| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_LLT_H |
| #define EIGEN_LLT_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| template <typename MatrixType_, int UpLo_> |
| struct traits<LLT<MatrixType_, UpLo_> > : traits<MatrixType_> { |
| typedef MatrixXpr XprKind; |
| typedef SolverStorage StorageKind; |
| typedef int StorageIndex; |
| enum { Flags = 0 }; |
| }; |
| |
| template <typename MatrixType, int UpLo> |
| struct LLT_Traits; |
| } // namespace internal |
| |
| /** \ingroup Cholesky_Module |
| * |
| * \class LLT |
| * |
| * \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features |
| * |
| * \tparam MatrixType_ the type of the matrix of which we are computing the LL^T Cholesky decomposition |
| * \tparam UpLo_ the triangular part that will be used for the decomposition: Lower (default) or Upper. |
| * The other triangular part won't be read. |
| * |
| * This class performs a LL^T Cholesky decomposition of a symmetric, positive definite |
| * matrix A such that A = LL^* = U^*U, where L is lower triangular. |
| * |
| * While the Cholesky decomposition is particularly useful to solve selfadjoint problems like D^*D x = b, |
| * for that purpose, we recommend the Cholesky decomposition without square root which is more stable |
| * and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other |
| * situations like generalised eigen problems with hermitian matrices. |
| * |
| * Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive |
| * definite matrices, use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine |
| * whether a system of equations has a solution. |
| * |
| * Example: \include LLT_example.cpp |
| * Output: \verbinclude LLT_example.out |
| * |
| * \b Performance: for best performance, it is recommended to use a column-major storage format |
| * with the Lower triangular part (the default), or, equivalently, a row-major storage format |
| * with the Upper triangular part. Otherwise, you might get a 20% slowdown for the full factorization |
| * step, and rank-updates can be up to 3 times slower. |
| * |
| * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. |
| * |
| * Note that during the decomposition, only the lower (or upper, as defined by UpLo_) triangular part of A is |
| * considered. Therefore, the strict lower part does not have to store correct values. |
| * |
| * \sa MatrixBase::llt(), SelfAdjointView::llt(), class LDLT |
| */ |
| template <typename MatrixType_, int UpLo_> |
| class LLT : public SolverBase<LLT<MatrixType_, UpLo_> > { |
| public: |
| typedef MatrixType_ MatrixType; |
| typedef SolverBase<LLT> Base; |
| friend class SolverBase<LLT>; |
| |
| EIGEN_GENERIC_PUBLIC_INTERFACE(LLT) |
| enum { MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime }; |
| |
| enum { PacketSize = internal::packet_traits<Scalar>::size, AlignmentMask = int(PacketSize) - 1, UpLo = UpLo_ }; |
| |
| typedef internal::LLT_Traits<MatrixType, UpLo> Traits; |
| |
| /** |
| * \brief Default Constructor. |
| * |
| * The default constructor is useful in cases in which the user intends to |
| * perform decompositions via LLT::compute(const MatrixType&). |
| */ |
| LLT() : m_matrix(), m_isInitialized(false) {} |
| |
| /** \brief Default Constructor with memory preallocation |
| * |
| * Like the default constructor but with preallocation of the internal data |
| * according to the specified problem \a size. |
| * \sa LLT() |
| */ |
| explicit LLT(Index size) : m_matrix(size, size), m_isInitialized(false) {} |
| |
| template <typename InputType> |
| explicit LLT(const EigenBase<InputType>& matrix) : m_matrix(matrix.rows(), matrix.cols()), m_isInitialized(false) { |
