| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2007 Julien Pommier |
| // Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com) |
| // Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // Copyright (C) 2018 Wave Computing, Inc. |
| // Written by: |
| // Chris Larsen |
| // Alexey Frunze (afrunze@wavecomp.com) |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| /* The sin, cos, exp, and log functions of this file come from |
| * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/ |
| */ |
| |
| /* The tanh function of this file is an adaptation of |
| * template<typename T> T generic_fast_tanh_float(const T&) |
| * from MathFunctionsImpl.h. |
| */ |
| |
| #ifndef EIGEN_MATH_FUNCTIONS_MSA_H |
| #define EIGEN_MATH_FUNCTIONS_MSA_H |
| |
| // IWYU pragma: private |
| #include "../../InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| template <> |
| EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet4f plog<Packet4f>(const Packet4f& _x) { |
| static EIGEN_DECLARE_CONST_Packet4f(cephes_SQRTHF, 0.707106781186547524f); |
| static EIGEN_DECLARE_CONST_Packet4f(cephes_log_p0, 7.0376836292e-2f); |
| static EIGEN_DECLARE_CONST_Packet4f(cephes_log_p1, -1.1514610310e-1f); |
| static EIGEN_DECLARE_CONST_Packet4f(cephes_log_p2, 1.1676998740e-1f); |
| static EIGEN_DECLARE_CONST_Packet4f(cephes_log_p3, -1.2420140846e-1f); |
| static EIGEN_DECLARE_CONST_Packet4f(cephes_log_p4, +1.4249322787e-1f); |
| static EIGEN_DECLARE_CONST_Packet4f(cephes_log_p5, -1.6668057665e-1f); |
| static EIGEN_DECLARE_CONST_Packet4f(cephes_log_p6, +2.0000714765e-1f); |
| static EIGEN_DECLARE_CONST_Packet4f(cephes_log_p7, -2.4999993993e-1f); |
| static EIGEN_DECLARE_CONST_Packet4f(cephes_log_p8, +3.3333331174e-1f); |
| static EIGEN_DECLARE_CONST_Packet4f(cephes_log_q1, -2.12194440e-4f); |
| static EIGEN_DECLARE_CONST_Packet4f(cephes_log_q2, 0.693359375f); |
| static EIGEN_DECLARE_CONST_Packet4f(half, 0.5f); |
| static EIGEN_DECLARE_CONST_Packet4f(1, 1.0f); |
| |
| // Convert negative argument into NAN (quiet negative, to be specific). |
| Packet4f zero = (Packet4f)__builtin_msa_ldi_w(0); |
| Packet4i neg_mask = __builtin_msa_fclt_w(_x, zero); |
| Packet4i zero_mask = __builtin_msa_fceq_w(_x, zero); |
| Packet4f non_neg_x_or_nan = padd(_x, (Packet4f)neg_mask); // Add 0.0 or NAN. |
| Packet4f x = non_neg_x_or_nan; |
| |
| // Extract exponent from x = mantissa * 2**exponent, where 1.0 <= mantissa < 2.0. |
| // N.B. the exponent is one less of what frexpf() would return. |
| Packet4i e_int = __builtin_msa_ftint_s_w(__builtin_msa_flog2_w(x)); |
| // Multiply x by 2**(-exponent-1) to get 0.5 <= x < 1.0 as from frexpf(). |
| x = __builtin_msa_fexp2_w(x, (Packet4i)__builtin_msa_nori_b((v16u8)e_int, 0)); |
| |
| /* |
| if (x < SQRTHF) { |
| x = x + x - 1.0; |
| } else { |
| e += 1; |
| x = x - 1.0; |
| } |
| */ |
| Packet4f xx = padd(x, x); |
| Packet4i ge_mask = __builtin_msa_fcle_w(p4f_cephes_SQRTHF, x); |
| e_int = psub(e_int, ge_mask); |
| x = (Packet4f)__builtin_msa_bsel_v((v16u8)ge_mask, (v16u8)xx, (v16u8)x); |
| x = psub(x, p4f_1); |
| Packet4f e = __builtin_msa_ffint_s_w(e_int); |
| |
| Packet4f x2 = pmul(x, x); |
| Packet4f x3 = pmul(x2, x); |
| |
| Packet4f y, y1, y2; |
| y = pmadd(p4f_cephes_log_p0, x, p4f_cephes_log_p1); |
| y1 = pmadd(p4f_cephes_log_p3, x, p4f_cephes_log_p4); |
