| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_GENERIC_PACKET_MATH_H |
| #define EIGEN_GENERIC_PACKET_MATH_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| /** \internal |
| * \file GenericPacketMath.h |
| * |
| * Default implementation for types not supported by the vectorization. |
| * In practice these functions are provided to make easier the writing |
| * of generic vectorized code. |
| */ |
| |
| #ifndef EIGEN_DEBUG_ALIGNED_LOAD |
| #define EIGEN_DEBUG_ALIGNED_LOAD |
| #endif |
| |
| #ifndef EIGEN_DEBUG_UNALIGNED_LOAD |
| #define EIGEN_DEBUG_UNALIGNED_LOAD |
| #endif |
| |
| #ifndef EIGEN_DEBUG_ALIGNED_STORE |
| #define EIGEN_DEBUG_ALIGNED_STORE |
| #endif |
| |
| #ifndef EIGEN_DEBUG_UNALIGNED_STORE |
| #define EIGEN_DEBUG_UNALIGNED_STORE |
| #endif |
| |
| struct default_packet_traits { |
| enum { |
| // Ops that are implemented for most types. |
| HasAdd = 1, |
| HasSub = 1, |
| HasShift = 1, |
| HasMul = 1, |
| HasNegate = 1, |
| HasAbs = 1, |
| HasAbs2 = 1, |
| HasMin = 1, |
| HasMax = 1, |
| HasConj = 1, |
| HasSetLinear = 1, |
| HasSign = 1, |
| // By default, the nearest integer functions (rint, round, floor, ceil, trunc) are enabled for all scalar and packet |
| // types |
| HasRound = 1, |
| |
| HasArg = 0, |
| HasAbsDiff = 0, |
| HasBlend = 0, |
| // This flag is used to indicate whether packet comparison is supported. |
| // pcmp_eq, pcmp_lt and pcmp_le should be defined for it to be true. |
| HasCmp = 0, |
| |
| HasDiv = 0, |
| HasReciprocal = 0, |
| HasSqrt = 0, |
| HasRsqrt = 0, |
| HasExp = 0, |
| HasExpm1 = 0, |
| HasLog = 0, |
| HasLog1p = 0, |
| HasLog10 = 0, |
| HasPow = 0, |
| HasSin = 0, |
| HasCos = 0, |
| HasTan = 0, |
| HasASin = 0, |
| HasACos = 0, |
| HasATan = 0, |
| HasATanh = 0, |
| HasSinh = 0, |
| HasCosh = 0, |
| HasTanh = 0, |
| HasLGamma = 0, |
| HasDiGamma = 0, |
| HasZeta = 0, |
| HasPolygamma = 0, |
| HasErf = 0, |
| HasErfc = 0, |
| HasNdtri = 0, |
| HasBessel = 0, |
| HasIGamma = 0, |
| HasIGammaDerA = 0, |
| HasGammaSampleDerAlpha = 0, |
| HasIGammac = 0, |
| HasBetaInc = 0 |
| }; |
| }; |
| |
| template <typename T> |
| struct packet_traits : default_packet_traits { |
| typedef T type; |
| typedef T half; |
| enum { |
| Vectorizable = 0, |
| size = 1, |
| AlignedOnScalar = 0, |
| }; |
| enum { |
| HasAdd = 0, |
| HasSub = 0, |
| HasMul = 0, |
| HasNegate = 0, |
| HasAbs = 0, |
| HasAbs2 = 0, |
| HasMin = 0, |
| HasMax = 0, |
| HasConj = 0, |
| HasSetLinear = 0 |
| }; |
| }; |
| |
| template <typename T> |
| struct packet_traits<const T> : packet_traits<T> {}; |
| |
| template <typename T> |
| struct unpacket_traits { |
| typedef T type; |
| typedef T half; |
| typedef typename numext::get_integer_by_size<sizeof(T)>::signed_type integer_packet; |
| enum { |
| size = 1, |
| alignment = alignof(T), |
| vectorizable = false, |
| masked_load_available = false, |
| masked_store_available = false |
| }; |
| }; |
| |
| template <typename T> |
| struct unpacket_traits<const T> : unpacket_traits<T> {}; |
| |
| /** \internal A convenience utility for determining if the type is a scalar. |
| * This is used to enable some generic packet implementations. |
| */ |
| template <typename Packet> |
| struct is_scalar { |
| using Scalar = typename unpacket_traits<Packet>::type; |
| enum { value = internal::is_same<Packet, Scalar>::value }; |
| }; |
| |
| // automatically and succinctly define combinations of pcast<SrcPacket,TgtPacket> when |
| // 1) the packets are the same type, or |
| // 2) the packets differ only in sign. |
| // In both of these cases, preinterpret (bit_cast) is equivalent to pcast (static_cast) |
| template <typename SrcPacket, typename TgtPacket, |
| bool Scalar = is_scalar<SrcPacket>::value && is_scalar<TgtPacket>::value> |
| struct is_degenerate_helper : is_same<SrcPacket, TgtPacket> {}; |
| template <> |
| struct is_degenerate_helper<int8_t, uint8_t, true> : std::true_type {}; |
| template <> |
| struct is_degenerate_helper<int16_t, uint16_t, true> : std::true_type {}; |
| template <> |
| struct is_degenerate_helper<int32_t, uint32_t, true> : std::true_type {}; |
| template <> |
| struct is_degenerate_helper<int64_t, uint64_t, true> : std::true_type {}; |
| |
| template <typename SrcPacket, typename TgtPacket> |
| struct is_degenerate_helper<SrcPacket, TgtPacket, false> { |
| using SrcScalar = typename unpacket_traits<SrcPacket>::type; |
| static constexpr int SrcSize = unpacket_traits<SrcPacket>::size; |
| using TgtScalar = typename unpacket_traits<TgtPacket>::type; |
| static constexpr int TgtSize = unpacket_traits<TgtPacket>::size; |
| static constexpr bool value = is_degenerate_helper<SrcScalar, TgtScalar, true>::value && (SrcSize == TgtSize); |
| }; |
| |
| // is_degenerate<T1,T2>::value == is_degenerate<T2,T1>::value |
| template <typename SrcPacket, typename TgtPacket> |
| struct is_degenerate { |
| static constexpr bool value = |
| is_degenerate_helper<SrcPacket, TgtPacket>::value || is_degenerate_helper<TgtPacket, SrcPacket>::value; |
| }; |
| |
| template <typename Packet> |
| struct is_half { |
| using Scalar = typename unpacket_traits<Packet>::type; |
| static constexpr int Size = unpacket_traits<Packet>::size; |
| using DefaultPacket = typename packet_traits<Scalar>::type; |
| static constexpr int DefaultSize = unpacket_traits<DefaultPacket>::size; |
| static constexpr bool value = Size < DefaultSize; |
| }; |
| |
| template <typename Src, typename Tgt> |
| struct type_casting_traits { |
| enum { |
| VectorizedCast = |
| is_degenerate<Src, Tgt>::value && packet_traits<Src>::Vectorizable && packet_traits<Tgt>::Vectorizable, |
| SrcCoeffRatio = 1, |
| TgtCoeffRatio = 1 |
| }; |
| }; |
| |
| // provides a succinct template to define vectorized casting traits with respect to the largest accessible packet types |
| template <typename Src, typename Tgt> |
| struct vectorized_type_casting_traits { |
| enum : int { |
| DefaultSrcPacketSize = packet_traits<Src>::size, |
| DefaultTgtPacketSize = packet_traits<Tgt>::size, |
| VectorizedCast = 1, |
| SrcCoeffRatio = plain_enum_max(DefaultTgtPacketSize / DefaultSrcPacketSize, 1), |
| TgtCoeffRatio = plain_enum_max(DefaultSrcPacketSize / DefaultTgtPacketSize, 1) |
| }; |
| }; |
| |
| /** \internal Wrapper to ensure that multiple packet types can map to the same |
| same underlying vector type. */ |
| template <typename T, int unique_id = 0> |
| struct eigen_packet_wrapper { |
| EIGEN_ALWAYS_INLINE operator T&() { return m_val; } |
| EIGEN_ALWAYS_INLINE operator const T&() const { return m_val; } |
| EIGEN_ALWAYS_INLINE eigen_packet_wrapper() = default; |
| EIGEN_ALWAYS_INLINE eigen_packet_wrapper(const T& v) : m_val(v) {} |
| EIGEN_ALWAYS_INLINE eigen_packet_wrapper& operator=(const T& v) { |
| m_val = v; |
| return *this; |
| } |
| |
| T m_val; |
| }; |
| |
| template <typename Target, typename Packet, bool IsSame = is_same<Target, Packet>::value> |
| struct preinterpret_generic; |
| |
| template <typename Target, typename Packet> |
| struct preinterpret_generic<Target, Packet, false> { |
| // the packets are not the same, attempt scalar bit_cast |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Target run(const Packet& a) { |
| return numext::bit_cast<Target, Packet>(a); |
| } |
| }; |
| |
| template <typename Packet> |
| struct preinterpret_generic<Packet, Packet, true> { |
| // the packets are the same type: do nothing |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run(const Packet& a) { return a; } |
