template <typename DerivativeType, bool Enable>
struct auto_diff_special_op;
} // end namespace internal
template <typename DerivativeType>
class AutoDiffScalar;
template <typename NewDerType>
inline AutoDiffScalar<NewDerType> MakeAutoDiffScalar(const typename NewDerType::Scalar& value, const NewDerType& der) {
return AutoDiffScalar<NewDerType>(value, der);
}
/** \class AutoDiffScalar
* \brief A scalar type replacement with automatic differentiation capability
*
* \param DerivativeType the vector type used to store/represent the derivatives. The base scalar type
* as well as the number of derivatives to compute are determined from this type.
* Typical choices include, e.g., \c Vector4f for 4 derivatives, or \c VectorXf
* if the number of derivatives is not known at compile time, and/or, the number
* of derivatives is large.
* Note that DerivativeType can also be a reference (e.g., \c VectorXf&) to wrap a
* existing vector into an AutoDiffScalar.
* Finally, DerivativeType can also be any Eigen compatible expression.
*
* This class represents a scalar value while tracking its respective derivatives using Eigen's expression
* template mechanism.
*
* It supports the following list of global math function:
* - std::abs, std::sqrt, std::pow, std::exp, std::log, std::sin, std::cos,
* - internal::abs, internal::sqrt, numext::pow, internal::exp, internal::log, internal::sin, internal::cos,
* - internal::conj, internal::real, internal::imag, numext::abs2.
*
* AutoDiffScalar can be used as the scalar type of an Eigen::Matrix object. However,
* in that case, the expression template mechanism only occurs at the top Matrix level,
* while derivatives are computed right away.
*
*/
template <typename DerivativeType>
class AutoDiffScalar
: public internal::auto_diff_special_op<
DerivativeType, !internal::is_same<typename internal::traits<internal::remove_all_t<DerivativeType>>::Scalar,
typename NumTraits<typename internal::traits<
internal::remove_all_t<DerivativeType>>::Scalar>::Real>::value> {
public:
typedef internal::auto_diff_special_op<
DerivativeType,
!internal::is_same<
typename internal::traits<internal::remove_all_t<DerivativeType>>::Scalar,
typename NumTraits<typename internal::traits<internal::remove_all_t<DerivativeType>>::Scalar>::Real>::value>
Base;
typedef internal::remove_all_t<DerivativeType> DerType;
typedef typename internal::traits<DerType>::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real Real;
using Base::operator+;
using Base::operator*;
/** Default constructor without any initialization. */
AutoDiffScalar() {}
/** Constructs an active scalar from its \a value,
and initializes the \a nbDer derivatives such that it corresponds to the \a derNumber -th variable */
AutoDiffScalar(const Scalar& value, int nbDer, int derNumber) : m_value(value), m_derivatives(DerType::Zero(nbDer)) {
m_derivatives.coeffRef(derNumber) = Scalar(1);
}
/** Conversion from a scalar constant to an active scalar.