| compute(matrix.derived()); |
| } |
| |
| /** \brief Constructs a LLT factorization from a given matrix |
| * |
| * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when |
| * \c MatrixType is a Eigen::Ref. |
| * |
| * \sa LLT(const EigenBase&) |
| */ |
| template <typename InputType> |
| explicit LLT(EigenBase<InputType>& matrix) : m_matrix(matrix.derived()), m_isInitialized(false) { |
| compute(matrix.derived()); |
| } |
| |
| /** \returns a view of the upper triangular matrix U */ |
| inline typename Traits::MatrixU matrixU() const { |
| eigen_assert(m_isInitialized && "LLT is not initialized."); |
| return Traits::getU(m_matrix); |
| } |
| |
| /** \returns a view of the lower triangular matrix L */ |
| inline typename Traits::MatrixL matrixL() const { |
| eigen_assert(m_isInitialized && "LLT is not initialized."); |
| return Traits::getL(m_matrix); |
| } |
| |
| #ifdef EIGEN_PARSED_BY_DOXYGEN |
| /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. |
| * |
| * Since this LLT class assumes anyway that the matrix A is invertible, the solution |
| * theoretically exists and is unique regardless of b. |
| * |
| * Example: \include LLT_solve.cpp |
| * Output: \verbinclude LLT_solve.out |
| * |
| * \sa solveInPlace(), MatrixBase::llt(), SelfAdjointView::llt() |
| */ |
| template <typename Rhs> |
| inline const Solve<LLT, Rhs> solve(const MatrixBase<Rhs>& b) const; |
| #endif |
| |
| template <typename Derived> |
| void solveInPlace(const MatrixBase<Derived>& bAndX) const; |
| |
| template <typename InputType> |
| LLT& compute(const EigenBase<InputType>& matrix); |
| |
| /** \returns an estimate of the reciprocal condition number of the matrix of |
| * which \c *this is the Cholesky decomposition. |
| */ |
| RealScalar rcond() const { |
| eigen_assert(m_isInitialized && "LLT is not initialized."); |
| eigen_assert(m_info == Success && "LLT failed because matrix appears to be negative"); |
| return internal::rcond_estimate_helper(m_l1_norm, *this); |
| } |
| |
| /** \returns the LLT decomposition matrix |
| * |
| * TODO: document the storage layout |
| */ |
| inline const MatrixType& matrixLLT() const { |
| eigen_assert(m_isInitialized && "LLT is not initialized."); |
| return m_matrix; |
| } |
| |
| MatrixType reconstructedMatrix() const; |
| |
| /** \brief Reports whether previous computation was successful. |
| * |
| * \returns \c Success if computation was successful, |
| * \c NumericalIssue if the matrix.appears not to be positive definite. |
| */ |
| ComputationInfo info() const { |
| eigen_assert(m_isInitialized && "LLT is not initialized."); |
| return m_info; |
| } |
| |
| /** \returns the adjoint of \c *this, that is, a const reference to the decomposition itself as the underlying matrix |
| * is self-adjoint. |
| * |
| * This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as: |
| * \code x = decomposition.adjoint().solve(b) \endcode |
| */ |
| const LLT& adjoint() const EIGEN_NOEXCEPT { return *this; } |
| |
| inline EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows(); } |
| inline EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); } |
| |
| template <typename VectorType> |
| LLT& rankUpdate(const VectorType& vec, const RealScalar& sigma = 1); |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| template <typename RhsType, typename DstType> |
| void _solve_impl(const RhsType& rhs, DstType& dst) const; |
| |
| template <bool Conjugate, typename RhsType, typename DstType> |
| void _solve_impl_transposed(const RhsType& rhs, DstType& dst) const; |
| #endif |
| |
| protected: |
| EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) |
| |
| /** \internal |