| y2 = pmadd(p4f_cephes_log_p6, x, p4f_cephes_log_p7); |
| y = pmadd(y, x, p4f_cephes_log_p2); |
| y1 = pmadd(y1, x, p4f_cephes_log_p5); |
| y2 = pmadd(y2, x, p4f_cephes_log_p8); |
| y = pmadd(y, x3, y1); |
| y = pmadd(y, x3, y2); |
| y = pmul(y, x3); |
| |
| y = pmadd(e, p4f_cephes_log_q1, y); |
| x = __builtin_msa_fmsub_w(x, x2, p4f_half); |
| x = padd(x, y); |
| x = pmadd(e, p4f_cephes_log_q2, x); |
| |
| // x is now the logarithm result candidate. We still need to handle the |
| // extreme arguments of zero and positive infinity, though. |
| // N.B. if the argument is +INFINITY, x is NAN because the polynomial terms |
| // contain infinities of both signs (see the coefficients and code above). |
| // INFINITY - INFINITY is NAN. |
| |
| // If the argument is +INFINITY, make it the new result candidate. |
| // To achieve that we choose the smaller of the result candidate and the |
| // argument. |
| // This is correct for all finite pairs of values (the logarithm is smaller |
| // than the argument). |
| // This is also correct in the special case when the argument is +INFINITY |
| // and the result candidate is NAN. This is because the fmin.df instruction |
| // prefers non-NANs to NANs. |
| x = __builtin_msa_fmin_w(x, non_neg_x_or_nan); |
| |
| // If the argument is zero (including -0.0), the result becomes -INFINITY. |
| Packet4i neg_infs = __builtin_msa_slli_w(zero_mask, 23); |
| x = (Packet4f)__builtin_msa_bsel_v((v16u8)zero_mask, (v16u8)x, (v16u8)neg_infs); |
| |
| return x; |
| } |
| |
| template <> |
| EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet4f pexp<Packet4f>(const Packet4f& _x) { |
| // Limiting single-precision pexp's argument to [-128, +128] lets pexp |
| // reach 0 and INFINITY naturally. |
| static EIGEN_DECLARE_CONST_Packet4f(exp_lo, -128.0f); |
| static EIGEN_DECLARE_CONST_Packet4f(exp_hi, +128.0f); |
| static EIGEN_DECLARE_CONST_Packet4f(cephes_LOG2EF, 1.44269504088896341f); |
| static EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C1, 0.693359375f); |
| static EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C2, -2.12194440e-4f); |
| static EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p0, 1.9875691500e-4f); |
| static EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p1, 1.3981999507e-3f); |
| static EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p2, 8.3334519073e-3f); |
| static EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p3, 4.1665795894e-2f); |
| static EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p4, 1.6666665459e-1f); |
| static EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p5, 5.0000001201e-1f); |
| static EIGEN_DECLARE_CONST_Packet4f(half, 0.5f); |
| static EIGEN_DECLARE_CONST_Packet4f(1, 1.0f); |
| |
| Packet4f x = _x; |
| |
| // Clamp x. |
| x = (Packet4f)__builtin_msa_bsel_v((v16u8)__builtin_msa_fclt_w(x, p4f_exp_lo), (v16u8)x, (v16u8)p4f_exp_lo); |
| x = (Packet4f)__builtin_msa_bsel_v((v16u8)__builtin_msa_fclt_w(p4f_exp_hi, x), (v16u8)x, (v16u8)p4f_exp_hi); |
| |
| // Round to nearest integer by adding 0.5 (with x's sign) and truncating. |
| Packet4f x2_add = (Packet4f)__builtin_msa_binsli_w((v4u32)p4f_half, (v4u32)x, 0); |
| Packet4f x2 = pmadd(x, p4f_cephes_LOG2EF, x2_add); |
| Packet4i x2_int = __builtin_msa_ftrunc_s_w(x2); |
| Packet4f x2_int_f = __builtin_msa_ffint_s_w(x2_int); |