* The derivatives are set to zero. */
/*explicit*/ AutoDiffScalar(const Real& value) : m_value(value) {
if (m_derivatives.size() > 0) m_derivatives.setZero();
}
/** Constructs an active scalar from its \a value and derivatives \a der */
AutoDiffScalar(const Scalar& value, const DerType& der) : m_value(value), m_derivatives(der) {}
template <typename OtherDerType>
AutoDiffScalar(
const AutoDiffScalar<OtherDerType>& other
#ifndef EIGEN_PARSED_BY_DOXYGEN
,
std::enable_if_t<
internal::is_same<Scalar, typename internal::traits<internal::remove_all_t<OtherDerType>>::Scalar>::value &&
internal::is_convertible<OtherDerType, DerType>::value,
void*> = 0
#endif
)
: m_value(other.value()), m_derivatives(other.derivatives()) {
}
friend std::ostream& operator<<(std::ostream& s, const AutoDiffScalar& a) { return s << a.value(); }
AutoDiffScalar(const AutoDiffScalar& other) : m_value(other.value()), m_derivatives(other.derivatives()) {}
template <typename OtherDerType>
inline AutoDiffScalar& operator=(const AutoDiffScalar<OtherDerType>& other) {
m_value = other.value();
m_derivatives = other.derivatives();
return *this;
}
inline AutoDiffScalar& operator=(const AutoDiffScalar& other) {
m_value = other.value();
m_derivatives = other.derivatives();
return *this;
}
inline AutoDiffScalar& operator=(const Scalar& other) {
m_value = other;
if (m_derivatives.size() > 0) m_derivatives.setZero();
return *this;
}
// inline operator const Scalar& () const { return m_value; }
// inline operator Scalar& () { return m_value; }
inline const Scalar& value() const { return m_value; }
inline Scalar& value() { return m_value; }
inline const DerType& derivatives() const { return m_derivatives; }
inline DerType& derivatives() { return m_derivatives; }
inline bool operator<(const Scalar& other) const { return m_value < other; }
inline bool operator<=(const Scalar& other) const { return m_value <= other; }
inline bool operator>(const Scalar& other) const { return m_value > other; }
inline bool operator>=(const Scalar& other) const { return m_value >= other; }
inline bool operator==(const Scalar& other) const { return m_value == other; }
inline bool operator!=(const Scalar& other) const { return m_value != other; }
friend inline bool operator<(const Scalar& a, const AutoDiffScalar& b) { return a < b.value(); }
friend inline bool operator<=(const Scalar& a, const AutoDiffScalar& b) { return a <= b.value(); }
friend inline bool operator>(const Scalar& a, const AutoDiffScalar& b) { return a > b.value(); }
friend inline bool operator>=(const Scalar& a, const AutoDiffScalar& b) { return a >= b.value(); }
friend inline bool operator==(const Scalar& a, const AutoDiffScalar& b) { return a == b.value(); }
friend inline bool operator!=(const Scalar& a, const AutoDiffScalar& b) { return a != b.value(); }
template <typename OtherDerType>
inline bool operator<(const AutoDiffScalar<OtherDerType>& b) const {
return m_value < b.value();
}
template <typename OtherDerType>
inline bool operator<=(const AutoDiffScalar<OtherDerType>& b) const {
return m_value <= b.value();
}
template <typename OtherDerType>
inline bool operator>(const AutoDiffScalar<OtherDerType>& b) const {
return m_value > b.value();
}
template <typename OtherDerType>
inline bool operator>=(const AutoDiffScalar<OtherDerType>& b) const {
return m_value >= b.value();
}
template <typename OtherDerType>
inline bool operator==(const AutoDiffScalar<OtherDerType>& b) const {
return m_value == b.value();
}
template <typename OtherDerType>
inline bool operator!=(const AutoDiffScalar<OtherDerType>& b) const {
return m_value != b.value();
}
inline AutoDiffScalar<DerType&> operator+(const Scalar& other) const {
return AutoDiffScalar<DerType&>(m_value + other, m_derivatives);
}
friend inline AutoDiffScalar<DerType&> operator+(const Scalar& a, const AutoDiffScalar& b) {