| * Used to compute and store L |
| * The strict upper part is not used and even not initialized. |
| */ |
| MatrixType m_matrix; |
| RealScalar m_l1_norm; |
| bool m_isInitialized; |
| ComputationInfo m_info; |
| }; |
| |
| namespace internal { |
| |
| template <typename Scalar, int UpLo> |
| struct llt_inplace; |
| |
| template <typename MatrixType, typename VectorType> |
| static Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, |
| const typename MatrixType::RealScalar& sigma) { |
| using std::sqrt; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef typename MatrixType::ColXpr ColXpr; |
| typedef internal::remove_all_t<ColXpr> ColXprCleaned; |
| typedef typename ColXprCleaned::SegmentReturnType ColXprSegment; |
| typedef Matrix<Scalar, Dynamic, 1> TempVectorType; |
| typedef typename TempVectorType::SegmentReturnType TempVecSegment; |
| |
| Index n = mat.cols(); |
| eigen_assert(mat.rows() == n && vec.size() == n); |
| |
| TempVectorType temp; |
| |
| if (sigma > 0) { |
| // This version is based on Givens rotations. |
| // It is faster than the other one below, but only works for updates, |
| // i.e., for sigma > 0 |
| temp = sqrt(sigma) * vec; |
| |
| for (Index i = 0; i < n; ++i) { |
| JacobiRotation<Scalar> g; |
| g.makeGivens(mat(i, i), -temp(i), &mat(i, i)); |
| |
| Index rs = n - i - 1; |
| if (rs > 0) { |
| ColXprSegment x(mat.col(i).tail(rs)); |
| TempVecSegment y(temp.tail(rs)); |
| apply_rotation_in_the_plane(x, y, g); |
| } |
| } |
| } else { |
| temp = vec; |
| RealScalar beta = 1; |
| for (Index j = 0; j < n; ++j) { |
| RealScalar Ljj = numext::real(mat.coeff(j, j)); |
| RealScalar dj = numext::abs2(Ljj); |
| Scalar wj = temp.coeff(j); |
| RealScalar swj2 = sigma * numext::abs2(wj); |
| RealScalar gamma = dj * beta + swj2; |
| |
| RealScalar x = dj + swj2 / beta; |
| if (x <= RealScalar(0)) return j; |
| RealScalar nLjj = sqrt(x); |
| mat.coeffRef(j, j) = nLjj; |
| beta += swj2 / dj; |
| |
| // Update the terms of L |
| Index rs = n - j - 1; |
| if (rs) { |
| temp.tail(rs) -= (wj / Ljj) * mat.col(j).tail(rs); |
| if (!numext::is_exactly_zero(gamma)) |
| mat.col(j).tail(rs) = |
| (nLjj / Ljj) * mat.col(j).tail(rs) + (nLjj * sigma * numext::conj(wj) / gamma) * temp.tail(rs); |
| } |
| } |
| } |
| return -1; |
| } |
| |
| template <typename Scalar> |
| struct llt_inplace<Scalar, Lower> { |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| template <typename MatrixType> |
| static Index unblocked(MatrixType& mat) { |
| using std::sqrt; |
| |
| eigen_assert(mat.rows() == mat.cols()); |
| const Index size = mat.rows(); |
| for (Index k = 0; k < size; ++k) { |
| Index rs = size - k - 1; // remaining size |
| |
| Block<MatrixType, Dynamic, 1> A21(mat, k + 1, k, rs, 1); |
| Block<MatrixType, 1, Dynamic> A10(mat, k, 0, 1, k); |
| Block<MatrixType, Dynamic, Dynamic> A20(mat, k + 1, 0, rs, k); |
| |
| RealScalar x = numext::real(mat.coeff(k, k)); |
| if (k > 0) x -= A10.squaredNorm(); |
| if (x <= RealScalar(0)) return k; |
| mat.coeffRef(k, k) = x = sqrt(x); |
| if (k > 0 && rs > 0) A21.noalias() -= A20 * A10.adjoint(); |
| if (rs > 0) A21 /= x; |
| } |
| return -1; |
| } |
| |
| template <typename MatrixType> |
| static Index blocked(MatrixType& m) { |
| eigen_assert(m.rows() == m.cols()); |
| Index size = m.rows(); |
| if (size < 32) return unblocked(m); |
| |
| Index blockSize = size / 8; |
| blockSize = (blockSize / 16) * 16; |
| blockSize = (std::min)((std::max)(blockSize, Index(8)), Index(128)); |
| |
| for (Index k = 0; k < size; k += blockSize) { |
| // partition the matrix: |
| // A00 | - | - |
| // lu = A10 | A11 | - |
| // A20 | A21 | A22 |