| }; |
| |
| /** \internal \returns reinterpret_cast<Target>(a) */ |
| template <typename Target, typename Packet> |
| EIGEN_DEVICE_FUNC inline Target preinterpret(const Packet& a) { |
| return preinterpret_generic<Target, Packet>::run(a); |
| } |
| |
| template <typename SrcPacket, typename TgtPacket, bool Degenerate = is_degenerate<SrcPacket, TgtPacket>::value, |
| bool TgtIsHalf = is_half<TgtPacket>::value> |
| struct pcast_generic; |
| |
| template <typename SrcPacket, typename TgtPacket> |
| struct pcast_generic<SrcPacket, TgtPacket, false, false> { |
| // the packets are not degenerate: attempt scalar static_cast |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket run(const SrcPacket& a) { |
| return cast_impl<SrcPacket, TgtPacket>::run(a); |
| } |
| }; |
| |
| template <typename Packet> |
| struct pcast_generic<Packet, Packet, true, false> { |
| // the packets are the same: do nothing |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run(const Packet& a) { return a; } |
| }; |
| |
| template <typename SrcPacket, typename TgtPacket, bool TgtIsHalf> |
| struct pcast_generic<SrcPacket, TgtPacket, true, TgtIsHalf> { |
| // the packets are degenerate: preinterpret is equivalent to pcast |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket run(const SrcPacket& a) { return preinterpret<TgtPacket>(a); } |
| }; |
| |
| /** \internal \returns static_cast<TgtType>(a) (coeff-wise) */ |
| template <typename SrcPacket, typename TgtPacket> |
| EIGEN_DEVICE_FUNC inline TgtPacket pcast(const SrcPacket& a) { |
| return pcast_generic<SrcPacket, TgtPacket>::run(a); |
| } |
| template <typename SrcPacket, typename TgtPacket> |
| EIGEN_DEVICE_FUNC inline TgtPacket pcast(const SrcPacket& a, const SrcPacket& b) { |
| return pcast_generic<SrcPacket, TgtPacket>::run(a, b); |
| } |
| template <typename SrcPacket, typename TgtPacket> |
| EIGEN_DEVICE_FUNC inline TgtPacket pcast(const SrcPacket& a, const SrcPacket& b, const SrcPacket& c, |
| const SrcPacket& d) { |
| return pcast_generic<SrcPacket, TgtPacket>::run(a, b, c, d); |
| } |
| template <typename SrcPacket, typename TgtPacket> |
| EIGEN_DEVICE_FUNC inline TgtPacket pcast(const SrcPacket& a, const SrcPacket& b, const SrcPacket& c, const SrcPacket& d, |
| const SrcPacket& e, const SrcPacket& f, const SrcPacket& g, |
| const SrcPacket& h) { |
| return pcast_generic<SrcPacket, TgtPacket>::run(a, b, c, d, e, f, g, h); |
| } |
| |
| template <typename SrcPacket, typename TgtPacket> |
| struct pcast_generic<SrcPacket, TgtPacket, false, true> { |
| // TgtPacket is a half packet of some other type |
| // perform cast and truncate result |
| using DefaultTgtPacket = typename is_half<TgtPacket>::DefaultPacket; |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket run(const SrcPacket& a) { |
| return preinterpret<TgtPacket>(pcast<SrcPacket, DefaultTgtPacket>(a)); |
| } |
| }; |
| |
| /** \internal \returns a + b (coeff-wise) */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet padd(const Packet& a, const Packet& b) { |
| return a + b; |
| } |
| // Avoid compiler warning for boolean algebra. |
| template <> |
| EIGEN_DEVICE_FUNC inline bool padd(const bool& a, const bool& b) { |
| return a || b; |
| } |
| |
| /** \internal \returns a packet version of \a *from, (un-aligned masked add) |
| * There is no generic implementation. We only have implementations for specialized |
| * cases. Generic case should not be called. |
| */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline std::enable_if_t<unpacket_traits<Packet>::masked_fpops_available, Packet> padd( |
| const Packet& a, const Packet& b, typename unpacket_traits<Packet>::mask_t umask); |
| |
| /** \internal \returns a - b (coeff-wise) */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet psub(const Packet& a, const Packet& b) { |
| return a - b; |
| } |
| |
| /** \internal \returns -a (coeff-wise) */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet pnegate(const Packet& a) { |
| EIGEN_STATIC_ASSERT((!is_same<typename unpacket_traits<Packet>::type, bool>::value), |
| NEGATE IS NOT DEFINED FOR BOOLEAN TYPES) |
| return numext::negate(a); |
| } |
| |
| /** \internal \returns conj(a) (coeff-wise) */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet pconj(const Packet& a) { |
| return numext::conj(a); |
| } |
| |
| /** \internal \returns a * b (coeff-wise) */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet pmul(const Packet& a, const Packet& b) { |
| return a * b; |
| } |
| // Avoid compiler warning for boolean algebra. |
| template <> |
| EIGEN_DEVICE_FUNC inline bool pmul(const bool& a, const bool& b) { |
| return a && b; |
| } |
| |
| /** \internal \returns a / b (coeff-wise) */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet pdiv(const Packet& a, const Packet& b) { |
| return a / b; |
| } |
| |
| // In the generic case, memset to all one bits. |
| template <typename Packet, typename EnableIf = void> |
| struct ptrue_impl { |
| static EIGEN_DEVICE_FUNC inline Packet run(const Packet& /*a*/) { |
| Packet b; |
| memset(static_cast<void*>(&b), 0xff, sizeof(Packet)); |
| return b; |
| } |
| }; |
| |
| // For booleans, we can only directly set a valid `bool` value to avoid UB. |
| template <> |
| struct ptrue_impl<bool, void> { |
| static EIGEN_DEVICE_FUNC inline bool run(const bool& /*a*/) { return true; } |
| }; |
| |
| // For non-trivial scalars, set to Scalar(1) (i.e. a non-zero value). |
| // Although this is technically not a valid bitmask, the scalar path for pselect |
| // uses a comparison to zero, so this should still work in most cases. We don't |
| // have another option, since the scalar type requires initialization. |
| template <typename T> |
| struct ptrue_impl<T, std::enable_if_t<is_scalar<T>::value && NumTraits<T>::RequireInitialization>> { |
| static EIGEN_DEVICE_FUNC inline T run(const T& /*a*/) { return T(1); } |
| }; |
| |
| /** \internal \returns one bits. */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet ptrue(const Packet& a) { |
| return ptrue_impl<Packet>::run(a); |
| } |
| |
| // In the general case, memset to zero. |
| template <typename Packet, typename EnableIf = void> |
| struct pzero_impl { |
| static EIGEN_DEVICE_FUNC inline Packet run(const Packet& /*a*/) { |
| Packet b; |
| memset(static_cast<void*>(&b), 0x00, sizeof(Packet)); |
| return b; |
| } |
| }; |
| |
| // For scalars, explicitly set to Scalar(0), since the underlying representation |
| // for zero may not consist of all-zero bits. |
| template <typename T> |
| struct pzero_impl<T, std::enable_if_t<is_scalar<T>::value>> { |
| static EIGEN_DEVICE_FUNC inline T run(const T& /*a*/) { return T(0); } |
| }; |
| |
| /** \internal \returns packet of zeros */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet pzero(const Packet& a) { |
| return pzero_impl<Packet>::run(a); |
| } |
| |
| /** \internal \returns a <= b as a bit mask */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet pcmp_le(const Packet& a, const Packet& b) { |
| return a <= b ? ptrue(a) : pzero(a); |
| } |
| |
| /** \internal \returns a < b as a bit mask */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet pcmp_lt(const Packet& a, const Packet& b) { |
| return a < b ? ptrue(a) : pzero(a); |
| } |
| |
| /** \internal \returns a == b as a bit mask */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet pcmp_eq(const Packet& a, const Packet& b) { |
| return a == b ? ptrue(a) : pzero(a); |