return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives());
}
// inline const AutoDiffScalar<DerType&> operator+(const Real& other) const
// {
// return AutoDiffScalar<DerType&>(m_value + other, m_derivatives);
// }
// friend inline const AutoDiffScalar<DerType&> operator+(const Real& a, const AutoDiffScalar& b)
// {
// return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives());
// }
inline AutoDiffScalar& operator+=(const Scalar& other) {
value() += other;
return *this;
}
template <typename OtherDerType>
inline AutoDiffScalar<
CwiseBinaryOp<internal::scalar_sum_op<Scalar>, const DerType, const internal::remove_all_t<OtherDerType>>>
operator+(const AutoDiffScalar<OtherDerType>& other) const {
internal::make_coherent(m_derivatives, other.derivatives());
return AutoDiffScalar<
CwiseBinaryOp<internal::scalar_sum_op<Scalar>, const DerType, const internal::remove_all_t<OtherDerType>>>(
m_value + other.value(), m_derivatives + other.derivatives());
}
template <typename OtherDerType>
inline AutoDiffScalar& operator+=(const AutoDiffScalar<OtherDerType>& other) {
(*this) = (*this) + other;
return *this;
}
inline AutoDiffScalar<DerType&> operator-(const Scalar& b) const {
return AutoDiffScalar<DerType&>(m_value - b, m_derivatives);
}
friend inline AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType>> operator-(
const Scalar& a, const AutoDiffScalar& b) {
return AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType>>(a - b.value(),
-b.derivatives());
}
inline AutoDiffScalar& operator-=(const Scalar& other) {
value() -= other;
return *this;
}
template <typename OtherDerType>
inline AutoDiffScalar<
CwiseBinaryOp<internal::scalar_difference_op<Scalar>, const DerType, const internal::remove_all_t<OtherDerType>>>
operator-(const AutoDiffScalar<OtherDerType>& other) const {
internal::make_coherent(m_derivatives, other.derivatives());
return AutoDiffScalar<CwiseBinaryOp<internal::scalar_difference_op<Scalar>, const DerType,
const internal::remove_all_t<OtherDerType>>>(
m_value - other.value(), m_derivatives - other.derivatives());
}
template <typename OtherDerType>
inline AutoDiffScalar& operator-=(const AutoDiffScalar<OtherDerType>& other) {
*this = *this - other;
return *this;
}
inline AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType>> operator-() const {
return AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType>>(-m_value, -m_derivatives);
}
inline AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType, Scalar, product)> operator*(
const Scalar& other) const {
return MakeAutoDiffScalar(m_value * other, m_derivatives * other);
}
friend inline AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType, Scalar, product)> operator*(
const Scalar& other, const AutoDiffScalar& a) {
return MakeAutoDiffScalar(a.value() * other, a.derivatives() * other);
}
// inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >
// operator*(const Real& other) const
// {
// return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >(
// m_value * other,
// (m_derivatives * other));
// }
//
// friend inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >
// operator*(const Real& other, const AutoDiffScalar& a)
// {
// return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >(
// a.value() * other,
// a.derivatives() * other);
// }
inline AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType, Scalar, product)> operator/(
const Scalar& other) const {
return MakeAutoDiffScalar(m_value / other, (m_derivatives * (Scalar(1) / other)));
}
friend inline AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType, Scalar, product)> operator/(
const Scalar& other, const AutoDiffScalar& a) {
return MakeAutoDiffScalar(other / a.value(), a.derivatives() * (Scalar(-other) / (a.value() * a.value())));
}
// inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >
// operator/(const Real& other) const