| Index bs = (std::min)(blockSize, size - k); |
| Index rs = size - k - bs; |
| Block<MatrixType, Dynamic, Dynamic> A11(m, k, k, bs, bs); |
| Block<MatrixType, Dynamic, Dynamic> A21(m, k + bs, k, rs, bs); |
| Block<MatrixType, Dynamic, Dynamic> A22(m, k + bs, k + bs, rs, rs); |
| |
| Index ret; |
| if ((ret = unblocked(A11)) >= 0) return k + ret; |
| if (rs > 0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21); |
| if (rs > 0) |
| A22.template selfadjointView<Lower>().rankUpdate(A21, |
| typename NumTraits<RealScalar>::Literal(-1)); // bottleneck |
| } |
| return -1; |
| } |
| |
| template <typename MatrixType, typename VectorType> |
| static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) { |
| return Eigen::internal::llt_rank_update_lower(mat, vec, sigma); |
| } |
| }; |
| |
| template <typename Scalar> |
| struct llt_inplace<Scalar, Upper> { |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| |
| template <typename MatrixType> |
| static EIGEN_STRONG_INLINE Index unblocked(MatrixType& mat) { |
| Transpose<MatrixType> matt(mat); |
| return llt_inplace<Scalar, Lower>::unblocked(matt); |
| } |
| template <typename MatrixType> |
| static EIGEN_STRONG_INLINE Index blocked(MatrixType& mat) { |
| Transpose<MatrixType> matt(mat); |
| return llt_inplace<Scalar, Lower>::blocked(matt); |
| } |
| template <typename MatrixType, typename VectorType> |
| static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) { |
| Transpose<MatrixType> matt(mat); |
| return llt_inplace<Scalar, Lower>::rankUpdate(matt, vec.conjugate(), sigma); |
| } |
| }; |
| |
| template <typename MatrixType> |
| struct LLT_Traits<MatrixType, Lower> { |
| typedef const TriangularView<const MatrixType, Lower> MatrixL; |
| typedef const TriangularView<const typename MatrixType::AdjointReturnType, Upper> MatrixU; |
| static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); } |
| static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); } |
| static bool inplace_decomposition(MatrixType& m) { |
| return llt_inplace<typename MatrixType::Scalar, Lower>::blocked(m) == -1; |
| } |
| }; |
| |
| template <typename MatrixType> |
| struct LLT_Traits<MatrixType, Upper> { |
| typedef const TriangularView<const typename MatrixType::AdjointReturnType, Lower> MatrixL; |
| typedef const TriangularView<const MatrixType, Upper> MatrixU; |
| static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); } |
| static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); } |
| static bool inplace_decomposition(MatrixType& m) { |
| return llt_inplace<typename MatrixType::Scalar, Upper>::blocked(m) == -1; |
| } |
| }; |
| |
| } // end namespace internal |
| |
| /** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix |
| * |
| * \returns a reference to *this |
| * |
| * Example: \include TutorialLinAlgComputeTwice.cpp |
| * Output: \verbinclude TutorialLinAlgComputeTwice.out |
| */ |
| template <typename MatrixType, int UpLo_> |
| template <typename InputType> |
| LLT<MatrixType, UpLo_>& LLT<MatrixType, UpLo_>::compute(const EigenBase<InputType>& a) { |
| eigen_assert(a.rows() == a.cols()); |
| const Index size = a.rows(); |
| m_matrix.resize(size, size); |
| if (!internal::is_same_dense(m_matrix, a.derived())) m_matrix = a.derived(); |
| |
| // Compute matrix L1 norm = max abs column sum. |
| m_l1_norm = RealScalar(0); |
| // TODO move this code to SelfAdjointView |
| for (Index col = 0; col < size; ++col) { |
| RealScalar abs_col_sum; |
| if (UpLo_ == Lower) |
| abs_col_sum = |
| m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); |
| else |
| abs_col_sum = |
| m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>(); |
