| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_COLPIVOTINGHOUSEHOLDERQR_H |
| #define EIGEN_COLPIVOTINGHOUSEHOLDERQR_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| template <typename MatrixType_, typename PermutationIndex_> |
| struct traits<ColPivHouseholderQR<MatrixType_, PermutationIndex_>> : traits<MatrixType_> { |
| typedef MatrixXpr XprKind; |
| typedef SolverStorage StorageKind; |
| typedef PermutationIndex_ PermutationIndex; |
| enum { Flags = 0 }; |
| }; |
| |
| } // end namespace internal |
| |
| /** \ingroup QR_Module |
| * |
| * \class ColPivHouseholderQR |
| * |
| * \brief Householder rank-revealing QR decomposition of a matrix with column-pivoting |
| * |
| * \tparam MatrixType_ the type of the matrix of which we are computing the QR decomposition |
| * |
| * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b Q and \b R |
| * such that |
| * \f[ |
| * \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \mathbf{R} |
| * \f] |
| * by using Householder transformations. Here, \b P is a permutation matrix, \b Q a unitary matrix and \b R an |
| * upper triangular matrix. |
| * |
| * This decomposition performs column pivoting in order to be rank-revealing and improve |
| * numerical stability. It is slower than HouseholderQR, and faster than FullPivHouseholderQR. |
| * |
| * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. |
| * |
| * \sa MatrixBase::colPivHouseholderQr() |
| */ |
| template <typename MatrixType_, typename PermutationIndex_> |
| class ColPivHouseholderQR : public SolverBase<ColPivHouseholderQR<MatrixType_, PermutationIndex_>> { |
| public: |
| typedef MatrixType_ MatrixType; |
| typedef SolverBase<ColPivHouseholderQR> Base; |
| friend class SolverBase<ColPivHouseholderQR>; |
| typedef PermutationIndex_ PermutationIndex; |
| EIGEN_GENERIC_PUBLIC_INTERFACE(ColPivHouseholderQR) |
| |
| enum { |
| MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
| }; |
| typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType; |
| typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime, PermutationIndex> PermutationType; |
| typedef typename internal::plain_row_type<MatrixType, PermutationIndex>::type IntRowVectorType; |
| typedef typename internal::plain_row_type<MatrixType>::type RowVectorType; |
| typedef typename internal::plain_row_type<MatrixType, RealScalar>::type RealRowVectorType; |
| typedef HouseholderSequence<MatrixType, internal::remove_all_t<typename HCoeffsType::ConjugateReturnType>> |
| HouseholderSequenceType; |
| typedef typename MatrixType::PlainObject PlainObject; |
| |
| private: |
| void init(Index rows, Index cols) { |
| Index diag = numext::mini(rows, cols); |
| m_hCoeffs.resize(diag); |
| m_colsPermutation.resize(cols); |
| m_colsTranspositions.resize(cols); |
| m_temp.resize(cols); |
| m_colNormsUpdated.resize(cols); |
| m_colNormsDirect.resize(cols); |
| m_isInitialized = false; |
| m_usePrescribedThreshold = false; |
| } |
| |
| public: |
| /** |
| * \brief Default Constructor. |
| * |
| * The default constructor is useful in cases in which the user intends to |
| * perform decompositions via ColPivHouseholderQR::compute(const MatrixType&). |
| */ |
| ColPivHouseholderQR() |
| : m_qr(), |
| m_hCoeffs(), |
| m_colsPermutation(), |
| m_colsTranspositions(), |
| m_temp(), |
| m_colNormsUpdated(), |
| m_colNormsDirect(), |
| m_isInitialized(false), |
| m_usePrescribedThreshold(false) {} |
| |
| /** \brief Default Constructor with memory preallocation |
| * |
| * Like the default constructor but with preallocation of the internal data |
| * according to the specified problem \a size. |
| * \sa ColPivHouseholderQR() |
| */ |
| ColPivHouseholderQR(Index rows, Index cols) : m_qr(rows, cols) { init(rows, cols); } |
| |
| /** \brief Constructs a QR factorization from a given matrix |
| * |
| * This constructor computes the QR factorization of the matrix \a matrix by calling |