| |
| x = __builtin_msa_fmsub_w(x, x2_int_f, p4f_cephes_exp_C1); |
| x = __builtin_msa_fmsub_w(x, x2_int_f, p4f_cephes_exp_C2); |
| |
| Packet4f z = pmul(x, x); |
| |
| Packet4f y = p4f_cephes_exp_p0; |
| y = pmadd(y, x, p4f_cephes_exp_p1); |
| y = pmadd(y, x, p4f_cephes_exp_p2); |
| y = pmadd(y, x, p4f_cephes_exp_p3); |
| y = pmadd(y, x, p4f_cephes_exp_p4); |
| y = pmadd(y, x, p4f_cephes_exp_p5); |
| y = pmadd(y, z, x); |
| y = padd(y, p4f_1); |
| |
| // y *= 2**exponent. |
| y = __builtin_msa_fexp2_w(y, x2_int); |
| |
| return y; |
| } |
| |
| template <> |
| EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet4f ptanh<Packet4f>(const Packet4f& _x) { |
| static EIGEN_DECLARE_CONST_Packet4f(tanh_tiny, 1e-4f); |
| static EIGEN_DECLARE_CONST_Packet4f(tanh_hi, 9.0f); |
| // The monomial coefficients of the numerator polynomial (odd). |
| static EIGEN_DECLARE_CONST_Packet4f(alpha_1, 4.89352455891786e-3f); |
| static EIGEN_DECLARE_CONST_Packet4f(alpha_3, 6.37261928875436e-4f); |
| static EIGEN_DECLARE_CONST_Packet4f(alpha_5, 1.48572235717979e-5f); |
| static EIGEN_DECLARE_CONST_Packet4f(alpha_7, 5.12229709037114e-8f); |
| static EIGEN_DECLARE_CONST_Packet4f(alpha_9, -8.60467152213735e-11f); |
| static EIGEN_DECLARE_CONST_Packet4f(alpha_11, 2.00018790482477e-13f); |
| static EIGEN_DECLARE_CONST_Packet4f(alpha_13, -2.76076847742355e-16f); |
| // The monomial coefficients of the denominator polynomial (even). |
| static EIGEN_DECLARE_CONST_Packet4f(beta_0, 4.89352518554385e-3f); |
| static EIGEN_DECLARE_CONST_Packet4f(beta_2, 2.26843463243900e-3f); |
| static EIGEN_DECLARE_CONST_Packet4f(beta_4, 1.18534705686654e-4f); |
| static EIGEN_DECLARE_CONST_Packet4f(beta_6, 1.19825839466702e-6f); |
| |
| Packet4f x = pabs(_x); |
| Packet4i tiny_mask = __builtin_msa_fclt_w(x, p4f_tanh_tiny); |
| |
| // Clamp the inputs to the range [-9, 9] since anything outside |
| // this range is -/+1.0f in single-precision. |
| x = (Packet4f)__builtin_msa_bsel_v((v16u8)__builtin_msa_fclt_w(p4f_tanh_hi, x), (v16u8)x, (v16u8)p4f_tanh_hi); |
| |
| // Since the polynomials are odd/even, we need x**2. |
| Packet4f x2 = pmul(x, x); |
| |
| // Evaluate the numerator polynomial p. |
| Packet4f p = pmadd(x2, p4f_alpha_13, p4f_alpha_11); |
| p = pmadd(x2, p, p4f_alpha_9); |
| p = pmadd(x2, p, p4f_alpha_7); |
| p = pmadd(x2, p, p4f_alpha_5); |
| p = pmadd(x2, p, p4f_alpha_3); |
| p = pmadd(x2, p, p4f_alpha_1); |
| p = pmul(x, p); |
| |
| // Evaluate the denominator polynomial q. |
| Packet4f q = pmadd(x2, p4f_beta_6, p4f_beta_4); |
| q = pmadd(x2, q, p4f_beta_2); |
| q = pmadd(x2, q, p4f_beta_0); |
| |
| // Divide the numerator by the denominator. |
| p = pdiv(p, q); |
| |
| // Reinstate the sign. |
| p = (Packet4f)__builtin_msa_binsli_w((v4u32)p, (v4u32)_x, 0); |
| |
| // When the argument is very small in magnitude it's more accurate to just return it. |
| p = (Packet4f)__builtin_msa_bsel_v((v16u8)tiny_mask, (v16u8)p, (v16u8)_x); |
| |
| return p; |
| } |
| |
| template <bool sine> |
| Packet4f psincos_inner_msa_float(const Packet4f& _x) { |
| static EIGEN_DECLARE_CONST_Packet4f(sincos_max_arg, 13176795.0f); // Approx. (2**24) / (4/Pi). |
| static EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP1, -0.78515625f); |
| static EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP2, -2.4187564849853515625e-4f); |
