| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_TRANSPOSE_H |
| #define EIGEN_TRANSPOSE_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| template <typename MatrixType> |
| struct traits<Transpose<MatrixType> > : public traits<MatrixType> { |
| typedef typename ref_selector<MatrixType>::type MatrixTypeNested; |
| typedef std::remove_reference_t<MatrixTypeNested> MatrixTypeNestedPlain; |
| enum { |
| RowsAtCompileTime = MatrixType::ColsAtCompileTime, |
| ColsAtCompileTime = MatrixType::RowsAtCompileTime, |
| MaxRowsAtCompileTime = MatrixType::MaxColsAtCompileTime, |
| MaxColsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| FlagsLvalueBit = is_lvalue<MatrixType>::value ? LvalueBit : 0, |
| Flags0 = traits<MatrixTypeNestedPlain>::Flags & ~(LvalueBit | NestByRefBit), |
| Flags1 = Flags0 | FlagsLvalueBit, |
| Flags = Flags1 ^ RowMajorBit, |
| InnerStrideAtCompileTime = inner_stride_at_compile_time<MatrixType>::ret, |
| OuterStrideAtCompileTime = outer_stride_at_compile_time<MatrixType>::ret |
| }; |
| }; |
| } // namespace internal |
| |
| template <typename MatrixType, typename StorageKind> |
| class TransposeImpl; |
| |
| /** \class Transpose |
| * \ingroup Core_Module |
| * |
| * \brief Expression of the transpose of a matrix |
| * |
| * \tparam MatrixType the type of the object of which we are taking the transpose |
| * |
| * This class represents an expression of the transpose of a matrix. |
| * It is the return type of MatrixBase::transpose() and MatrixBase::adjoint() |
| * and most of the time this is the only way it is used. |
| * |
| * \sa MatrixBase::transpose(), MatrixBase::adjoint() |
| */ |
| template <typename MatrixType> |
| class Transpose : public TransposeImpl<MatrixType, typename internal::traits<MatrixType>::StorageKind> { |
| public: |
| typedef typename internal::ref_selector<MatrixType>::non_const_type MatrixTypeNested; |
| |
| typedef typename TransposeImpl<MatrixType, typename internal::traits<MatrixType>::StorageKind>::Base Base; |
| EIGEN_GENERIC_PUBLIC_INTERFACE(Transpose) |
| typedef internal::remove_all_t<MatrixType> NestedExpression; |
| |
| EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Transpose(MatrixType& matrix) : m_matrix(matrix) {} |
| |
| EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Transpose) |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_matrix.cols(); } |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_matrix.rows(); } |
| |
| /** \returns the nested expression */ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const internal::remove_all_t<MatrixTypeNested>& nestedExpression() const { |
| return m_matrix; |
| } |
| |
| /** \returns the nested expression */ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::remove_reference_t<MatrixTypeNested>& nestedExpression() { |
| return m_matrix; |
| } |
| |
| /** \internal */ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index nrows, Index ncols) { m_matrix.resize(ncols, nrows); } |
| |
| protected: |
| typename internal::ref_selector<MatrixType>::non_const_type m_matrix; |
| }; |
| |
| namespace internal { |
| |
| template <typename MatrixType, bool HasDirectAccess = has_direct_access<MatrixType>::ret> |
| struct TransposeImpl_base { |
| typedef typename dense_xpr_base<Transpose<MatrixType> >::type type; |
| }; |
| |
| template <typename MatrixType> |
| struct TransposeImpl_base<MatrixType, false> { |
| typedef typename dense_xpr_base<Transpose<MatrixType> >::type type; |
| }; |
| |
| } // end namespace internal |
| |
| // Generic API dispatcher |
| template <typename XprType, typename StorageKind> |
| class TransposeImpl : public internal::generic_xpr_base<Transpose<XprType> >::type { |
| public: |
| typedef typename internal::generic_xpr_base<Transpose<XprType> >::type Base; |
| }; |
| |
| template <typename MatrixType> |
| class TransposeImpl<MatrixType, Dense> : public internal::TransposeImpl_base<MatrixType>::type { |
| public: |
| typedef typename internal::TransposeImpl_base<MatrixType>::type Base; |
| using Base::coeffRef; |
| EIGEN_DENSE_PUBLIC_INTERFACE(Transpose<MatrixType>) |
| EIGEN_INHERIT_ASSIGNMENT_OPERATORS(TransposeImpl) |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index innerStride() const { return derived().nestedExpression().innerStride(); } |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index outerStride() const { return derived().nestedExpression().outerStride(); } |