| * the method compute(). It is a short cut for: |
| * |
| * \code |
| * ColPivHouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols()); |
| * qr.compute(matrix); |
| * \endcode |
| * |
| * \sa compute() |
| */ |
| template <typename InputType> |
| explicit ColPivHouseholderQR(const EigenBase<InputType>& matrix) : m_qr(matrix.rows(), matrix.cols()) { |
| init(matrix.rows(), matrix.cols()); |
| compute(matrix.derived()); |
| } |
| |
| /** \brief Constructs a QR factorization from a given matrix |
| * |
| * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c |
| * MatrixType is a Eigen::Ref. |
| * |
| * \sa ColPivHouseholderQR(const EigenBase&) |
| */ |
| template <typename InputType> |
| explicit ColPivHouseholderQR(EigenBase<InputType>& matrix) : m_qr(matrix.derived()) { |
| init(matrix.rows(), matrix.cols()); |
| computeInPlace(); |
| } |
| |
| #ifdef EIGEN_PARSED_BY_DOXYGEN |
| /** This method finds a solution x to the equation Ax=b, where A is the matrix of which |
| * *this is the QR decomposition, if any exists. |
| * |
| * \param b the right-hand-side of the equation to solve. |
| * |
| * \returns a solution. |
| * |
| * \note_about_checking_solutions |
| * |
| * \note_about_arbitrary_choice_of_solution |
| * |
| * Example: \include ColPivHouseholderQR_solve.cpp |
| * Output: \verbinclude ColPivHouseholderQR_solve.out |
| */ |
| template <typename Rhs> |
| inline const Solve<ColPivHouseholderQR, Rhs> solve(const MatrixBase<Rhs>& b) const; |
| #endif |
| |
| HouseholderSequenceType householderQ() const; |
| HouseholderSequenceType matrixQ() const { return householderQ(); } |
| |
| /** \returns a reference to the matrix where the Householder QR decomposition is stored |
| */ |
| const MatrixType& matrixQR() const { |
| eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); |
| return m_qr; |
| } |
| |
| /** \returns a reference to the matrix where the result Householder QR is stored |
| * \warning The strict lower part of this matrix contains internal values. |
| * Only the upper triangular part should be referenced. To get it, use |
| * \code matrixR().template triangularView<Upper>() \endcode |
| * For rank-deficient matrices, use |
| * \code |
| * matrixR().topLeftCorner(rank(), rank()).template triangularView<Upper>() |
| * \endcode |
| */ |
| const MatrixType& matrixR() const { |
| eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); |
| return m_qr; |
| } |
| |
| template <typename InputType> |
| ColPivHouseholderQR& compute(const EigenBase<InputType>& matrix); |
| |
| /** \returns a const reference to the column permutation matrix */ |
| const PermutationType& colsPermutation() const { |
| eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); |
| return m_colsPermutation; |
| } |
| |
| /** \returns the determinant of the matrix of which |
| * *this is the QR decomposition. It has only linear complexity |
| * (that is, O(n) where n is the dimension of the square matrix) |
| * as the QR decomposition has already been computed. |
| * |
| * \note This is only for square matrices. |
| * |
| * \warning a determinant can be very big or small, so for matrices |
| * of large enough dimension, there is a risk of overflow/underflow. |
| * One way to work around that is to use logAbsDeterminant() instead. |
| * |
| * \sa absDeterminant(), logAbsDeterminant(), MatrixBase::determinant() |
| */ |
| typename MatrixType::Scalar determinant() const; |
| |
| /** \returns the absolute value of the determinant of the matrix of which |
| * *this is the QR decomposition. It has only linear complexity |
| * (that is, O(n) where n is the dimension of the square matrix) |
| * as the QR decomposition has already been computed. |
| * |
| * \note This is only for square matrices. |
| * |
| * \warning a determinant can be very big or small, so for matrices |
| * of large enough dimension, there is a risk of overflow/underflow. |