| } |
| |
| /** \internal \returns a < b or a==NaN or b==NaN as a bit mask */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet pcmp_lt_or_nan(const Packet& a, const Packet& b) { |
| return a >= b ? pzero(a) : ptrue(a); |
| } |
| |
| template <typename T> |
| struct bit_and { |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR EIGEN_ALWAYS_INLINE T operator()(const T& a, const T& b) const { return a & b; } |
| }; |
| |
| template <typename T> |
| struct bit_or { |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR EIGEN_ALWAYS_INLINE T operator()(const T& a, const T& b) const { return a | b; } |
| }; |
| |
| template <typename T> |
| struct bit_xor { |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR EIGEN_ALWAYS_INLINE T operator()(const T& a, const T& b) const { return a ^ b; } |
| }; |
| |
| template <typename T> |
| struct bit_not { |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR EIGEN_ALWAYS_INLINE T operator()(const T& a) const { return ~a; } |
| }; |
| |
| template <> |
| struct bit_and<bool> { |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR EIGEN_ALWAYS_INLINE bool operator()(const bool& a, const bool& b) const { |
| return a && b; |
| } |
| }; |
| |
| template <> |
| struct bit_or<bool> { |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR EIGEN_ALWAYS_INLINE bool operator()(const bool& a, const bool& b) const { |
| return a || b; |
| } |
| }; |
| |
| template <> |
| struct bit_xor<bool> { |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR EIGEN_ALWAYS_INLINE bool operator()(const bool& a, const bool& b) const { |
| return a != b; |
| } |
| }; |
| |
| template <> |
| struct bit_not<bool> { |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR EIGEN_ALWAYS_INLINE bool operator()(const bool& a) const { return !a; } |
| }; |
| |
| // Use operators &, |, ^, ~. |
| template <typename T> |
| struct operator_bitwise_helper { |
| EIGEN_DEVICE_FUNC static inline T bitwise_and(const T& a, const T& b) { return bit_and<T>()(a, b); } |
| EIGEN_DEVICE_FUNC static inline T bitwise_or(const T& a, const T& b) { return bit_or<T>()(a, b); } |
| EIGEN_DEVICE_FUNC static inline T bitwise_xor(const T& a, const T& b) { return bit_xor<T>()(a, b); } |
| EIGEN_DEVICE_FUNC static inline T bitwise_not(const T& a) { return bit_not<T>()(a); } |
| }; |
| |
| // Apply binary operations byte-by-byte |
| template <typename T> |
| struct bytewise_bitwise_helper { |
| EIGEN_DEVICE_FUNC static inline T bitwise_and(const T& a, const T& b) { |
| return binary(a, b, bit_and<unsigned char>()); |
| } |
| EIGEN_DEVICE_FUNC static inline T bitwise_or(const T& a, const T& b) { return binary(a, b, bit_or<unsigned char>()); } |
| EIGEN_DEVICE_FUNC static inline T bitwise_xor(const T& a, const T& b) { |
| return binary(a, b, bit_xor<unsigned char>()); |
| } |
| EIGEN_DEVICE_FUNC static inline T bitwise_not(const T& a) { return unary(a, bit_not<unsigned char>()); } |
| |
| private: |
| template <typename Op> |
| EIGEN_DEVICE_FUNC static inline T unary(const T& a, Op op) { |
| const unsigned char* a_ptr = reinterpret_cast<const unsigned char*>(&a); |
| T c; |
| unsigned char* c_ptr = reinterpret_cast<unsigned char*>(&c); |
| for (size_t i = 0; i < sizeof(T); ++i) { |
| *c_ptr++ = op(*a_ptr++); |
| } |
| return c; |
| } |
| |
| template <typename Op> |
| EIGEN_DEVICE_FUNC static inline T binary(const T& a, const T& b, Op op) { |
| const unsigned char* a_ptr = reinterpret_cast<const unsigned char*>(&a); |
| const unsigned char* b_ptr = reinterpret_cast<const unsigned char*>(&b); |
| T c; |
| unsigned char* c_ptr = reinterpret_cast<unsigned char*>(&c); |
| for (size_t i = 0; i < sizeof(T); ++i) { |
| *c_ptr++ = op(*a_ptr++, *b_ptr++); |
| } |
| return c; |
| } |
| }; |
| |
| // In the general case, use byte-by-byte manipulation. |
| template <typename T, typename EnableIf = void> |
| struct bitwise_helper : public bytewise_bitwise_helper<T> {}; |
| |
| // For integers or non-trivial scalars, use binary operators. |
| template <typename T> |
| struct bitwise_helper<T, typename std::enable_if_t<is_scalar<T>::value && |
| (NumTraits<T>::IsInteger || NumTraits<T>::RequireInitialization)>> |
| : public operator_bitwise_helper<T> {}; |
| |
| /** \internal \returns the bitwise and of \a a and \a b */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet pand(const Packet& a, const Packet& b) { |
| return bitwise_helper<Packet>::bitwise_and(a, b); |
| } |
| |
| /** \internal \returns the bitwise or of \a a and \a b */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet por(const Packet& a, const Packet& b) { |
| return bitwise_helper<Packet>::bitwise_or(a, b); |
| } |
| |
| /** \internal \returns the bitwise xor of \a a and \a b */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet pxor(const Packet& a, const Packet& b) { |
| return bitwise_helper<Packet>::bitwise_xor(a, b); |
| } |
| |
| /** \internal \returns the bitwise not of \a a */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet pnot(const Packet& a) { |
| return bitwise_helper<Packet>::bitwise_not(a); |
| } |
| |
| /** \internal \returns the bitwise and of \a a and not \a b */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet pandnot(const Packet& a, const Packet& b) { |
| return pand(a, pnot(b)); |
| } |
| |
| // In the general case, use bitwise select. |
| template <typename Packet, typename EnableIf = void> |
| struct pselect_impl { |
| static EIGEN_DEVICE_FUNC inline Packet run(const Packet& mask, const Packet& a, const Packet& b) { |
| return por(pand(a, mask), pandnot(b, mask)); |
| } |
| }; |
| |
| // For scalars, use ternary select. |
| template <typename Packet> |
| struct pselect_impl<Packet, std::enable_if_t<is_scalar<Packet>::value>> { |
| static EIGEN_DEVICE_FUNC inline Packet run(const Packet& mask, const Packet& a, const Packet& b) { |
| return numext::equal_strict(mask, Packet(0)) ? b : a; |
| } |
| }; |
| |
| /** \internal \returns \a or \b for each field in packet according to \mask */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet pselect(const Packet& mask, const Packet& a, const Packet& b) { |
| return pselect_impl<Packet>::run(mask, a, b); |
| } |
| |
| template <> |
| EIGEN_DEVICE_FUNC inline bool pselect<bool>(const bool& cond, const bool& a, const bool& b) { |
| return cond ? a : b; |
| } |
| |
| /** \internal \returns the min or of \a a and \a b (coeff-wise) |
| If either \a a or \a b are NaN, the result is implementation defined. */ |
| template <int NaNPropagation> |
| struct pminmax_impl { |
| template <typename Packet, typename Op> |
| static EIGEN_DEVICE_FUNC inline Packet run(const Packet& a, const Packet& b, Op op) { |
| return op(a, b); |
| } |
| }; |
| |
| /** \internal \returns the min or max of \a a and \a b (coeff-wise) |
| If either \a a or \a b are NaN, NaN is returned. */ |
| template <> |
| struct pminmax_impl<PropagateNaN> { |
| template <typename Packet, typename Op> |
| static EIGEN_DEVICE_FUNC inline Packet run(const Packet& a, const Packet& b, Op op) { |
| Packet not_nan_mask_a = pcmp_eq(a, a); |
| Packet not_nan_mask_b = pcmp_eq(b, b); |
| return pselect(not_nan_mask_a, pselect(not_nan_mask_b, op(a, b), b), a); |
| } |
| }; |
| |
| /** \internal \returns the min or max of \a a and \a b (coeff-wise) |
| If both \a a and \a b are NaN, NaN is returned. |
| Equivalent to std::fmin(a, b). */ |
| template <> |
| struct pminmax_impl<PropagateNumbers> { |
| template <typename Packet, typename Op> |