| if (abs_col_sum > m_l1_norm) m_l1_norm = abs_col_sum; |
| } |
| |
| m_isInitialized = true; |
| bool ok = Traits::inplace_decomposition(m_matrix); |
| m_info = ok ? Success : NumericalIssue; |
| |
| return *this; |
| } |
| |
| /** Performs a rank one update (or dowdate) of the current decomposition. |
| * If A = LL^* before the rank one update, |
| * then after it we have LL^* = A + sigma * v v^* where \a v must be a vector |
| * of same dimension. |
| */ |
| template <typename MatrixType_, int UpLo_> |
| template <typename VectorType> |
| LLT<MatrixType_, UpLo_>& LLT<MatrixType_, UpLo_>::rankUpdate(const VectorType& v, const RealScalar& sigma) { |
| EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType); |
| eigen_assert(v.size() == m_matrix.cols()); |
| eigen_assert(m_isInitialized); |
| if (internal::llt_inplace<typename MatrixType::Scalar, UpLo>::rankUpdate(m_matrix, v, sigma) >= 0) |
| m_info = NumericalIssue; |
| else |
| m_info = Success; |
| |
| return *this; |
| } |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| template <typename MatrixType_, int UpLo_> |
| template <typename RhsType, typename DstType> |
| void LLT<MatrixType_, UpLo_>::_solve_impl(const RhsType& rhs, DstType& dst) const { |
| _solve_impl_transposed<true>(rhs, dst); |
| } |
| |
| template <typename MatrixType_, int UpLo_> |
| template <bool Conjugate, typename RhsType, typename DstType> |
| void LLT<MatrixType_, UpLo_>::_solve_impl_transposed(const RhsType& rhs, DstType& dst) const { |
| dst = rhs; |
| |
| matrixL().template conjugateIf<!Conjugate>().solveInPlace(dst); |
| matrixU().template conjugateIf<!Conjugate>().solveInPlace(dst); |
| } |
| #endif |
| |
| /** \internal use x = llt_object.solve(x); |
| * |
| * This is the \em in-place version of solve(). |
| * |
| * \param bAndX represents both the right-hand side matrix b and result x. |
| * |
| * This version avoids a copy when the right hand side matrix b is not needed anymore. |
| * |
| * \warning The parameter is only marked 'const' to make the C++ compiler accept a temporary expression here. |
| * This function will const_cast it, so constness isn't honored here. |
| * |
| * \sa LLT::solve(), MatrixBase::llt() |
| */ |
| template <typename MatrixType, int UpLo_> |
| template <typename Derived> |
| void LLT<MatrixType, UpLo_>::solveInPlace(const MatrixBase<Derived>& bAndX) const { |
| eigen_assert(m_isInitialized && "LLT is not initialized."); |
| eigen_assert(m_matrix.rows() == bAndX.rows()); |
| matrixL().solveInPlace(bAndX); |
| matrixU().solveInPlace(bAndX); |
| } |
| |
| /** \returns the matrix represented by the decomposition, |
| * i.e., it returns the product: L L^*. |
| * This function is provided for debug purpose. */ |
| template <typename MatrixType, int UpLo_> |
| MatrixType LLT<MatrixType, UpLo_>::reconstructedMatrix() const { |
| eigen_assert(m_isInitialized && "LLT is not initialized."); |
| return matrixL() * matrixL().adjoint().toDenseMatrix(); |
| } |
| |
| /** \cholesky_module |
| * \returns the LLT decomposition of \c *this |
| * \sa SelfAdjointView::llt() |
| */ |
| template <typename Derived> |
| inline const LLT<typename MatrixBase<Derived>::PlainObject> MatrixBase<Derived>::llt() const { |
| return LLT<PlainObject>(derived()); |
| } |
| |
| /** \cholesky_module |
| * \returns the LLT decomposition of \c *this |
| * \sa SelfAdjointView::llt() |
| */ |
| template <typename MatrixType, unsigned int UpLo> |
| inline const LLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo> SelfAdjointView<MatrixType, UpLo>::llt() |
| const { |
| return LLT<PlainObject, UpLo>(m_matrix); |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_LLT_H |