| |
| typedef std::conditional_t<internal::is_lvalue<MatrixType>::value, Scalar, const Scalar> ScalarWithConstIfNotLvalue; |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr ScalarWithConstIfNotLvalue* data() { |
| return derived().nestedExpression().data(); |
| } |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr const Scalar* data() const { |
| return derived().nestedExpression().data(); |
| } |
| |
| // FIXME: shall we keep the const version of coeffRef? |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeffRef(Index rowId, Index colId) const { |
| return derived().nestedExpression().coeffRef(colId, rowId); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeffRef(Index index) const { |
| return derived().nestedExpression().coeffRef(index); |
| } |
| |
| protected: |
| EIGEN_DEFAULT_EMPTY_CONSTRUCTOR_AND_DESTRUCTOR(TransposeImpl) |
| }; |
| |
| /** \returns an expression of the transpose of *this. |
| * |
| * Example: \include MatrixBase_transpose.cpp |
| * Output: \verbinclude MatrixBase_transpose.out |
| * |
| * \warning If you want to replace a matrix by its own transpose, do \b NOT do this: |
| * \code |
| * m = m.transpose(); // bug!!! caused by aliasing effect |
| * \endcode |
| * Instead, use the transposeInPlace() method: |
| * \code |
| * m.transposeInPlace(); |
| * \endcode |
| * which gives Eigen good opportunities for optimization, or alternatively you can also do: |
| * \code |
| * m = m.transpose().eval(); |
| * \endcode |
| * |
| * \sa transposeInPlace(), adjoint() */ |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename DenseBase<Derived>::TransposeReturnType DenseBase<Derived>::transpose() { |
| return TransposeReturnType(derived()); |
| } |
| |
| /** This is the const version of transpose(). |
| * |
| * Make sure you read the warning for transpose() ! |
| * |
| * \sa transposeInPlace(), adjoint() */ |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstTransposeReturnType |
| DenseBase<Derived>::transpose() const { |
| return ConstTransposeReturnType(derived()); |
| } |
| |
| /** \returns an expression of the adjoint (i.e. conjugate transpose) of *this. |
| * |
| * Example: \include MatrixBase_adjoint.cpp |
| * Output: \verbinclude MatrixBase_adjoint.out |
| * |
| * \warning If you want to replace a matrix by its own adjoint, do \b NOT do this: |
| * \code |
| * m = m.adjoint(); // bug!!! caused by aliasing effect |
| * \endcode |
| * Instead, use the adjointInPlace() method: |
| * \code |
| * m.adjointInPlace(); |
| * \endcode |
| * which gives Eigen good opportunities for optimization, or alternatively you can also do: |
| * \code |
| * m = m.adjoint().eval(); |
| * \endcode |
| * |
| * \sa adjointInPlace(), transpose(), conjugate(), class Transpose, class internal::scalar_conjugate_op */ |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC inline const typename MatrixBase<Derived>::AdjointReturnType MatrixBase<Derived>::adjoint() const { |
| return AdjointReturnType(this->transpose()); |
| } |
| |
| /*************************************************************************** |
| * "in place" transpose implementation |
| ***************************************************************************/ |
| |
| namespace internal { |
| |
| template <typename MatrixType, |
| bool IsSquare = (MatrixType::RowsAtCompileTime == MatrixType::ColsAtCompileTime) && |
| MatrixType::RowsAtCompileTime != Dynamic, |
| bool MatchPacketSize = |
| (int(MatrixType::RowsAtCompileTime) == int(internal::packet_traits<typename MatrixType::Scalar>::size)) && |
| (internal::evaluator<MatrixType>::Flags & PacketAccessBit)> |
| struct inplace_transpose_selector; |
| |
| template <typename MatrixType> |
| struct inplace_transpose_selector<MatrixType, true, false> { // square matrix |
| static void run(MatrixType& m) { |
| m.matrix().template triangularView<StrictlyUpper>().swap( |
| m.matrix().transpose().template triangularView<StrictlyUpper>()); |
| } |
| }; |
| |
| template <typename MatrixType> |
| struct inplace_transpose_selector<MatrixType, true, true> { // PacketSize x PacketSize |
| static void run(MatrixType& m) { |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename internal::packet_traits<typename MatrixType::Scalar>::type Packet; |
| const Index PacketSize = internal::packet_traits<Scalar>::size; |
| const Index Alignment = internal::evaluator<MatrixType>::Alignment; |
| PacketBlock<Packet> A; |