| static EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP3, -3.77489497744594108e-8f); |
| static EIGEN_DECLARE_CONST_Packet4f(sincof_p0, -1.9515295891e-4f); |
| static EIGEN_DECLARE_CONST_Packet4f(sincof_p1, 8.3321608736e-3f); |
| static EIGEN_DECLARE_CONST_Packet4f(sincof_p2, -1.6666654611e-1f); |
| static EIGEN_DECLARE_CONST_Packet4f(coscof_p0, 2.443315711809948e-5f); |
| static EIGEN_DECLARE_CONST_Packet4f(coscof_p1, -1.388731625493765e-3f); |
| static EIGEN_DECLARE_CONST_Packet4f(coscof_p2, 4.166664568298827e-2f); |
| static EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4/Pi. |
| static EIGEN_DECLARE_CONST_Packet4f(half, 0.5f); |
| static EIGEN_DECLARE_CONST_Packet4f(1, 1.0f); |
| |
| Packet4f x = pabs(_x); |
| |
| // Translate infinite arguments into NANs. |
| Packet4f zero_or_nan_if_inf = psub(_x, _x); |
| x = padd(x, zero_or_nan_if_inf); |
| // Prevent sin/cos from generating values larger than 1.0 in magnitude |
| // for very large arguments by setting x to 0.0. |
| Packet4i small_or_nan_mask = __builtin_msa_fcult_w(x, p4f_sincos_max_arg); |
| x = pand(x, (Packet4f)small_or_nan_mask); |
| |
| // Scale x by 4/Pi to find x's octant. |
| Packet4f y = pmul(x, p4f_cephes_FOPI); |
| // Get the octant. We'll reduce x by this number of octants or by one more than it. |
| Packet4i y_int = __builtin_msa_ftrunc_s_w(y); |
| // x's from even-numbered octants will translate to octant 0: [0, +Pi/4]. |
| // x's from odd-numbered octants will translate to octant -1: [-Pi/4, 0]. |
| // Adjustment for odd-numbered octants: octant = (octant + 1) & (~1). |
| Packet4i y_int1 = __builtin_msa_addvi_w(y_int, 1); |
| Packet4i y_int2 = (Packet4i)__builtin_msa_bclri_w((Packet4ui)y_int1, 0); // bclri = bit-clear |
| y = __builtin_msa_ffint_s_w(y_int2); |
| |
| // Compute the sign to apply to the polynomial. |
| Packet4i sign_mask = sine ? pxor(__builtin_msa_slli_w(y_int1, 29), (Packet4i)_x) |
| : __builtin_msa_slli_w(__builtin_msa_addvi_w(y_int, 3), 29); |
| |
| // Get the polynomial selection mask. |
| // We'll calculate both (sin and cos) polynomials and then select from the two. |
| Packet4i poly_mask = __builtin_msa_ceqi_w(__builtin_msa_slli_w(y_int2, 30), 0); |
| |
| // Reduce x by y octants to get: -Pi/4 <= x <= +Pi/4. |
| // The magic pass: "Extended precision modular arithmetic" |
| // x = ((x - y * DP1) - y * DP2) - y * DP3 |
| Packet4f tmp1 = pmul(y, p4f_minus_cephes_DP1); |
| Packet4f tmp2 = pmul(y, p4f_minus_cephes_DP2); |
| Packet4f tmp3 = pmul(y, p4f_minus_cephes_DP3); |
| x = padd(x, tmp1); |
| x = padd(x, tmp2); |
| x = padd(x, tmp3); |
| |
| // Evaluate the cos(x) polynomial. |
| y = p4f_coscof_p0; |
| Packet4f z = pmul(x, x); |
| y = pmadd(y, z, p4f_coscof_p1); |
| y = pmadd(y, z, p4f_coscof_p2); |
| y = pmul(y, z); |
| y = pmul(y, z); |
| y = __builtin_msa_fmsub_w(y, z, p4f_half); |
| y = padd(y, p4f_1); |
| |
| // Evaluate the sin(x) polynomial. |
| Packet4f y2 = p4f_sincof_p0; |
| y2 = pmadd(y2, z, p4f_sincof_p1); |
| y2 = pmadd(y2, z, p4f_sincof_p2); |
| y2 = pmul(y2, z); |
| y2 = pmadd(y2, x, x); |
| |
| // Select the correct result from the two polynomials. |
| y = sine ? (Packet4f)__builtin_msa_bsel_v((v16u8)poly_mask, (v16u8)y, (v16u8)y2) |
| : (Packet4f)__builtin_msa_bsel_v((v16u8)poly_mask, (v16u8)y2, (v16u8)y); |