| * One way to work around that is to use logAbsDeterminant() instead. |
| * |
| * \sa determinant(), logAbsDeterminant(), MatrixBase::determinant() |
| */ |
| typename MatrixType::RealScalar absDeterminant() const; |
| |
| /** \returns the natural log of the absolute value of the determinant of the matrix of which |
| * *this is the QR decomposition. It has only linear complexity |
| * (that is, O(n) where n is the dimension of the square matrix) |
| * as the QR decomposition has already been computed. |
| * |
| * \note This is only for square matrices. |
| * |
| * \note This method is useful to work around the risk of overflow/underflow that's inherent |
| * to determinant computation. |
| * |
| * \sa determinant(), absDeterminant(), MatrixBase::determinant() |
| */ |
| typename MatrixType::RealScalar logAbsDeterminant() const; |
| |
| /** \returns the sign of the determinant of the matrix of which |
| * *this is the QR decomposition. It has only linear complexity |
| * (that is, O(n) where n is the dimension of the square matrix) |
| * as the QR decomposition has already been computed. |
| * |
| * \note This is only for square matrices. |
| * |
| * \note This method is useful to work around the risk of overflow/underflow that's inherent |
| * to determinant computation. |
| * |
| * \sa determinant(), absDeterminant(), logAbsDeterminant(), MatrixBase::determinant() |
| */ |
| typename MatrixType::Scalar signDeterminant() const; |
| |
| /** \returns the rank of the matrix of which *this is the QR decomposition. |
| * |
| * \note This method has to determine which pivots should be considered nonzero. |
| * For that, it uses the threshold value that you can control by calling |
| * setThreshold(const RealScalar&). |
| */ |
| inline Index rank() const { |
| using std::abs; |
| eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); |
| RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold(); |
| Index result = 0; |
| for (Index i = 0; i < m_nonzero_pivots; ++i) result += (abs(m_qr.coeff(i, i)) > premultiplied_threshold); |
| return result; |
| } |
| |
| /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition. |
| * |
| * \note This method has to determine which pivots should be considered nonzero. |
| * For that, it uses the threshold value that you can control by calling |
| * setThreshold(const RealScalar&). |
| */ |
| inline Index dimensionOfKernel() const { |
| eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); |
| return cols() - rank(); |
| } |
| |
| /** \returns true if the matrix of which *this is the QR decomposition represents an injective |
| * linear map, i.e. has trivial kernel; false otherwise. |
| * |
| * \note This method has to determine which pivots should be considered nonzero. |
| * For that, it uses the threshold value that you can control by calling |
| * setThreshold(const RealScalar&). |
| */ |
| inline bool isInjective() const { |
| eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); |
| return rank() == cols(); |
| } |
| |
| /** \returns true if the matrix of which *this is the QR decomposition represents a surjective |
| * linear map; false otherwise. |
| * |
| * \note This method has to determine which pivots should be considered nonzero. |
| * For that, it uses the threshold value that you can control by calling |
| * setThreshold(const RealScalar&). |
| */ |
| inline bool isSurjective() const { |
| eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); |
| return rank() == rows(); |
| } |
| |
| /** \returns true if the matrix of which *this is the QR decomposition is invertible. |
| * |
| * \note This method has to determine which pivots should be considered nonzero. |
| * For that, it uses the threshold value that you can control by calling |
| * setThreshold(const RealScalar&). |
| */ |
| inline bool isInvertible() const { |
| eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); |
