| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_MATRIXBASEEIGENVALUES_H |
| #define EIGEN_MATRIXBASEEIGENVALUES_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| template <typename Derived, bool IsComplex> |
| struct eigenvalues_selector { |
| // this is the implementation for the case IsComplex = true |
| static inline typename MatrixBase<Derived>::EigenvaluesReturnType const run(const MatrixBase<Derived>& m) { |
| typedef typename Derived::PlainObject PlainObject; |
| PlainObject m_eval(m); |
| return ComplexEigenSolver<PlainObject>(m_eval, false).eigenvalues(); |
| } |
| }; |
| |
| template <typename Derived> |
| struct eigenvalues_selector<Derived, false> { |
| static inline typename MatrixBase<Derived>::EigenvaluesReturnType const run(const MatrixBase<Derived>& m) { |
| typedef typename Derived::PlainObject PlainObject; |
| PlainObject m_eval(m); |
| return EigenSolver<PlainObject>(m_eval, false).eigenvalues(); |
| } |
| }; |
| |
| } // end namespace internal |
| |
| /** \brief Computes the eigenvalues of a matrix |
| * \returns Column vector containing the eigenvalues. |
| * |
| * \eigenvalues_module |
| * This function computes the eigenvalues with the help of the EigenSolver |
| * class (for real matrices) or the ComplexEigenSolver class (for complex |
| * matrices). |
| * |
| * The eigenvalues are repeated according to their algebraic multiplicity, |
| * so there are as many eigenvalues as rows in the matrix. |
| * |
| * The SelfAdjointView class provides a better algorithm for selfadjoint |
| * matrices. |
| * |
| * Example: \include MatrixBase_eigenvalues.cpp |
| * Output: \verbinclude MatrixBase_eigenvalues.out |
| * |
| * \sa EigenSolver::eigenvalues(), ComplexEigenSolver::eigenvalues(), |
| * SelfAdjointView::eigenvalues() |
| */ |
| template <typename Derived> |
| inline typename MatrixBase<Derived>::EigenvaluesReturnType MatrixBase<Derived>::eigenvalues() const { |
| return internal::eigenvalues_selector<Derived, NumTraits<Scalar>::IsComplex>::run(derived()); |
| } |
| |
| /** \brief Computes the eigenvalues of a matrix |
| * \returns Column vector containing the eigenvalues. |
| * |
| * \eigenvalues_module |
| * This function computes the eigenvalues with the help of the |
| * SelfAdjointEigenSolver class. The eigenvalues are repeated according to |
| * their algebraic multiplicity, so there are as many eigenvalues as rows in |
| * the matrix. |
| * |
| * Example: \include SelfAdjointView_eigenvalues.cpp |
| * Output: \verbinclude SelfAdjointView_eigenvalues.out |
| * |
| * \sa SelfAdjointEigenSolver::eigenvalues(), MatrixBase::eigenvalues() |
| */ |
| template <typename MatrixType, unsigned int UpLo> |
| EIGEN_DEVICE_FUNC inline typename SelfAdjointView<MatrixType, UpLo>::EigenvaluesReturnType |
| SelfAdjointView<MatrixType, UpLo>::eigenvalues() const { |
| PlainObject thisAsMatrix(*this); |
| return SelfAdjointEigenSolver<PlainObject>(thisAsMatrix, false).eigenvalues(); |
| } |
| |
| /** \brief Computes the L2 operator norm |
| * \returns Operator norm of the matrix. |
| * |
| * \eigenvalues_module |
| * This function computes the L2 operator norm of a matrix, which is also |
| * known as the spectral norm. The norm of a matrix \f$ A \f$ is defined to be |
| * \f[ \|A\|_2 = \max_x \frac{\|Ax\|_2}{\|x\|_2} \f] |
| * where the maximum is over all vectors and the norm on the right is the |
| * Euclidean vector norm. The norm equals the largest singular value, which is |
| * the square root of the largest eigenvalue of the positive semi-definite |
| * matrix \f$ A^*A \f$. |
| * |
| * The current implementation uses the eigenvalues of \f$ A^*A \f$, as computed |
| * by SelfAdjointView::eigenvalues(), to compute the operator norm of a |
| * matrix. The SelfAdjointView class provides a better algorithm for |
| * selfadjoint matrices. |
| * |
| * Example: \include MatrixBase_operatorNorm.cpp |
| * Output: \verbinclude MatrixBase_operatorNorm.out |
| * |
| * \sa SelfAdjointView::eigenvalues(), SelfAdjointView::operatorNorm() |
| */ |
| template <typename Derived> |
| inline typename MatrixBase<Derived>::RealScalar MatrixBase<Derived>::operatorNorm() const { |
| using std::sqrt; |
| typename Derived::PlainObject m_eval(derived()); |
| // FIXME if it is really guaranteed that the eigenvalues are already sorted, |
| // then we don't need to compute a maxCoeff() here, comparing the 1st and last ones is enough. |
| return sqrt((m_eval * m_eval.adjoint()).eval().template selfadjointView<Lower>().eigenvalues().maxCoeff()); |
| } |
| |
| /** \brief Computes the L2 operator norm |
| * \returns Operator norm of the matrix. |
| * |
| * \eigenvalues_module |
| * This function computes the L2 operator norm of a self-adjoint matrix. For a |
| * self-adjoint matrix, the operator norm is the largest eigenvalue. |
| * |
| * The current implementation uses the eigenvalues of the matrix, as computed |
| * by eigenvalues(), to compute the operator norm of the matrix. |
| * |
| * Example: \include SelfAdjointView_operatorNorm.cpp |
| * Output: \verbinclude SelfAdjointView_operatorNorm.out |
| * |
| * \sa eigenvalues(), MatrixBase::operatorNorm() |
| */ |
| template <typename MatrixType, unsigned int UpLo> |
| EIGEN_DEVICE_FUNC inline typename SelfAdjointView<MatrixType, UpLo>::RealScalar |
| SelfAdjointView<MatrixType, UpLo>::operatorNorm() const { |
| return eigenvalues().cwiseAbs().maxCoeff(); |
| } |
| |
| } // end namespace Eigen |
| |
| #endif |