// {
// return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >(
// m_value / other,
// (m_derivatives * (Real(1)/other)));
// }
//
// friend inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >
// operator/(const Real& other, const AutoDiffScalar& a)
// {
// return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >(
// other / a.value(),
// a.derivatives() * (-Real(1)/other));
// }
template <typename OtherDerType>
inline AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(
CwiseBinaryOp<internal::scalar_difference_op<Scalar> EIGEN_COMMA const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(
DerType, Scalar, product) EIGEN_COMMA const
EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(internal::remove_all_t<OtherDerType>, Scalar, product)>,
Scalar, product)>
operator/(const AutoDiffScalar<OtherDerType>& other) const {
internal::make_coherent(m_derivatives, other.derivatives());
return MakeAutoDiffScalar(m_value / other.value(),
((m_derivatives * other.value()) - (other.derivatives() * m_value)) *
(Scalar(1) / (other.value() * other.value())));
}
template <typename OtherDerType>
inline AutoDiffScalar<CwiseBinaryOp<
internal::scalar_sum_op<Scalar>, const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType, Scalar, product),
const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(internal::remove_all_t<OtherDerType>, Scalar, product)>>
operator*(const AutoDiffScalar<OtherDerType>& other) const {
internal::make_coherent(m_derivatives, other.derivatives());
return MakeAutoDiffScalar(m_value * other.value(),
(m_derivatives * other.value()) + (other.derivatives() * m_value));
}
inline AutoDiffScalar& operator*=(const Scalar& other) {
*this = *this * other;
return *this;
}
template <typename OtherDerType>
inline AutoDiffScalar& operator*=(const AutoDiffScalar<OtherDerType>& other) {
*this = *this * other;
return *this;
}
inline AutoDiffScalar& operator/=(const Scalar& other) {
*this = *this / other;
return *this;
}
template <typename OtherDerType>
inline AutoDiffScalar& operator/=(const AutoDiffScalar<OtherDerType>& other) {
*this = *this / other;
return *this;
}
protected:
Scalar m_value;
DerType m_derivatives;
};
namespace internal {
template <typename DerivativeType>
struct auto_diff_special_op<DerivativeType, true>
// : auto_diff_scalar_op<DerivativeType, typename NumTraits<Scalar>::Real,
// is_same<Scalar,typename NumTraits<Scalar>::Real>::value>
{
typedef remove_all_t<DerivativeType> DerType;
typedef typename traits<DerType>::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real Real;
// typedef auto_diff_scalar_op<DerivativeType, typename NumTraits<Scalar>::Real,
// is_same<Scalar,typename NumTraits<Scalar>::Real>::value> Base;
// using Base::operator+;
// using Base::operator+=;
// using Base::operator-;
// using Base::operator-=;
// using Base::operator*;
// using Base::operator*=;
const AutoDiffScalar<DerivativeType>& derived() const {
return *static_cast<const AutoDiffScalar<DerivativeType>*>(this);
}
AutoDiffScalar<DerivativeType>& derived() { return *static_cast<AutoDiffScalar<DerivativeType>*>(this); }
inline AutoDiffScalar<DerType&> operator+(const Real& other) const {
return AutoDiffScalar<DerType&>(derived().value() + other, derived().derivatives());
}
friend inline AutoDiffScalar<DerType&> operator+(const Real& a, const AutoDiffScalar<DerivativeType>& b) {
return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives());
}
inline AutoDiffScalar<DerivativeType>& operator+=(const Real& other) {
derived().value() += other;
return derived();
}
inline AutoDiffScalar<typename CwiseUnaryOp<bind2nd_op<scalar_product_op<Scalar, Real>>, DerType>::Type> operator*(
const Real& other) const {
return AutoDiffScalar<typename CwiseUnaryOp<bind2nd_op<scalar_product_op<Scalar, Real>>, DerType>::Type>(
derived().value() * other, derived().derivatives() * other);
