| |
| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_ORDERING_H |
| #define EIGEN_ORDERING_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| #include "Eigen_Colamd.h" |
| |
| namespace internal { |
| |
| /** \internal |
| * \ingroup OrderingMethods_Module |
| * \param[in] A the input non-symmetric matrix |
| * \param[out] symmat the symmetric pattern A^T+A from the input matrix \a A. |
| * FIXME: The values should not be considered here |
| */ |
| template <typename MatrixType> |
| void ordering_helper_at_plus_a(const MatrixType& A, MatrixType& symmat) { |
| MatrixType C; |
| C = A.transpose(); // NOTE: Could be costly |
| for (int i = 0; i < C.rows(); i++) { |
| for (typename MatrixType::InnerIterator it(C, i); it; ++it) it.valueRef() = typename MatrixType::Scalar(0); |
| } |
| symmat = C + A; |
| } |
| |
| } // namespace internal |
| |
| /** \ingroup OrderingMethods_Module |
| * \class AMDOrdering |
| * |
| * Functor computing the \em approximate \em minimum \em degree ordering |
| * If the matrix is not structurally symmetric, an ordering of A^T+A is computed |
| * \tparam StorageIndex The type of indices of the matrix |
| * \sa COLAMDOrdering |
| */ |
| template <typename StorageIndex> |
| class AMDOrdering { |
| public: |
| typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType; |
| |
| /** Compute the permutation vector from a sparse matrix |
| * This routine is much faster if the input matrix is column-major |
| */ |
| template <typename MatrixType> |
| void operator()(const MatrixType& mat, PermutationType& perm) { |
| // Compute the symmetric pattern |
| SparseMatrix<typename MatrixType::Scalar, ColMajor, StorageIndex> symm; |
| internal::ordering_helper_at_plus_a(mat, symm); |
| |
| // Call the AMD routine |
| // m_mat.prune(keep_diag()); |
| internal::minimum_degree_ordering(symm, perm); |
| } |
| |
| /** Compute the permutation with a selfadjoint matrix */ |
| template <typename SrcType, unsigned int SrcUpLo> |
| void operator()(const SparseSelfAdjointView<SrcType, SrcUpLo>& mat, PermutationType& perm) { |
| SparseMatrix<typename SrcType::Scalar, ColMajor, StorageIndex> C; |
| C = mat; |
| |
| // Call the AMD routine |
| // m_mat.prune(keep_diag()); //Remove the diagonal elements |
| internal::minimum_degree_ordering(C, perm); |
| } |
| }; |
| |
| /** \ingroup OrderingMethods_Module |
| * \class NaturalOrdering |
| * |
| * Functor computing the natural ordering (identity) |
| * |
| * \note Returns an empty permutation matrix |
| * \tparam StorageIndex The type of indices of the matrix |
| */ |
| template <typename StorageIndex> |
| class NaturalOrdering { |
| public: |
| typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType; |
| |
| /** Compute the permutation vector from a column-major sparse matrix */ |
| template <typename MatrixType> |
| void operator()(const MatrixType& /*mat*/, PermutationType& perm) { |
| perm.resize(0); |
| } |
| }; |
| |
| /** \ingroup OrderingMethods_Module |
| * \class COLAMDOrdering |
| * |
| * \tparam StorageIndex The type of indices of the matrix |
| * |
| * Functor computing the \em column \em approximate \em minimum \em degree ordering |
| * The matrix should be in column-major and \b compressed format (see SparseMatrix::makeCompressed()). |
| */ |
| template <typename StorageIndex> |
| class COLAMDOrdering { |
| public: |
| typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType; |
| typedef Matrix<StorageIndex, Dynamic, 1> IndexVector; |
| |
| /** Compute the permutation vector \a perm form the sparse matrix \a mat |
| * \warning The input sparse matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()). |
| */ |
| template <typename MatrixType> |
| void operator()(const MatrixType& mat, PermutationType& perm) { |
| eigen_assert(mat.isCompressed() && |
| "COLAMDOrdering requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it " |
| "to COLAMDOrdering"); |
| |
| StorageIndex m = StorageIndex(mat.rows()); |
| StorageIndex n = StorageIndex(mat.cols()); |
| StorageIndex nnz = StorageIndex(mat.nonZeros()); |
| // Get the recommended value of Alen to be used by colamd |
| StorageIndex Alen = internal::Colamd::recommended(nnz, m, n); |
| // Set the default parameters |
| double knobs[internal::Colamd::NKnobs]; |
| StorageIndex stats[internal::Colamd::NStats]; |
| internal::Colamd::set_defaults(knobs); |
| |
| IndexVector p(n + 1), A(Alen); |
| for (StorageIndex i = 0; i <= n; i++) p(i) = mat.outerIndexPtr()[i]; |
| for (StorageIndex i = 0; i < nnz; i++) A(i) = mat.innerIndexPtr()[i]; |
| // Call Colamd routine to compute the ordering |
| StorageIndex info = internal::Colamd::compute_ordering(m, n, Alen, A.data(), p.data(), knobs, stats); |
| EIGEN_UNUSED_VARIABLE(info); |
| eigen_assert(info && "COLAMD failed "); |
| |
| perm.resize(n); |
| for (StorageIndex i = 0; i < n; i++) perm.indices()(p(i)) = i; |
| } |
| }; |
| |
| } // end namespace Eigen |
| |
| #endif |