| static EIGEN_DEVICE_FUNC inline Packet run(const Packet& a, const Packet& b, Op op) { |
| Packet not_nan_mask_a = pcmp_eq(a, a); |
| Packet not_nan_mask_b = pcmp_eq(b, b); |
| return pselect(not_nan_mask_a, pselect(not_nan_mask_b, op(a, b), a), b); |
| } |
| }; |
| |
| #define EIGEN_BINARY_OP_NAN_PROPAGATION(Type, Func) [](const Type& a, const Type& b) { return Func(a, b); } |
| |
| /** \internal \returns the min of \a a and \a b (coeff-wise). |
| If \a a or \b b is NaN, the return value is implementation defined. */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet pmin(const Packet& a, const Packet& b) { |
| return numext::mini(a, b); |
| } |
| |
| /** \internal \returns the min of \a a and \a b (coeff-wise). |
| NaNPropagation determines the NaN propagation semantics. */ |
| template <int NaNPropagation, typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet pmin(const Packet& a, const Packet& b) { |
| return pminmax_impl<NaNPropagation>::run(a, b, EIGEN_BINARY_OP_NAN_PROPAGATION(Packet, (pmin<Packet>))); |
| } |
| |
| /** \internal \returns the max of \a a and \a b (coeff-wise) |
| If \a a or \b b is NaN, the return value is implementation defined. */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet pmax(const Packet& a, const Packet& b) { |
| return numext::maxi(a, b); |
| } |
| |
| /** \internal \returns the max of \a a and \a b (coeff-wise). |
| NaNPropagation determines the NaN propagation semantics. */ |
| template <int NaNPropagation, typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet pmax(const Packet& a, const Packet& b) { |
| return pminmax_impl<NaNPropagation>::run(a, b, EIGEN_BINARY_OP_NAN_PROPAGATION(Packet, (pmax<Packet>))); |
| } |
| |
| /** \internal \returns the absolute value of \a a */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet pabs(const Packet& a) { |
| return numext::abs(a); |
| } |
| template <> |
| EIGEN_DEVICE_FUNC inline unsigned int pabs(const unsigned int& a) { |
| return a; |
| } |
| template <> |
| EIGEN_DEVICE_FUNC inline unsigned long pabs(const unsigned long& a) { |
| return a; |
| } |
| template <> |
| EIGEN_DEVICE_FUNC inline unsigned long long pabs(const unsigned long long& a) { |
| return a; |
| } |
| |
| /** \internal \returns the addsub value of \a a,b */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet paddsub(const Packet& a, const Packet& b) { |
| return pselect(peven_mask(a), padd(a, b), psub(a, b)); |
| } |
| |
| /** \internal \returns the phase angle of \a a */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet parg(const Packet& a) { |
| using numext::arg; |
| return arg(a); |
| } |
| |
| /** \internal \returns \a a arithmetically shifted by N bits to the right */ |
| template <int N, typename T> |
| EIGEN_DEVICE_FUNC inline T parithmetic_shift_right(const T& a) { |
| return numext::arithmetic_shift_right(a, N); |
| } |
| |
| /** \internal \returns \a a logically shifted by N bits to the right */ |
| template <int N, typename T> |
| EIGEN_DEVICE_FUNC inline T plogical_shift_right(const T& a) { |
| return numext::logical_shift_right(a, N); |
| } |
| |
| /** \internal \returns \a a shifted by N bits to the left */ |
| template <int N, typename T> |
| EIGEN_DEVICE_FUNC inline T plogical_shift_left(const T& a) { |
| return numext::logical_shift_left(a, N); |
| } |
| |
| /** \internal \returns the significant and exponent of the underlying floating point numbers |
| * See https://en.cppreference.com/w/cpp/numeric/math/frexp |
| */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet pfrexp(const Packet& a, Packet& exponent) { |
| int exp; |
| EIGEN_USING_STD(frexp); |
| Packet result = static_cast<Packet>(frexp(a, &exp)); |
| exponent = static_cast<Packet>(exp); |
| return result; |
| } |
| |
| /** \internal \returns a * 2^((int)exponent) |
| * See https://en.cppreference.com/w/cpp/numeric/math/ldexp |
| */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet pldexp(const Packet& a, const Packet& exponent) { |
| EIGEN_USING_STD(ldexp) |
| return static_cast<Packet>(ldexp(a, static_cast<int>(exponent))); |
| } |
| |
| /** \internal \returns the min of \a a and \a b (coeff-wise) */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet pabsdiff(const Packet& a, const Packet& b) { |
| return pselect(pcmp_lt(a, b), psub(b, a), psub(a, b)); |
| } |
| |
| /** \internal \returns a packet version of \a *from, from must be properly aligned */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet pload(const typename unpacket_traits<Packet>::type* from) { |
| return *from; |
| } |
| |
| /** \internal \returns n elements of a packet version of \a *from, from must be properly aligned |
| * offset indicates the starting element in which to load and |
| * offset + n <= unpacket_traits::size |
| * All elements before offset and after the last element loaded will initialized with zero */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet pload_partial(const typename unpacket_traits<Packet>::type* from, const Index n, |
| const Index offset = 0) { |
| const Index packet_size = unpacket_traits<Packet>::size; |
| eigen_assert(n + offset <= packet_size && "number of elements plus offset will read past end of packet"); |
| typedef typename unpacket_traits<Packet>::type Scalar; |
| EIGEN_ALIGN_MAX Scalar elements[packet_size] = {Scalar(0)}; |
| for (Index i = offset; i < numext::mini(n + offset, packet_size); i++) { |
| elements[i] = from[i - offset]; |
| } |
| return pload<Packet>(elements); |
| } |
| |
| /** \internal \returns a packet version of \a *from, (un-aligned load) */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet ploadu(const typename unpacket_traits<Packet>::type* from) { |
| return *from; |
| } |
| |
| /** \internal \returns n elements of a packet version of \a *from, (un-aligned load) |
| * All elements after the last element loaded will initialized with zero */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet ploadu_partial(const typename unpacket_traits<Packet>::type* from, const Index n, |
| const Index offset = 0) { |
| const Index packet_size = unpacket_traits<Packet>::size; |
| eigen_assert(n + offset <= packet_size && "number of elements plus offset will read past end of packet"); |
| typedef typename unpacket_traits<Packet>::type Scalar; |
| EIGEN_ALIGN_MAX Scalar elements[packet_size] = {Scalar(0)}; |
| for (Index i = offset; i < numext::mini(n + offset, packet_size); i++) { |
| elements[i] = from[i - offset]; |
| } |
| return pload<Packet>(elements); |
| } |
| |
| /** \internal \returns a packet version of \a *from, (un-aligned masked load) |
| * There is no generic implementation. We only have implementations for specialized |
| * cases. Generic case should not be called. |
| */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline std::enable_if_t<unpacket_traits<Packet>::masked_load_available, Packet> ploadu( |
| const typename unpacket_traits<Packet>::type* from, typename unpacket_traits<Packet>::mask_t umask); |
| |
| /** \internal \returns a packet with constant coefficients \a a, e.g.: (a,a,a,a) */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet pset1(const typename unpacket_traits<Packet>::type& a) { |
| return a; |
| } |
| |
| /** \internal \returns a packet with constant coefficients set from bits */ |
| template <typename Packet, typename BitsType> |
| EIGEN_DEVICE_FUNC inline Packet pset1frombits(BitsType a); |
| |