| return isInjective() && isSurjective(); |
| } |
| |
| /** \returns the inverse of the matrix of which *this is the QR decomposition. |
| * |
| * \note If this matrix is not invertible, the returned matrix has undefined coefficients. |
| * Use isInvertible() to first determine whether this matrix is invertible. |
| */ |
| inline const Inverse<ColPivHouseholderQR> inverse() const { |
| eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); |
| return Inverse<ColPivHouseholderQR>(*this); |
| } |
| |
| inline Index rows() const { return m_qr.rows(); } |
| inline Index cols() const { return m_qr.cols(); } |
| |
| /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q. |
| * |
| * For advanced uses only. |
| */ |
| const HCoeffsType& hCoeffs() const { return m_hCoeffs; } |
| |
| /** Allows to prescribe a threshold to be used by certain methods, such as rank(), |
| * who need to determine when pivots are to be considered nonzero. This is not used for the |
| * QR decomposition itself. |
| * |
| * When it needs to get the threshold value, Eigen calls threshold(). By default, this |
| * uses a formula to automatically determine a reasonable threshold. |
| * Once you have called the present method setThreshold(const RealScalar&), |
| * your value is used instead. |
| * |
| * \param threshold The new value to use as the threshold. |
| * |
| * A pivot will be considered nonzero if its absolute value is strictly greater than |
| * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$ |
| * where maxpivot is the biggest pivot. |
| * |
| * If you want to come back to the default behavior, call setThreshold(Default_t) |
| */ |
| ColPivHouseholderQR& setThreshold(const RealScalar& threshold) { |
| m_usePrescribedThreshold = true; |
| m_prescribedThreshold = threshold; |
| return *this; |
| } |
| |
| /** Allows to come back to the default behavior, letting Eigen use its default formula for |
| * determining the threshold. |
| * |
| * You should pass the special object Eigen::Default as parameter here. |
| * \code qr.setThreshold(Eigen::Default); \endcode |
| * |
| * See the documentation of setThreshold(const RealScalar&). |
| */ |
| ColPivHouseholderQR& setThreshold(Default_t) { |
| m_usePrescribedThreshold = false; |
| return *this; |
| } |
| |
| /** Returns the threshold that will be used by certain methods such as rank(). |
| * |
| * See the documentation of setThreshold(const RealScalar&). |
| */ |
| RealScalar threshold() const { |
| eigen_assert(m_isInitialized || m_usePrescribedThreshold); |
| return m_usePrescribedThreshold ? m_prescribedThreshold |
| // this formula comes from experimenting (see "LU precision tuning" thread on the |
| // list) and turns out to be identical to Higham's formula used already in LDLt. |
| : NumTraits<Scalar>::epsilon() * RealScalar(m_qr.diagonalSize()); |
| } |
| |
| /** \returns the number of nonzero pivots in the QR decomposition. |
| * Here nonzero is meant in the exact sense, not in a fuzzy sense. |
| * So that notion isn't really intrinsically interesting, but it is |
| * still useful when implementing algorithms. |
| * |
| * \sa rank() |
| */ |
| inline Index nonzeroPivots() const { |
| eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); |
| return m_nonzero_pivots; |
| } |
| |
| /** \returns the absolute value of the biggest pivot, i.e. the biggest |
| * diagonal coefficient of R. |
| */ |
| RealScalar maxPivot() const { return m_maxpivot; } |
| |
| /** \brief Reports whether the QR factorization was successful. |
| * |
| * \note This function always returns \c Success. It is provided for compatibility |
| * with other factorization routines. |
| * \returns \c Success |
| */ |
| ComputationInfo info() const { |
| eigen_assert(m_isInitialized && "Decomposition is not initialized."); |
| return Success; |
| } |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| template <typename RhsType, typename DstType> |
