| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_CONJUGATE_GRADIENT_H |
| #define EIGEN_CONJUGATE_GRADIENT_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| /** \internal Low-level conjugate gradient algorithm |
| * \param mat The matrix A |
| * \param rhs The right hand side vector b |
| * \param x On input and initial solution, on output the computed solution. |
| * \param precond A preconditioner being able to efficiently solve for an |
| * approximation of Ax=b (regardless of b) |
| * \param iters On input the max number of iteration, on output the number of performed iterations. |
| * \param tol_error On input the tolerance error, on output an estimation of the relative error. |
| */ |
| template <typename MatrixType, typename Rhs, typename Dest, typename Preconditioner> |
| EIGEN_DONT_INLINE void conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x, const Preconditioner& precond, |
| Index& iters, typename Dest::RealScalar& tol_error) { |
| typedef typename Dest::RealScalar RealScalar; |
| typedef typename Dest::Scalar Scalar; |
| typedef Matrix<Scalar, Dynamic, 1> VectorType; |
| |
| RealScalar tol = tol_error; |
| Index maxIters = iters; |
| |
| Index n = mat.cols(); |
| |
| VectorType residual = rhs - mat * x; // initial residual |
| |
| RealScalar rhsNorm2 = rhs.squaredNorm(); |
| if (rhsNorm2 == 0) { |
| x.setZero(); |
| iters = 0; |
| tol_error = 0; |
| return; |
| } |
| const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)(); |
| RealScalar threshold = numext::maxi(RealScalar(tol * tol * rhsNorm2), considerAsZero); |
| RealScalar residualNorm2 = residual.squaredNorm(); |
| if (residualNorm2 < threshold) { |
| iters = 0; |
| tol_error = numext::sqrt(residualNorm2 / rhsNorm2); |
| return; |
| } |
| |
| VectorType p(n); |
| p = precond.solve(residual); // initial search direction |
| |
| VectorType z(n), tmp(n); |
| RealScalar absNew = numext::real(residual.dot(p)); // the square of the absolute value of r scaled by invM |
| Index i = 0; |
| while (i < maxIters) { |
| tmp.noalias() = mat * p; // the bottleneck of the algorithm |
| |
| Scalar alpha = absNew / p.dot(tmp); // the amount we travel on dir |
| x += alpha * p; // update solution |
| residual -= alpha * tmp; // update residual |
| |
| residualNorm2 = residual.squaredNorm(); |
| if (residualNorm2 < threshold) break; |
| |
| z = precond.solve(residual); // approximately solve for "A z = residual" |
| |
| RealScalar absOld = absNew; |
| absNew = numext::real(residual.dot(z)); // update the absolute value of r |
| RealScalar beta = absNew / absOld; // calculate the Gram-Schmidt value used to create the new search direction |
| p = z + beta * p; // update search direction |
| i++; |
| } |
| tol_error = numext::sqrt(residualNorm2 / rhsNorm2); |
| iters = i; |
| } |
| |
| } // namespace internal |
| |
| template <typename MatrixType_, int UpLo_ = Lower, |
| typename Preconditioner_ = DiagonalPreconditioner<typename MatrixType_::Scalar> > |
| class ConjugateGradient; |
| |
| namespace internal { |
| |
| template <typename MatrixType_, int UpLo_, typename Preconditioner_> |
| struct traits<ConjugateGradient<MatrixType_, UpLo_, Preconditioner_> > { |
| typedef MatrixType_ MatrixType; |
| typedef Preconditioner_ Preconditioner; |
| }; |
| |
| } // namespace internal |
| |
| /** \ingroup IterativeLinearSolvers_Module |
| * \brief A conjugate gradient solver for sparse (or dense) self-adjoint problems |
| * |
| * This class allows to solve for A.x = b linear problems using an iterative conjugate gradient algorithm. |
| * The matrix A must be selfadjoint. The matrix A and the vectors x and b can be either dense or sparse. |
| * |
| * \tparam MatrixType_ the type of the matrix A, can be a dense or a sparse matrix. |
| * \tparam UpLo_ the triangular part that will be used for the computations. It can be Lower, |
| * \c Upper, or \c Lower|Upper in which the full matrix entries will be considered. |
| * Default is \c Lower, best performance is \c Lower|Upper. |
| * \tparam Preconditioner_ the type of the preconditioner. Default is DiagonalPreconditioner |
| * |
| * \implsparsesolverconcept |