}
friend inline AutoDiffScalar<typename CwiseUnaryOp<bind1st_op<scalar_product_op<Real, Scalar>>, DerType>::Type>
operator*(const Real& other, const AutoDiffScalar<DerivativeType>& a) {
return AutoDiffScalar<typename CwiseUnaryOp<bind1st_op<scalar_product_op<Real, Scalar>>, DerType>::Type>(
a.value() * other, a.derivatives() * other);
}
inline AutoDiffScalar<DerivativeType>& operator*=(const Scalar& other) {
*this = *this * other;
return derived();
}
};
template <typename DerivativeType>
struct auto_diff_special_op<DerivativeType, false> {
void operator*() const;
void operator-() const;
void operator+() const;
};
template <typename BinOp, typename A, typename B, typename RefType>
void make_coherent_expression(CwiseBinaryOp<BinOp, A, B> xpr, const RefType& ref) {
make_coherent(xpr.const_cast_derived().lhs(), ref);
make_coherent(xpr.const_cast_derived().rhs(), ref);
}
template <typename UnaryOp, typename A, typename RefType>
void make_coherent_expression(const CwiseUnaryOp<UnaryOp, A>& xpr, const RefType& ref) {
make_coherent(xpr.nestedExpression().const_cast_derived(), ref);
}
// needed for compilation only
template <typename UnaryOp, typename A, typename RefType>
void make_coherent_expression(const CwiseNullaryOp<UnaryOp, A>&, const RefType&) {}
template <typename A_Scalar, int A_Rows, int A_Cols, int A_Options, int A_MaxRows, int A_MaxCols, typename B>
struct make_coherent_impl<Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols>, B> {
typedef Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols> A;
static void run(A& a, B& b) {
if ((A_Rows == Dynamic || A_Cols == Dynamic) && (a.size() == 0)) {
a.resize(b.size());
a.setZero();
} else if (B::SizeAtCompileTime == Dynamic && a.size() != 0 && b.size() == 0) {
make_coherent_expression(b, a);
}
}
};
template <typename A, typename B_Scalar, int B_Rows, int B_Cols, int B_Options, int B_MaxRows, int B_MaxCols>
struct make_coherent_impl<A, Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols>> {
typedef Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> B;
static void run(A& a, B& b) {
if ((B_Rows == Dynamic || B_Cols == Dynamic) && (b.size() == 0)) {
b.resize(a.size());
b.setZero();
} else if (A::SizeAtCompileTime == Dynamic && b.size() != 0 && a.size() == 0) {
make_coherent_expression(a, b);
}
}
};
template <typename A_Scalar, int A_Rows, int A_Cols, int A_Options, int A_MaxRows, int A_MaxCols, typename B_Scalar,
int B_Rows, int B_Cols, int B_Options, int B_MaxRows, int B_MaxCols>
struct make_coherent_impl<Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols>,
Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols>> {
typedef Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols> A;
typedef Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> B;
static void run(A& a, B& b) {
if ((A_Rows == Dynamic || A_Cols == Dynamic) && (a.size() == 0)) {
a.resize(b.size());
a.setZero();
} else if ((B_Rows == Dynamic || B_Cols == Dynamic) && (b.size() == 0)) {
b.resize(a.size());
b.setZero();
}
}
};
} // end namespace internal
template <typename DerType, typename BinOp>
struct ScalarBinaryOpTraits<AutoDiffScalar<DerType>, typename DerType::Scalar, BinOp> {
typedef AutoDiffScalar<DerType> ReturnType;
};
template <typename DerType, typename BinOp>
struct ScalarBinaryOpTraits<typename DerType::Scalar, AutoDiffScalar<DerType>, BinOp> {
typedef AutoDiffScalar<DerType> ReturnType;
};
// The following is an attempt to let Eigen's known about expression template, but that's more tricky!
// template<typename DerType, typename BinOp>
// struct ScalarBinaryOpTraits<AutoDiffScalar<DerType>,AutoDiffScalar<DerType>, BinOp>
// {
// enum { Defined = 1 };
// typedef AutoDiffScalar<typename DerType::PlainObject> ReturnType;
// };
//
// template<typename DerType1,typename DerType2, typename BinOp>