| |
| // Update the sign. |
| sign_mask = pxor(sign_mask, (Packet4i)y); |
| y = (Packet4f)__builtin_msa_binsli_w((v4u32)y, (v4u32)sign_mask, 0); // binsli = bit-insert-left |
| return y; |
| } |
| |
| template <> |
| EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet4f psin<Packet4f>(const Packet4f& x) { |
| return psincos_inner_msa_float</* sine */ true>(x); |
| } |
| |
| template <> |
| EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet4f pcos<Packet4f>(const Packet4f& x) { |
| return psincos_inner_msa_float</* sine */ false>(x); |
| } |
| |
| template <> |
| EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet2d pexp<Packet2d>(const Packet2d& _x) { |
| // Limiting double-precision pexp's argument to [-1024, +1024] lets pexp |
| // reach 0 and INFINITY naturally. |
| static EIGEN_DECLARE_CONST_Packet2d(exp_lo, -1024.0); |
| static EIGEN_DECLARE_CONST_Packet2d(exp_hi, +1024.0); |
| static EIGEN_DECLARE_CONST_Packet2d(cephes_LOG2EF, 1.4426950408889634073599); |
| static EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C1, 0.693145751953125); |
| static EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C2, 1.42860682030941723212e-6); |
| static EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p0, 1.26177193074810590878e-4); |
| static EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p1, 3.02994407707441961300e-2); |
| static EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p2, 9.99999999999999999910e-1); |
| static EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q0, 3.00198505138664455042e-6); |
| static EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q1, 2.52448340349684104192e-3); |
| static EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q2, 2.27265548208155028766e-1); |
| static EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q3, 2.00000000000000000009e0); |
| static EIGEN_DECLARE_CONST_Packet2d(half, 0.5); |
| static EIGEN_DECLARE_CONST_Packet2d(1, 1.0); |
| static EIGEN_DECLARE_CONST_Packet2d(2, 2.0); |
| |
| Packet2d x = _x; |
| |
| // Clamp x. |
| x = (Packet2d)__builtin_msa_bsel_v((v16u8)__builtin_msa_fclt_d(x, p2d_exp_lo), (v16u8)x, (v16u8)p2d_exp_lo); |
| x = (Packet2d)__builtin_msa_bsel_v((v16u8)__builtin_msa_fclt_d(p2d_exp_hi, x), (v16u8)x, (v16u8)p2d_exp_hi); |
| |
| // Round to nearest integer by adding 0.5 (with x's sign) and truncating. |
| Packet2d x2_add = (Packet2d)__builtin_msa_binsli_d((v2u64)p2d_half, (v2u64)x, 0); |
| Packet2d x2 = pmadd(x, p2d_cephes_LOG2EF, x2_add); |
| Packet2l x2_long = __builtin_msa_ftrunc_s_d(x2); |
| Packet2d x2_long_d = __builtin_msa_ffint_s_d(x2_long); |
| |
| x = __builtin_msa_fmsub_d(x, x2_long_d, p2d_cephes_exp_C1); |
| x = __builtin_msa_fmsub_d(x, x2_long_d, p2d_cephes_exp_C2); |
| |
| x2 = pmul(x, x); |
| |
| Packet2d px = p2d_cephes_exp_p0; |
| px = pmadd(px, x2, p2d_cephes_exp_p1); |
| px = pmadd(px, x2, p2d_cephes_exp_p2); |
| px = pmul(px, x); |
| |
| Packet2d qx = p2d_cephes_exp_q0; |
| qx = pmadd(qx, x2, p2d_cephes_exp_q1); |
| qx = pmadd(qx, x2, p2d_cephes_exp_q2); |
| qx = pmadd(qx, x2, p2d_cephes_exp_q3); |
| |
| x = pdiv(px, psub(qx, px)); |
| x = pmadd(p2d_2, x, p2d_1); |
| |
| // x *= 2**exponent. |
| x = __builtin_msa_fexp2_d(x, x2_long); |
| |
| return x; |
| } |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_MATH_FUNCTIONS_MSA_H |