| * |
| * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() |
| * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations |
| * and NumTraits<Scalar>::epsilon() for the tolerance. |
| * |
| * The tolerance corresponds to the relative residual error: |Ax-b|/|b| |
| * |
| * \b Performance: Even though the default value of \c UpLo_ is \c Lower, significantly higher performance is |
| * achieved when using a complete matrix and \b Lower|Upper as the \a UpLo_ template parameter. Moreover, in this |
| * case multi-threading can be exploited if the user code is compiled with OpenMP enabled. |
| * See \ref TopicMultiThreading for details. |
| * |
| * This class can be used as the direct solver classes. Here is a typical usage example: |
| \code |
| int n = 10000; |
| VectorXd x(n), b(n); |
| SparseMatrix<double> A(n,n); |
| // fill A and b |
| ConjugateGradient<SparseMatrix<double>, Lower|Upper> cg; |
| cg.compute(A); |
| x = cg.solve(b); |
| std::cout << "#iterations: " << cg.iterations() << std::endl; |
| std::cout << "estimated error: " << cg.error() << std::endl; |
| // update b, and solve again |
| x = cg.solve(b); |
| \endcode |
| * |
| * By default the iterations start with x=0 as an initial guess of the solution. |
| * One can control the start using the solveWithGuess() method. |
| * |
| * ConjugateGradient can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example |
| \endlink. |
| * |
| * \sa class LeastSquaresConjugateGradient, class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner |
| */ |
| template <typename MatrixType_, int UpLo_, typename Preconditioner_> |
| class ConjugateGradient : public IterativeSolverBase<ConjugateGradient<MatrixType_, UpLo_, Preconditioner_> > { |
| typedef IterativeSolverBase<ConjugateGradient> Base; |
| using Base::m_error; |
| using Base::m_info; |
| using Base::m_isInitialized; |
| using Base::m_iterations; |
| using Base::matrix; |
| |
| public: |
| typedef MatrixType_ MatrixType; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef Preconditioner_ Preconditioner; |
| |
| enum { UpLo = UpLo_ }; |
| |
| public: |
| /** Default constructor. */ |
| ConjugateGradient() : Base() {} |
| |
| /** Initialize the solver with matrix \a A for further \c Ax=b solving. |
| * |
| * This constructor is a shortcut for the default constructor followed |
| * by a call to compute(). |
| * |
| * \warning this class stores a reference to the matrix A as well as some |
| * precomputed values that depend on it. Therefore, if \a A is changed |
| * this class becomes invalid. Call compute() to update it with the new |
| * matrix A, or modify a copy of A. |
| */ |
| template <typename MatrixDerived> |
| explicit ConjugateGradient(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {} |
| |
| ~ConjugateGradient() {} |
| |
| /** \internal */ |
| template <typename Rhs, typename Dest> |
| void _solve_vector_with_guess_impl(const Rhs& b, Dest& x) const { |
| typedef typename Base::MatrixWrapper MatrixWrapper; |
| typedef typename Base::ActualMatrixType ActualMatrixType; |
| enum { |
| TransposeInput = (!MatrixWrapper::MatrixFree) && (UpLo == (Lower | Upper)) && (!MatrixType::IsRowMajor) && |
| (!NumTraits<Scalar>::IsComplex) |
| }; |
| typedef std::conditional_t<TransposeInput, Transpose<const ActualMatrixType>, ActualMatrixType const&> |
| RowMajorWrapper; |
| EIGEN_STATIC_ASSERT(internal::check_implication(MatrixWrapper::MatrixFree, UpLo == (Lower | Upper)), |
| MATRIX_FREE_CONJUGATE_GRADIENT_IS_COMPATIBLE_WITH_UPPER_UNION_LOWER_MODE_ONLY); |
| typedef std::conditional_t<UpLo == (Lower | Upper), RowMajorWrapper, |
| typename MatrixWrapper::template ConstSelfAdjointViewReturnType<UpLo>::Type> |
| SelfAdjointWrapper; |
| |
| m_iterations = Base::maxIterations(); |
| m_error = Base::m_tolerance; |
| |
| RowMajorWrapper row_mat(matrix()); |
| internal::conjugate_gradient(SelfAdjointWrapper(row_mat), b, x, Base::m_preconditioner, m_iterations, m_error); |
| m_info = m_error <= Base::m_tolerance ? Success : NoConvergence; |
| } |
| |
| protected: |
| }; |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_CONJUGATE_GRADIENT_H |