// struct ScalarBinaryOpTraits<AutoDiffScalar<DerType1>,AutoDiffScalar<DerType2>, BinOp>
// {
// enum { Defined = 1 };//internal::is_same<typename DerType1::Scalar,typename DerType2::Scalar>::value };
// typedef AutoDiffScalar<typename DerType1::PlainObject> ReturnType;
// };
#define EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(FUNC, CODE) \
template <typename DerType> \
inline Eigen::AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE( \
Eigen::internal::remove_all_t<DerType>, \
typename Eigen::internal::traits<Eigen::internal::remove_all_t<DerType>>::Scalar, product)> \
FUNC(const Eigen::AutoDiffScalar<DerType>& x) { \
using namespace Eigen; \
typedef typename Eigen::internal::traits<Eigen::internal::remove_all_t<DerType>>::Scalar Scalar; \
EIGEN_UNUSED_VARIABLE(sizeof(Scalar)); \
CODE; \
}
template <typename DerType>
struct CleanedUpDerType {
typedef AutoDiffScalar<typename Eigen::internal::remove_all_t<DerType>::PlainObject> type;
};
template <typename DerType>
inline const AutoDiffScalar<DerType>& conj(const AutoDiffScalar<DerType>& x) {
return x;
}
template <typename DerType>
inline const AutoDiffScalar<DerType>& real(const AutoDiffScalar<DerType>& x) {
return x;
}
template <typename DerType>
inline typename DerType::Scalar imag(const AutoDiffScalar<DerType>&) {
return 0.;
}
template <typename DerType, typename T>
inline typename CleanedUpDerType<DerType>::type(min)(const AutoDiffScalar<DerType>& x, const T& y) {
typedef typename CleanedUpDerType<DerType>::type ADS;
return (x <= y ? ADS(x) : ADS(y));
}
template <typename DerType, typename T>
inline typename CleanedUpDerType<DerType>::type(max)(const AutoDiffScalar<DerType>& x, const T& y) {
typedef typename CleanedUpDerType<DerType>::type ADS;
return (x >= y ? ADS(x) : ADS(y));
}
template <typename DerType, typename T>
inline typename CleanedUpDerType<DerType>::type(min)(const T& x, const AutoDiffScalar<DerType>& y) {
typedef typename CleanedUpDerType<DerType>::type ADS;
return (x < y ? ADS(x) : ADS(y));
}
template <typename DerType, typename T>
inline typename CleanedUpDerType<DerType>::type(max)(const T& x, const AutoDiffScalar<DerType>& y) {
typedef typename CleanedUpDerType<DerType>::type ADS;
return (x > y ? ADS(x) : ADS(y));
}
template <typename DerType>
inline
typename CleanedUpDerType<DerType>::type(min)(const AutoDiffScalar<DerType>& x, const AutoDiffScalar<DerType>& y) {
return (x.value() < y.value() ? x : y);
}
template <typename DerType>
inline
typename CleanedUpDerType<DerType>::type(max)(const AutoDiffScalar<DerType>& x, const AutoDiffScalar<DerType>& y) {
return (x.value() >= y.value() ? x : y);
}
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs, using std::abs;
return Eigen::MakeAutoDiffScalar(abs(x.value()),
x.derivatives() * (x.value() < 0 ? -1 : 1));)
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs2, using numext::abs2;
return Eigen::MakeAutoDiffScalar(abs2(x.value()),
x.derivatives() * (Scalar(2) * x.value()));)
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sqrt, using std::sqrt; Scalar sqrtx = sqrt(x.value());
return Eigen::MakeAutoDiffScalar(sqrtx, x.derivatives() * (Scalar(0.5) / sqrtx));)
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(cos, using std::cos; using std::sin;
return Eigen::MakeAutoDiffScalar(cos(x.value()),
x.derivatives() * (-sin(x.value())));)
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sin, using std::sin; using std::cos;
return Eigen::MakeAutoDiffScalar(sin(x.value()), x.derivatives() * cos(x.value()));)
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(exp, using std::exp; Scalar expx = exp(x.value());
return Eigen::MakeAutoDiffScalar(expx, x.derivatives() * expx);)
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(log, using std::log;
return Eigen::MakeAutoDiffScalar(log(x.value()),
x.derivatives() * (Scalar(1) / x.value()));)
template <typename DerType>