| for (Index i = 0; i < PacketSize; ++i) A.packet[i] = m.template packetByOuterInner<Alignment>(i, 0); |
| internal::ptranspose(A); |
| for (Index i = 0; i < PacketSize; ++i) |
| m.template writePacket<Alignment>(m.rowIndexByOuterInner(i, 0), m.colIndexByOuterInner(i, 0), A.packet[i]); |
| } |
| }; |
| |
| template <typename MatrixType, Index Alignment> |
| void BlockedInPlaceTranspose(MatrixType& m) { |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename internal::packet_traits<typename MatrixType::Scalar>::type Packet; |
| const Index PacketSize = internal::packet_traits<Scalar>::size; |
| eigen_assert(m.rows() == m.cols()); |
| int row_start = 0; |
| for (; row_start + PacketSize <= m.rows(); row_start += PacketSize) { |
| for (int col_start = row_start; col_start + PacketSize <= m.cols(); col_start += PacketSize) { |
| PacketBlock<Packet> A; |
| if (row_start == col_start) { |
| for (Index i = 0; i < PacketSize; ++i) |
| A.packet[i] = m.template packetByOuterInner<Alignment>(row_start + i, col_start); |
| internal::ptranspose(A); |
| for (Index i = 0; i < PacketSize; ++i) |
| m.template writePacket<Alignment>(m.rowIndexByOuterInner(row_start + i, col_start), |
| m.colIndexByOuterInner(row_start + i, col_start), A.packet[i]); |
| } else { |
| PacketBlock<Packet> B; |
| for (Index i = 0; i < PacketSize; ++i) { |
| A.packet[i] = m.template packetByOuterInner<Alignment>(row_start + i, col_start); |
| B.packet[i] = m.template packetByOuterInner<Alignment>(col_start + i, row_start); |
| } |
| internal::ptranspose(A); |
| internal::ptranspose(B); |
| for (Index i = 0; i < PacketSize; ++i) { |
| m.template writePacket<Alignment>(m.rowIndexByOuterInner(row_start + i, col_start), |
| m.colIndexByOuterInner(row_start + i, col_start), B.packet[i]); |
| m.template writePacket<Alignment>(m.rowIndexByOuterInner(col_start + i, row_start), |
| m.colIndexByOuterInner(col_start + i, row_start), A.packet[i]); |
| } |
| } |
| } |
| } |
| for (Index row = row_start; row < m.rows(); ++row) { |
| m.matrix().row(row).head(row).swap(m.matrix().col(row).head(row).transpose()); |
| } |
| } |
| |
| template <typename MatrixType, bool MatchPacketSize> |
| struct inplace_transpose_selector<MatrixType, false, MatchPacketSize> { // non square or dynamic matrix |
| static void run(MatrixType& m) { |
| typedef typename MatrixType::Scalar Scalar; |
| if (m.rows() == m.cols()) { |
| const Index PacketSize = internal::packet_traits<Scalar>::size; |
| if (!NumTraits<Scalar>::IsComplex && m.rows() >= PacketSize) { |
| if ((m.rows() % PacketSize) == 0) |
| BlockedInPlaceTranspose<MatrixType, internal::evaluator<MatrixType>::Alignment>(m); |
| else |
| BlockedInPlaceTranspose<MatrixType, Unaligned>(m); |
| } else { |
| m.matrix().template triangularView<StrictlyUpper>().swap( |
| m.matrix().transpose().template triangularView<StrictlyUpper>()); |
| } |
| } else { |
| m = m.transpose().eval(); |
| } |
| } |
| }; |
| |
| } // end namespace internal |
| |
| /** This is the "in place" version of transpose(): it replaces \c *this by its own transpose. |
| * Thus, doing |
| * \code |
| * m.transposeInPlace(); |
| * \endcode |
| * has the same effect on m as doing |
| * \code |
| * m = m.transpose().eval(); |
| * \endcode |
| * and is faster and also safer because in the latter line of code, forgetting the eval() results |
| * in a bug caused by \ref TopicAliasing "aliasing". |
| * |
| * Notice however that this method is only useful if you want to replace a matrix by its own transpose. |
| * If you just need the transpose of a matrix, use transpose(). |
| * |
| * \note if the matrix is not square, then \c *this must be a resizable matrix. |
| * This excludes (non-square) fixed-size matrices, block-expressions and maps. |
| * |
| * \sa transpose(), adjoint(), adjointInPlace() */ |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC inline void DenseBase<Derived>::transposeInPlace() { |
| eigen_assert((rows() == cols() || (RowsAtCompileTime == Dynamic && ColsAtCompileTime == Dynamic)) && |
| "transposeInPlace() called on a non-square non-resizable matrix"); |
| internal::inplace_transpose_selector<Derived>::run(derived()); |
| } |
| |
| /*************************************************************************** |
| * "in place" adjoint implementation |
| ***************************************************************************/ |
| |
| /** This is the "in place" version of adjoint(): it replaces \c *this by its own transpose. |