| /** \internal \returns a packet with constant coefficients \a a[0], e.g.: (a[0],a[0],a[0],a[0]) */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet pload1(const typename unpacket_traits<Packet>::type* a) { |
| return pset1<Packet>(*a); |
| } |
| |
| /** \internal \returns a packet with elements of \a *from duplicated. |
| * For instance, for a packet of 8 elements, 4 scalars will be read from \a *from and |
| * duplicated to form: {from[0],from[0],from[1],from[1],from[2],from[2],from[3],from[3]} |
| * Currently, this function is only used for scalar * complex products. |
| */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet ploaddup(const typename unpacket_traits<Packet>::type* from) { |
| return *from; |
| } |
| |
| /** \internal \returns a packet with elements of \a *from quadrupled. |
| * For instance, for a packet of 8 elements, 2 scalars will be read from \a *from and |
| * replicated to form: {from[0],from[0],from[0],from[0],from[1],from[1],from[1],from[1]} |
| * Currently, this function is only used in matrix products. |
| * For packet-size smaller or equal to 4, this function is equivalent to pload1 |
| */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet ploadquad(const typename unpacket_traits<Packet>::type* from) { |
| return pload1<Packet>(from); |
| } |
| |
| /** \internal equivalent to |
| * \code |
| * a0 = pload1(a+0); |
| * a1 = pload1(a+1); |
| * a2 = pload1(a+2); |
| * a3 = pload1(a+3); |
| * \endcode |
| * \sa pset1, pload1, ploaddup, pbroadcast2 |
| */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline void pbroadcast4(const typename unpacket_traits<Packet>::type* a, Packet& a0, Packet& a1, |
| Packet& a2, Packet& a3) { |
| a0 = pload1<Packet>(a + 0); |
| a1 = pload1<Packet>(a + 1); |
| a2 = pload1<Packet>(a + 2); |
| a3 = pload1<Packet>(a + 3); |
| } |
| |
| /** \internal equivalent to |
| * \code |
| * a0 = pload1(a+0); |
| * a1 = pload1(a+1); |
| * \endcode |
| * \sa pset1, pload1, ploaddup, pbroadcast4 |
| */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline void pbroadcast2(const typename unpacket_traits<Packet>::type* a, Packet& a0, Packet& a1) { |
| a0 = pload1<Packet>(a + 0); |
| a1 = pload1<Packet>(a + 1); |
| } |
| |
| /** \internal \brief Returns a packet with coefficients (a,a+1,...,a+packet_size-1). */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet plset(const typename unpacket_traits<Packet>::type& a) { |
| return a; |
| } |
| |
| /** \internal \returns a packet with constant coefficients \a a, e.g.: (x, 0, x, 0), |
| where x is the value of all 1-bits. */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet peven_mask(const Packet& /*a*/) { |
| typedef typename unpacket_traits<Packet>::type Scalar; |
| const size_t n = unpacket_traits<Packet>::size; |
| EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) Scalar elements[n]; |
| for (size_t i = 0; i < n; ++i) { |
| memset(elements + i, ((i & 1) == 0 ? 0xff : 0), sizeof(Scalar)); |
| } |
| return ploadu<Packet>(elements); |
| } |
| |
| /** \internal copy the packet \a from to \a *to, \a to must be properly aligned */ |
| template <typename Scalar, typename Packet> |
| EIGEN_DEVICE_FUNC inline void pstore(Scalar* to, const Packet& from) { |
| (*to) = from; |
| } |
| |
| /** \internal copy n elements of the packet \a from to \a *to, \a to must be properly aligned |
| * offset indicates the starting element in which to store and |
| * offset + n <= unpacket_traits::size */ |
| template <typename Scalar, typename Packet> |
| EIGEN_DEVICE_FUNC inline void pstore_partial(Scalar* to, const Packet& from, const Index n, const Index offset = 0) { |
| const Index packet_size = unpacket_traits<Packet>::size; |
| eigen_assert(n + offset <= packet_size && "number of elements plus offset will write past end of packet"); |
| EIGEN_ALIGN_MAX Scalar elements[packet_size]; |
| pstore<Scalar>(elements, from); |
| for (Index i = 0; i < numext::mini(n, packet_size - offset); i++) { |
| to[i] = elements[i + offset]; |
| } |
| } |
| |
| /** \internal copy the packet \a from to \a *to, (un-aligned store) */ |
| template <typename Scalar, typename Packet> |
| EIGEN_DEVICE_FUNC inline void pstoreu(Scalar* to, const Packet& from) { |
| (*to) = from; |
| } |
| |
| /** \internal copy n elements of the packet \a from to \a *to, (un-aligned store) */ |
| template <typename Scalar, typename Packet> |
| EIGEN_DEVICE_FUNC inline void pstoreu_partial(Scalar* to, const Packet& from, const Index n, const Index offset = 0) { |
| const Index packet_size = unpacket_traits<Packet>::size; |
| eigen_assert(n + offset <= packet_size && "number of elements plus offset will write past end of packet"); |
| EIGEN_ALIGN_MAX Scalar elements[packet_size]; |
| pstore<Scalar>(elements, from); |
| for (Index i = 0; i < numext::mini(n, packet_size - offset); i++) { |
| to[i] = elements[i + offset]; |
| } |
| } |
| |
| /** \internal copy the packet \a from to \a *to, (un-aligned store with a mask) |
| * There is no generic implementation. We only have implementations for specialized |
| * cases. Generic case should not be called. |
| */ |
| template <typename Scalar, typename Packet> |
| EIGEN_DEVICE_FUNC inline std::enable_if_t<unpacket_traits<Packet>::masked_store_available, void> pstoreu( |
| Scalar* to, const Packet& from, typename unpacket_traits<Packet>::mask_t umask); |
| |
| template <typename Scalar, typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet pgather(const Scalar* from, Index /*stride*/) { |
| return ploadu<Packet>(from); |
| } |
| |
| template <typename Scalar, typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet pgather_partial(const Scalar* from, Index stride, const Index n) { |
| const Index packet_size = unpacket_traits<Packet>::size; |
| EIGEN_ALIGN_MAX Scalar elements[packet_size] = {Scalar(0)}; |
| for (Index i = 0; i < numext::mini(n, packet_size); i++) { |
| elements[i] = from[i * stride]; |
| } |
| return pload<Packet>(elements); |
| } |
| |
| template <typename Scalar, typename Packet> |
| EIGEN_DEVICE_FUNC inline void pscatter(Scalar* to, const Packet& from, Index /*stride*/) { |
| pstore(to, from); |
| } |
| |
| template <typename Scalar, typename Packet> |
| EIGEN_DEVICE_FUNC inline void pscatter_partial(Scalar* to, const Packet& from, Index stride, const Index n) { |
| const Index packet_size = unpacket_traits<Packet>::size; |
| EIGEN_ALIGN_MAX Scalar elements[packet_size]; |
| pstore<Scalar>(elements, from); |
| for (Index i = 0; i < numext::mini(n, packet_size); i++) { |
| to[i * stride] = elements[i]; |
| } |
| } |
| |
| /** \internal tries to do cache prefetching of \a addr */ |
| template <typename Scalar> |
| EIGEN_DEVICE_FUNC inline void prefetch(const Scalar* addr) { |
| #if defined(EIGEN_HIP_DEVICE_COMPILE) |
| // do nothing |
| #elif defined(EIGEN_CUDA_ARCH) |
| #if defined(__LP64__) || EIGEN_OS_WIN64 |
| // 64-bit pointer operand constraint for inlined asm |
| asm(" prefetch.L1 [ %1 ];" : "=l"(addr) : "l"(addr)); |
| #else |
| // 32-bit pointer operand constraint for inlined asm |
| asm(" prefetch.L1 [ %1 ];" : "=r"(addr) : "r"(addr)); |
| #endif |
| #elif (!EIGEN_COMP_MSVC) && (EIGEN_COMP_GNUC || EIGEN_COMP_CLANG || EIGEN_COMP_ICC) |
| __builtin_prefetch(addr); |
| #endif |
| } |
| |
| /** \internal \returns the reversed elements of \a a*/ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet preverse(const Packet& a) { |
| return a; |
| } |
| |