inline Eigen::AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(
internal::remove_all_t<DerType>, typename internal::traits<internal::remove_all_t<DerType>>::Scalar, product)>
pow(const Eigen::AutoDiffScalar<DerType>& x,
const typename internal::traits<internal::remove_all_t<DerType>>::Scalar& y) {
using namespace Eigen;
using std::pow;
return Eigen::MakeAutoDiffScalar(pow(x.value(), y), x.derivatives() * (y * pow(x.value(), y - 1)));
}
template <typename DerTypeA, typename DerTypeB>
inline AutoDiffScalar<Matrix<typename internal::traits<internal::remove_all_t<DerTypeA>>::Scalar, Dynamic, 1>> atan2(
const AutoDiffScalar<DerTypeA>& a, const AutoDiffScalar<DerTypeB>& b) {
using std::atan2;
typedef typename internal::traits<internal::remove_all_t<DerTypeA>>::Scalar Scalar;
typedef AutoDiffScalar<Matrix<Scalar, Dynamic, 1>> PlainADS;
PlainADS ret;
ret.value() = atan2(a.value(), b.value());
Scalar squared_hypot = a.value() * a.value() + b.value() * b.value();
// if (squared_hypot==0) the derivation is undefined and the following results in a NaN:
ret.derivatives() = (a.derivatives() * b.value() - a.value() * b.derivatives()) / squared_hypot;
return ret;
}
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(tan, using std::tan; using std::cos; return Eigen::MakeAutoDiffScalar(
tan(x.value()), x.derivatives() * (Scalar(1) / numext::abs2(cos(x.value()))));)
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(asin, using std::sqrt; using std::asin; return Eigen::MakeAutoDiffScalar(
asin(x.value()),
x.derivatives() * (Scalar(1) / sqrt(1 - numext::abs2(x.value()))));)
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(acos, using std::sqrt; using std::acos; return Eigen::MakeAutoDiffScalar(
acos(x.value()),
x.derivatives() * (Scalar(-1) / sqrt(1 - numext::abs2(x.value()))));)
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(
tanh, using std::cosh; using std::tanh;
return Eigen::MakeAutoDiffScalar(tanh(x.value()), x.derivatives() * (Scalar(1) / numext::abs2(cosh(x.value()))));)
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sinh, using std::sinh; using std::cosh;
return Eigen::MakeAutoDiffScalar(sinh(x.value()),
x.derivatives() * cosh(x.value()));)
EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(cosh, using std::sinh; using std::cosh;
return Eigen::MakeAutoDiffScalar(cosh(x.value()),
x.derivatives() * sinh(x.value()));)
#undef EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY
template <typename DerType>
struct NumTraits<AutoDiffScalar<DerType>>
: NumTraits<typename NumTraits<typename internal::remove_all_t<DerType>::Scalar>::Real> {
typedef internal::remove_all_t<DerType> DerTypeCleaned;
typedef AutoDiffScalar<Matrix<typename NumTraits<typename DerTypeCleaned::Scalar>::Real,
DerTypeCleaned::RowsAtCompileTime, DerTypeCleaned::ColsAtCompileTime, 0,
DerTypeCleaned::MaxRowsAtCompileTime, DerTypeCleaned::MaxColsAtCompileTime>>
Real;
typedef AutoDiffScalar<DerType> NonInteger;
typedef AutoDiffScalar<DerType> Nested;
typedef typename NumTraits<typename DerTypeCleaned::Scalar>::Literal Literal;
enum { RequireInitialization = 1 };
};
namespace internal {
template <typename DerivativeType>
struct is_identically_zero_impl<AutoDiffScalar<DerivativeType>> {
static inline bool run(const AutoDiffScalar<DerivativeType>& s) {
const DerivativeType& derivatives = s.derivatives();
for (int i = 0; i < derivatives.size(); ++i) {
if (!numext::is_exactly_zero(derivatives[i])) {
return false;
}
}
return numext::is_exactly_zero(s.value());
}
};
} // namespace internal
} // namespace Eigen
namespace std {
template <typename T>
class numeric_limits<Eigen::AutoDiffScalar<T>> : public numeric_limits<typename T::Scalar> {};
template <typename T>
class numeric_limits<Eigen::AutoDiffScalar<T&>> : public numeric_limits<typename T::Scalar> {};
} // namespace std
#endif // EIGEN_AUTODIFF_SCALAR_H