| void _solve_impl(const RhsType& rhs, DstType& dst) const; |
| |
| template <bool Conjugate, typename RhsType, typename DstType> |
| void _solve_impl_transposed(const RhsType& rhs, DstType& dst) const; |
| #endif |
| |
| protected: |
| friend class CompleteOrthogonalDecomposition<MatrixType, PermutationIndex>; |
| |
| EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) |
| |
| void computeInPlace(); |
| |
| MatrixType m_qr; |
| HCoeffsType m_hCoeffs; |
| PermutationType m_colsPermutation; |
| IntRowVectorType m_colsTranspositions; |
| RowVectorType m_temp; |
| RealRowVectorType m_colNormsUpdated; |
| RealRowVectorType m_colNormsDirect; |
| bool m_isInitialized, m_usePrescribedThreshold; |
| RealScalar m_prescribedThreshold, m_maxpivot; |
| Index m_nonzero_pivots; |
| Index m_det_p; |
| }; |
| |
| template <typename MatrixType, typename PermutationIndex> |
| typename MatrixType::Scalar ColPivHouseholderQR<MatrixType, PermutationIndex>::determinant() const { |
| eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); |
| eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); |
| Scalar detQ; |
| internal::householder_determinant<HCoeffsType, Scalar, NumTraits<Scalar>::IsComplex>::run(m_hCoeffs, detQ); |
| return isInjective() ? (detQ * Scalar(m_det_p)) * m_qr.diagonal().prod() : Scalar(0); |
| } |
| |
| template <typename MatrixType, typename PermutationIndex> |
| typename MatrixType::RealScalar ColPivHouseholderQR<MatrixType, PermutationIndex>::absDeterminant() const { |
| using std::abs; |
| eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); |
| eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); |
| return isInjective() ? abs(m_qr.diagonal().prod()) : RealScalar(0); |
| } |
| |
| template <typename MatrixType, typename PermutationIndex> |
| typename MatrixType::RealScalar ColPivHouseholderQR<MatrixType, PermutationIndex>::logAbsDeterminant() const { |
| eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); |
| eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); |
| return isInjective() ? m_qr.diagonal().cwiseAbs().array().log().sum() : -NumTraits<RealScalar>::infinity(); |
| } |
| |
| template <typename MatrixType, typename PermutationIndex> |
| typename MatrixType::Scalar ColPivHouseholderQR<MatrixType, PermutationIndex>::signDeterminant() const { |
| eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); |
| eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); |
| Scalar detQ; |
| internal::householder_determinant<HCoeffsType, Scalar, NumTraits<Scalar>::IsComplex>::run(m_hCoeffs, detQ); |
| return isInjective() ? (detQ * Scalar(m_det_p)) * m_qr.diagonal().array().sign().prod() : Scalar(0); |
| } |
| |
| /** Performs the QR factorization of the given matrix \a matrix. The result of |
| * the factorization is stored into \c *this, and a reference to \c *this |
| * is returned. |
| * |
| * \sa class ColPivHouseholderQR, ColPivHouseholderQR(const MatrixType&) |
| */ |
| template <typename MatrixType, typename PermutationIndex> |
| template <typename InputType> |
| ColPivHouseholderQR<MatrixType, PermutationIndex>& ColPivHouseholderQR<MatrixType, PermutationIndex>::compute( |
| const EigenBase<InputType>& matrix) { |
| m_qr = matrix.derived(); |
| computeInPlace(); |
| return *this; |
| } |
| |
| template <typename MatrixType, typename PermutationIndex> |
| void ColPivHouseholderQR<MatrixType, PermutationIndex>::computeInPlace() { |
| eigen_assert(m_qr.cols() <= NumTraits<PermutationIndex>::highest()); |
| |
| using std::abs; |
| |
| Index rows = m_qr.rows(); |
| Index cols = m_qr.cols(); |
| Index size = m_qr.diagonalSize(); |
| |
| m_hCoeffs.resize(size); |
| |
| m_temp.resize(cols); |
| |
| m_colsTranspositions.resize(m_qr.cols()); |
| Index number_of_transpositions = 0; |
| |
| m_colNormsUpdated.resize(cols); |
| m_colNormsDirect.resize(cols); |
| for (Index k = 0; k < cols; ++k) { |