| /** \internal \returns \a a with real and imaginary part flipped (for complex type only) */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet pcplxflip(const Packet& a) { |
| return Packet(numext::imag(a), numext::real(a)); |
| } |
| |
| /************************** |
| * Special math functions |
| ***************************/ |
| |
| /** \internal \returns isnan(a) */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet pisnan(const Packet& a) { |
| return pandnot(ptrue(a), pcmp_eq(a, a)); |
| } |
| |
| /** \internal \returns isinf(a) */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet pisinf(const Packet& a) { |
| using Scalar = typename unpacket_traits<Packet>::type; |
| constexpr Scalar inf = NumTraits<Scalar>::infinity(); |
| return pcmp_eq(pabs(a), pset1<Packet>(inf)); |
| } |
| |
| /** \internal \returns the sine of \a a (coeff-wise) */ |
| template <typename Packet> |
| EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet psin(const Packet& a) { |
| EIGEN_USING_STD(sin); |
| return sin(a); |
| } |
| |
| /** \internal \returns the cosine of \a a (coeff-wise) */ |
| template <typename Packet> |
| EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pcos(const Packet& a) { |
| EIGEN_USING_STD(cos); |
| return cos(a); |
| } |
| |
| /** \internal \returns the tan of \a a (coeff-wise) */ |
| template <typename Packet> |
| EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet ptan(const Packet& a) { |
| EIGEN_USING_STD(tan); |
| return tan(a); |
| } |
| |
| /** \internal \returns the arc sine of \a a (coeff-wise) */ |
| template <typename Packet> |
| EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pasin(const Packet& a) { |
| EIGEN_USING_STD(asin); |
| return asin(a); |
| } |
| |
| /** \internal \returns the arc cosine of \a a (coeff-wise) */ |
| template <typename Packet> |
| EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pacos(const Packet& a) { |
| EIGEN_USING_STD(acos); |
| return acos(a); |
| } |
| |
| /** \internal \returns the hyperbolic sine of \a a (coeff-wise) */ |
| template <typename Packet> |
| EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet psinh(const Packet& a) { |
| EIGEN_USING_STD(sinh); |
| return sinh(a); |
| } |
| |
| /** \internal \returns the hyperbolic cosine of \a a (coeff-wise) */ |
| template <typename Packet> |
| EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pcosh(const Packet& a) { |
| EIGEN_USING_STD(cosh); |
| return cosh(a); |
| } |
| |
| /** \internal \returns the arc tangent of \a a (coeff-wise) */ |
| template <typename Packet> |
| EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet patan(const Packet& a) { |
| EIGEN_USING_STD(atan); |
| return atan(a); |
| } |
| |
| /** \internal \returns the hyperbolic tan of \a a (coeff-wise) */ |
| template <typename Packet> |
| EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet ptanh(const Packet& a) { |
| EIGEN_USING_STD(tanh); |
| return tanh(a); |
| } |
| |
| /** \internal \returns the arc tangent of \a a (coeff-wise) */ |
| template <typename Packet> |
| EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet patanh(const Packet& a) { |
| EIGEN_USING_STD(atanh); |
| return atanh(a); |
| } |
| |
| /** \internal \returns the exp of \a a (coeff-wise) */ |
| template <typename Packet> |
| EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pexp(const Packet& a) { |
| return numext::exp(a); |
| } |
| |
| /** \internal \returns the exp2 of \a a (coeff-wise) */ |
| template <typename Packet> |
| EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pexp2(const Packet& a) { |
| return numext::exp2(a); |
| } |
| |
| /** \internal \returns the expm1 of \a a (coeff-wise) */ |
| template <typename Packet> |
| EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pexpm1(const Packet& a) { |
| return numext::expm1(a); |
| } |
| |
| /** \internal \returns the log of \a a (coeff-wise) */ |
| template <typename Packet> |
| EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet plog(const Packet& a) { |
| EIGEN_USING_STD(log); |
| return log(a); |
| } |
| |
| /** \internal \returns the log1p of \a a (coeff-wise) */ |
| template <typename Packet> |
| EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet plog1p(const Packet& a) { |
| return numext::log1p(a); |
| } |
| |
| /** \internal \returns the log10 of \a a (coeff-wise) */ |
| template <typename Packet> |
| EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet plog10(const Packet& a) { |
| EIGEN_USING_STD(log10); |
| return log10(a); |
| } |
| |
| /** \internal \returns the log2 of \a a (coeff-wise) */ |
| template <typename Packet> |
| EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet plog2(const Packet& a) { |
| using Scalar = typename internal::unpacket_traits<Packet>::type; |
| using RealScalar = typename NumTraits<Scalar>::Real; |
| return pmul(pset1<Packet>(Scalar(RealScalar(EIGEN_LOG2E))), plog(a)); |
| } |
| |
| /** \internal \returns the square-root of \a a (coeff-wise) */ |
| template <typename Packet> |
| EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet psqrt(const Packet& a) { |
| return numext::sqrt(a); |
| } |
| |
| /** \internal \returns the cube-root of \a a (coeff-wise) */ |
| template <typename Packet> |
| EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pcbrt(const Packet& a) { |
| return numext::cbrt(a); |
| } |
| |
| template <typename Packet, bool IsScalar = is_scalar<Packet>::value, |
| bool IsInteger = NumTraits<typename unpacket_traits<Packet>::type>::IsInteger> |
| struct nearest_integer_packetop_impl { |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run_floor(const Packet& x) { return numext::floor(x); } |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run_ceil(const Packet& x) { return numext::ceil(x); } |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run_rint(const Packet& x) { return numext::rint(x); } |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run_round(const Packet& x) { return numext::round(x); } |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run_trunc(const Packet& x) { return numext::trunc(x); } |
| }; |
| |
| /** \internal \returns the rounded value of \a a (coeff-wise) */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet pround(const Packet& a) { |
| return nearest_integer_packetop_impl<Packet>::run_round(a); |
| } |
| |
| /** \internal \returns the floor of \a a (coeff-wise) */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet pfloor(const Packet& a) { |
| return nearest_integer_packetop_impl<Packet>::run_floor(a); |
| } |
| |
| /** \internal \returns the rounded value of \a a (coeff-wise) with current |
| * rounding mode */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet print(const Packet& a) { |
| return nearest_integer_packetop_impl<Packet>::run_rint(a); |
| } |
| |
| /** \internal \returns the ceil of \a a (coeff-wise) */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet pceil(const Packet& a) { |
| return nearest_integer_packetop_impl<Packet>::run_ceil(a); |
| } |
| |
| /** \internal \returns the truncation of \a a (coeff-wise) */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet ptrunc(const Packet& a) { |
| return nearest_integer_packetop_impl<Packet>::run_trunc(a); |
| } |
| |
| template <typename Packet, typename EnableIf = void> |
| struct psign_impl { |
| static EIGEN_DEVICE_FUNC inline Packet run(const Packet& a) { return numext::sign(a); } |
| }; |
| |
| /** \internal \returns the sign of \a a (coeff-wise) */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet psign(const Packet& a) { |