| * Thus, doing |
| * \code |
| * m.adjointInPlace(); |
| * \endcode |
| * has the same effect on m as doing |
| * \code |
| * m = m.adjoint().eval(); |
| * \endcode |
| * and is faster and also safer because in the latter line of code, forgetting the eval() results |
| * in a bug caused by aliasing. |
| * |
| * Notice however that this method is only useful if you want to replace a matrix by its own adjoint. |
| * If you just need the adjoint of a matrix, use adjoint(). |
| * |
| * \note if the matrix is not square, then \c *this must be a resizable matrix. |
| * This excludes (non-square) fixed-size matrices, block-expressions and maps. |
| * |
| * \sa transpose(), adjoint(), transposeInPlace() */ |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC inline void MatrixBase<Derived>::adjointInPlace() { |
| derived() = adjoint().eval(); |
| } |
| |
| #ifndef EIGEN_NO_DEBUG |
| |
| // The following is to detect aliasing problems in most common cases. |
| |
| namespace internal { |
| |
| template <bool DestIsTransposed, typename OtherDerived> |
| struct check_transpose_aliasing_compile_time_selector { |
| enum { ret = bool(blas_traits<OtherDerived>::IsTransposed) != DestIsTransposed }; |
| }; |
| |
| template <bool DestIsTransposed, typename BinOp, typename DerivedA, typename DerivedB> |
| struct check_transpose_aliasing_compile_time_selector<DestIsTransposed, CwiseBinaryOp<BinOp, DerivedA, DerivedB> > { |
| enum { |
| ret = bool(blas_traits<DerivedA>::IsTransposed) != DestIsTransposed || |
| bool(blas_traits<DerivedB>::IsTransposed) != DestIsTransposed |
| }; |
| }; |
| |
| template <typename Scalar, bool DestIsTransposed, typename OtherDerived> |
| struct check_transpose_aliasing_run_time_selector { |
| EIGEN_DEVICE_FUNC static bool run(const Scalar* dest, const OtherDerived& src) { |
| return (bool(blas_traits<OtherDerived>::IsTransposed) != DestIsTransposed) && |
| (dest != 0 && dest == (const Scalar*)extract_data(src)); |
| } |
| }; |
| |
| template <typename Scalar, bool DestIsTransposed, typename BinOp, typename DerivedA, typename DerivedB> |
| struct check_transpose_aliasing_run_time_selector<Scalar, DestIsTransposed, CwiseBinaryOp<BinOp, DerivedA, DerivedB> > { |
| EIGEN_DEVICE_FUNC static bool run(const Scalar* dest, const CwiseBinaryOp<BinOp, DerivedA, DerivedB>& src) { |
| return ((blas_traits<DerivedA>::IsTransposed != DestIsTransposed) && |
| (dest != 0 && dest == (const Scalar*)extract_data(src.lhs()))) || |
| ((blas_traits<DerivedB>::IsTransposed != DestIsTransposed) && |
| (dest != 0 && dest == (const Scalar*)extract_data(src.rhs()))); |
| } |
| }; |
| |
| // the following selector, checkTransposeAliasing_impl, based on MightHaveTransposeAliasing, |
| // is because when the condition controlling the assert is known at compile time, ICC emits a warning. |
| // This is actually a good warning: in expressions that don't have any transposing, the condition is |
| // known at compile time to be false, and using that, we can avoid generating the code of the assert again |
| // and again for all these expressions that don't need it. |
| |
| template <typename Derived, typename OtherDerived, |
| bool MightHaveTransposeAliasing = |
| check_transpose_aliasing_compile_time_selector<blas_traits<Derived>::IsTransposed, OtherDerived>::ret> |
| struct checkTransposeAliasing_impl { |
| EIGEN_DEVICE_FUNC static void run(const Derived& dst, const OtherDerived& other) { |
| eigen_assert( |
| (!check_transpose_aliasing_run_time_selector<typename Derived::Scalar, blas_traits<Derived>::IsTransposed, |
| OtherDerived>::run(extract_data(dst), other)) && |
| "aliasing detected during transposition, use transposeInPlace() " |
| "or evaluate the rhs into a temporary using .eval()"); |
| } |
| }; |
| |
| template <typename Derived, typename OtherDerived> |
| struct checkTransposeAliasing_impl<Derived, OtherDerived, false> { |
| EIGEN_DEVICE_FUNC static void run(const Derived&, const OtherDerived&) {} |
| }; |
| |
| template <typename Dst, typename Src> |
| EIGEN_DEVICE_FUNC inline void check_for_aliasing(const Dst& dst, const Src& src) { |
| if ((!Dst::IsVectorAtCompileTime) && dst.rows() > 1 && dst.cols() > 1) |
| internal::checkTransposeAliasing_impl<Dst, Src>::run(dst, src); |
| } |
| |
| } // end namespace internal |
| |
| #endif // EIGEN_NO_DEBUG |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_TRANSPOSE_H |