| return psign_impl<Packet>::run(a); |
| } |
| |
| template <> |
| EIGEN_DEVICE_FUNC inline bool psign(const bool& a) { |
| return a; |
| } |
| |
| /** \internal \returns the first element of a packet */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type pfirst(const Packet& a) { |
| return a; |
| } |
| |
| /** \internal \returns the sum of the elements of upper and lower half of \a a if \a a is larger than 4. |
| * For a packet {a0, a1, a2, a3, a4, a5, a6, a7}, it returns a half packet {a0+a4, a1+a5, a2+a6, a3+a7} |
| * For packet-size smaller or equal to 4, this boils down to a noop. |
| */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline std::conditional_t<(unpacket_traits<Packet>::size % 8) == 0, |
| typename unpacket_traits<Packet>::half, Packet> |
| predux_half_dowto4(const Packet& a) { |
| return a; |
| } |
| |
| // Slow generic implementation of Packet reduction. |
| template <typename Packet, typename Op> |
| EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_helper(const Packet& a, Op op) { |
| typedef typename unpacket_traits<Packet>::type Scalar; |
| const size_t n = unpacket_traits<Packet>::size; |
| EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) Scalar elements[n]; |
| pstoreu<Scalar>(elements, a); |
| for (size_t k = n / 2; k > 0; k /= 2) { |
| for (size_t i = 0; i < k; ++i) { |
| elements[i] = op(elements[i], elements[i + k]); |
| } |
| } |
| return elements[0]; |
| } |
| |
| /** \internal \returns the sum of the elements of \a a*/ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux(const Packet& a) { |
| return a; |
| } |
| |
| /** \internal \returns the product of the elements of \a a */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_mul(const Packet& a) { |
| typedef typename unpacket_traits<Packet>::type Scalar; |
| return predux_helper(a, EIGEN_BINARY_OP_NAN_PROPAGATION(Scalar, (pmul<Scalar>))); |
| } |
| |
| /** \internal \returns the min of the elements of \a a */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_min(const Packet& a) { |
| typedef typename unpacket_traits<Packet>::type Scalar; |
| return predux_helper(a, EIGEN_BINARY_OP_NAN_PROPAGATION(Scalar, (pmin<PropagateFast, Scalar>))); |
| } |
| |
| template <int NaNPropagation, typename Packet> |
| EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_min(const Packet& a) { |
| typedef typename unpacket_traits<Packet>::type Scalar; |
| return predux_helper(a, EIGEN_BINARY_OP_NAN_PROPAGATION(Scalar, (pmin<NaNPropagation, Scalar>))); |
| } |
| |
| /** \internal \returns the min of the elements of \a a */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_max(const Packet& a) { |
| typedef typename unpacket_traits<Packet>::type Scalar; |
| return predux_helper(a, EIGEN_BINARY_OP_NAN_PROPAGATION(Scalar, (pmax<PropagateFast, Scalar>))); |
| } |
| |
| template <int NaNPropagation, typename Packet> |
| EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_max(const Packet& a) { |
| typedef typename unpacket_traits<Packet>::type Scalar; |
| return predux_helper(a, EIGEN_BINARY_OP_NAN_PROPAGATION(Scalar, (pmax<NaNPropagation, Scalar>))); |
| } |
| |
| #undef EIGEN_BINARY_OP_NAN_PROPAGATION |
| |
| /** \internal \returns true if all coeffs of \a a means "true" |
| * It is supposed to be called on values returned by pcmp_*. |
| */ |
| // not needed yet |
| // template<typename Packet> EIGEN_DEVICE_FUNC inline bool predux_all(const Packet& a) |
| // { return bool(a); } |
| |
| /** \internal \returns true if any coeffs of \a a means "true" |
| * It is supposed to be called on values returned by pcmp_*. |
| */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline bool predux_any(const Packet& a) { |
| // Dirty but generic implementation where "true" is assumed to be non 0 and all the sames. |
| // It is expected that "true" is either: |
| // - Scalar(1) |
| // - bits full of ones (NaN for floats), |
| // - or first bit equals to 1 (1 for ints, smallest denormal for floats). |
| // For all these cases, taking the sum is just fine, and this boils down to a no-op for scalars. |
| typedef typename unpacket_traits<Packet>::type Scalar; |
| return numext::not_equal_strict(predux(a), Scalar(0)); |
| } |
| |
| /*************************************************************************** |
| * The following functions might not have to be overwritten for vectorized types |
| ***************************************************************************/ |
| |
| // FMA instructions. |
| /** \internal \returns a * b + c (coeff-wise) */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet pmadd(const Packet& a, const Packet& b, const Packet& c) { |
| return padd(pmul(a, b), c); |
| } |
| |
| /** \internal \returns a * b - c (coeff-wise) */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet pmsub(const Packet& a, const Packet& b, const Packet& c) { |
| return psub(pmul(a, b), c); |
| } |
| |
| /** \internal \returns -(a * b) + c (coeff-wise) */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet pnmadd(const Packet& a, const Packet& b, const Packet& c) { |
| return psub(c, pmul(a, b)); |
| } |
| |
| /** \internal \returns -((a * b + c) (coeff-wise) */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet pnmsub(const Packet& a, const Packet& b, const Packet& c) { |
| return pnegate(pmadd(a, b, c)); |
| } |
| |
| /** \internal copy a packet with constant coefficient \a a (e.g., [a,a,a,a]) to \a *to. \a to must be 16 bytes aligned |
| */ |
| // NOTE: this function must really be templated on the packet type (think about different packet types for the same |
| // scalar type) |
| template <typename Packet> |
| inline void pstore1(typename unpacket_traits<Packet>::type* to, const typename unpacket_traits<Packet>::type& a) { |
| pstore(to, pset1<Packet>(a)); |
| } |
| |
| /** \internal \returns a packet version of \a *from. |
| * The pointer \a from must be aligned on a \a Alignment bytes boundary. */ |
| template <typename Packet, int Alignment> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet ploadt(const typename unpacket_traits<Packet>::type* from) { |
| if (Alignment >= unpacket_traits<Packet>::alignment) |
| return pload<Packet>(from); |
| else |
| return ploadu<Packet>(from); |
| } |
| |
| /** \internal \returns n elements of a packet version of \a *from. |
| * The pointer \a from must be aligned on a \a Alignment bytes boundary. */ |
| template <typename Packet, int Alignment> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet ploadt_partial(const typename unpacket_traits<Packet>::type* from, |
| const Index n, const Index offset = 0) { |
| if (Alignment >= unpacket_traits<Packet>::alignment) |
| return pload_partial<Packet>(from, n, offset); |
| else |
| return ploadu_partial<Packet>(from, n, offset); |
| } |
| |
| /** \internal copy the packet \a from to \a *to. |
| * The pointer \a from must be aligned on a \a Alignment bytes boundary. */ |
| template <typename Scalar, typename Packet, int Alignment> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pstoret(Scalar* to, const Packet& from) { |
| if (Alignment >= unpacket_traits<Packet>::alignment) |
| pstore(to, from); |
| else |
| pstoreu(to, from); |
| } |
| |
| /** \internal copy n elements of the packet \a from to \a *to. |
| * The pointer \a from must be aligned on a \a Alignment bytes boundary. */ |
| template <typename Scalar, typename Packet, int Alignment> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pstoret_partial(Scalar* to, const Packet& from, const Index n, |
| const Index offset = 0) { |
| if (Alignment >= unpacket_traits<Packet>::alignment) |
| pstore_partial(to, from, n, offset); |
| else |
| pstoreu_partial(to, from, n, offset); |
| } |
| |
| /** \internal \returns a packet version of \a *from. |
| * Unlike ploadt, ploadt_ro takes advantage of the read-only memory path on the |
| * hardware if available to speedup the loading of data that won't be modified |
| * by the current computation. |
| */ |
| template <typename Packet, int LoadMode> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet ploadt_ro(const typename unpacket_traits<Packet>::type* from) { |
| return ploadt<Packet, LoadMode>(from); |
| } |
| |
| /*************************************************************************** |
| * Fast complex products (GCC generates a function call which is very slow) |
| ***************************************************************************/ |
| |
| // Eigen+CUDA does not support complexes. |
| #if !defined(EIGEN_GPUCC) |
| |
| template <> |
| inline std::complex<float> pmul(const std::complex<float>& a, const std::complex<float>& b) { |
| return std::complex<float>(a.real() * b.real() - a.imag() * b.imag(), a.imag() * b.real() + a.real() * b.imag()); |
| } |
| |
| template <> |
| inline std::complex<double> pmul(const std::complex<double>& a, const std::complex<double>& b) { |
| return std::complex<double>(a.real() * b.real() - a.imag() * b.imag(), a.imag() * b.real() + a.real() * b.imag()); |
| } |
| |
| #endif |
| |
| /*************************************************************************** |
| * PacketBlock, that is a collection of N packets where the number of words |
| * in the packet is a multiple of N. |
| ***************************************************************************/ |
| template <typename Packet, int N = unpacket_traits<Packet>::size> |
| struct PacketBlock { |
| Packet packet[N]; |
| }; |
| |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock<Packet, 1>& /*kernel*/) { |
| // Nothing to do in the scalar case, i.e. a 1x1 matrix. |
| } |
| |
| /*************************************************************************** |
| * Selector, i.e. vector of N boolean values used to select (i.e. blend) |
| * words from 2 packets. |
| ***************************************************************************/ |
| template <size_t N> |
| struct Selector { |
| bool select[N]; |
| }; |
| |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet pblend(const Selector<unpacket_traits<Packet>::size>& ifPacket, |
| const Packet& thenPacket, const Packet& elsePacket) { |
| return ifPacket.select[0] ? thenPacket : elsePacket; |
| } |
| |
| /** \internal \returns 1 / a (coeff-wise) */ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC inline Packet preciprocal(const Packet& a) { |
| using Scalar = typename unpacket_traits<Packet>::type; |
| return pdiv(pset1<Packet>(Scalar(1)), a); |
| } |
| |
| /** \internal \returns the reciprocal square-root of \a a (coeff-wise) */ |
| template <typename Packet> |
| EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet prsqrt(const Packet& a) { |
| return preciprocal<Packet>(psqrt(a)); |
| } |
| |
| template <typename Packet, bool IsScalar = is_scalar<Packet>::value, |
| bool IsInteger = NumTraits<typename unpacket_traits<Packet>::type>::IsInteger> |
| struct psignbit_impl; |
| template <typename Packet, bool IsInteger> |
| struct psignbit_impl<Packet, true, IsInteger> { |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static constexpr Packet run(const Packet& a) { return numext::signbit(a); } |
| }; |
| template <typename Packet> |
| struct psignbit_impl<Packet, false, false> { |
| // generic implementation if not specialized in PacketMath.h |
| // slower than arithmetic shift |
| typedef typename unpacket_traits<Packet>::type Scalar; |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static Packet run(const Packet& a) { |
| const Packet cst_pos_one = pset1<Packet>(Scalar(1)); |
| const Packet cst_neg_one = pset1<Packet>(Scalar(-1)); |
| return pcmp_eq(por(pand(a, cst_neg_one), cst_pos_one), cst_neg_one); |
| } |
| }; |
| template <typename Packet> |
| struct psignbit_impl<Packet, false, true> { |
| // generic implementation for integer packets |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static constexpr Packet run(const Packet& a) { return pcmp_lt(a, pzero(a)); } |
| }; |
| /** \internal \returns the sign bit of \a a as a bitmask*/ |
| template <typename Packet> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE constexpr Packet psignbit(const Packet& a) { |
| return psignbit_impl<Packet>::run(a); |
| } |
| |
| /** \internal \returns the 2-argument arc tangent of \a y and \a x (coeff-wise) */ |
| template <typename Packet, std::enable_if_t<is_scalar<Packet>::value, int> = 0> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet patan2(const Packet& y, const Packet& x) { |
| return numext::atan2(y, x); |
| } |
| |
| /** \internal \returns the 2-argument arc tangent of \a y and \a x (coeff-wise) */ |
| template <typename Packet, std::enable_if_t<!is_scalar<Packet>::value, int> = 0> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet patan2(const Packet& y, const Packet& x) { |
| typedef typename internal::unpacket_traits<Packet>::type Scalar; |
| |
| // See https://en.cppreference.com/w/cpp/numeric/math/atan2 |
| // for how corner cases are supposed to be handled according to the |
| // IEEE floating-point standard (IEC 60559). |
| const Packet kSignMask = pset1<Packet>(-Scalar(0)); |
| const Packet kZero = pzero(x); |
| const Packet kOne = pset1<Packet>(Scalar(1)); |
| const Packet kPi = pset1<Packet>(Scalar(EIGEN_PI)); |
| |
| const Packet x_has_signbit = psignbit(x); |
| const Packet y_signmask = pand(y, kSignMask); |
| const Packet x_signmask = pand(x, kSignMask); |
| const Packet result_signmask = pxor(y_signmask, x_signmask); |
| const Packet shift = por(pand(x_has_signbit, kPi), y_signmask); |
| |
| const Packet x_and_y_are_same = pcmp_eq(pabs(x), pabs(y)); |
| const Packet x_and_y_are_zero = pcmp_eq(por(x, y), kZero); |
| |
| Packet arg = pdiv(y, x); |
| arg = pselect(x_and_y_are_same, por(kOne, result_signmask), arg); |
| arg = pselect(x_and_y_are_zero, result_signmask, arg); |
| |
| Packet result = patan(arg); |
| result = padd(result, shift); |
| return result; |
| } |
| |
| /** \internal \returns the argument of \a a as a complex number */ |
| template <typename Packet, std::enable_if_t<is_scalar<Packet>::value, int> = 0> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet pcarg(const Packet& a) { |
| return Packet(numext::arg(a)); |
| } |
| |
| /** \internal \returns the argument of \a a as a complex number */ |
| template <typename Packet, std::enable_if_t<!is_scalar<Packet>::value, int> = 0> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet pcarg(const Packet& a) { |
| EIGEN_STATIC_ASSERT(NumTraits<typename unpacket_traits<Packet>::type>::IsComplex, |
| THIS METHOD IS FOR COMPLEX TYPES ONLY) |
| using RealPacket = typename unpacket_traits<Packet>::as_real; |
| // a // r i r i ... |
| RealPacket aflip = pcplxflip(a).v; // i r i r ... |
| RealPacket result = patan2(aflip, a.v); // atan2 crap atan2 crap ... |
| return (Packet)pand(result, peven_mask(result)); // atan2 0 atan2 0 ... |
| } |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_GENERIC_PACKET_MATH_H |