| // colNormsDirect(k) caches the most recent directly computed norm of |
| // column k. |
| m_colNormsDirect.coeffRef(k) = m_qr.col(k).norm(); |
| m_colNormsUpdated.coeffRef(k) = m_colNormsDirect.coeffRef(k); |
| } |
| |
| RealScalar threshold_helper = |
| numext::abs2<RealScalar>(m_colNormsUpdated.maxCoeff() * NumTraits<RealScalar>::epsilon()) / RealScalar(rows); |
| RealScalar norm_downdate_threshold = numext::sqrt(NumTraits<RealScalar>::epsilon()); |
| |
| m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case) |
| m_maxpivot = RealScalar(0); |
| |
| for (Index k = 0; k < size; ++k) { |
| // first, we look up in our table m_colNormsUpdated which column has the biggest norm |
| Index biggest_col_index; |
| RealScalar biggest_col_sq_norm = numext::abs2(m_colNormsUpdated.tail(cols - k).maxCoeff(&biggest_col_index)); |
| biggest_col_index += k; |
| |
| // Track the number of meaningful pivots but do not stop the decomposition to make |
| // sure that the initial matrix is properly reproduced. See bug 941. |
| if (m_nonzero_pivots == size && biggest_col_sq_norm < threshold_helper * RealScalar(rows - k)) m_nonzero_pivots = k; |
| |
| // apply the transposition to the columns |
| m_colsTranspositions.coeffRef(k) = static_cast<PermutationIndex>(biggest_col_index); |
| if (k != biggest_col_index) { |
| m_qr.col(k).swap(m_qr.col(biggest_col_index)); |
| std::swap(m_colNormsUpdated.coeffRef(k), m_colNormsUpdated.coeffRef(biggest_col_index)); |
| std::swap(m_colNormsDirect.coeffRef(k), m_colNormsDirect.coeffRef(biggest_col_index)); |
| ++number_of_transpositions; |
| } |
| |
| // generate the householder vector, store it below the diagonal |
| RealScalar beta; |
| m_qr.col(k).tail(rows - k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta); |
| |
| // apply the householder transformation to the diagonal coefficient |
| m_qr.coeffRef(k, k) = beta; |
| |
| // remember the maximum absolute value of diagonal coefficients |
| if (abs(beta) > m_maxpivot) m_maxpivot = abs(beta); |
| |
| // apply the householder transformation |
| m_qr.bottomRightCorner(rows - k, cols - k - 1) |
| .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows - k - 1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k + 1)); |
| |
| // update our table of norms of the columns |
| for (Index j = k + 1; j < cols; ++j) { |
| // The following implements the stable norm downgrade step discussed in |
| // http://www.netlib.org/lapack/lawnspdf/lawn176.pdf |
| // and used in LAPACK routines xGEQPF and xGEQP3. |
| // See lines 278-297 in http://www.netlib.org/lapack/explore-html/dc/df4/sgeqpf_8f_source.html |
| if (!numext::is_exactly_zero(m_colNormsUpdated.coeffRef(j))) { |
| RealScalar temp = abs(m_qr.coeffRef(k, j)) / m_colNormsUpdated.coeffRef(j); |
| temp = (RealScalar(1) + temp) * (RealScalar(1) - temp); |
| temp = temp < RealScalar(0) ? RealScalar(0) : temp; |
| RealScalar temp2 = |
| temp * numext::abs2<RealScalar>(m_colNormsUpdated.coeffRef(j) / m_colNormsDirect.coeffRef(j)); |
| if (temp2 <= norm_downdate_threshold) { |
| // The updated norm has become too inaccurate so re-compute the column |
| // norm directly. |
| m_colNormsDirect.coeffRef(j) = m_qr.col(j).tail(rows - k - 1).norm(); |
| m_colNormsUpdated.coeffRef(j) = m_colNormsDirect.coeffRef(j); |
| } else { |
| m_colNormsUpdated.coeffRef(j) *= numext::sqrt(temp); |
| } |
| } |
| } |
| } |
| |
| m_colsPermutation.setIdentity(cols); |
| for (Index k = 0; k < size /*m_nonzero_pivots*/; ++k) |
| m_colsPermutation.applyTranspositionOnTheRight(k, static_cast<Index>(m_colsTranspositions.coeff(k))); |
| |
| m_det_p = (number_of_transpositions % 2) ? -1 : 1; |
| m_isInitialized = true; |
| } |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| template <typename MatrixType_, typename PermutationIndex_> |
| template <typename RhsType, typename DstType> |
| void ColPivHouseholderQR<MatrixType_, PermutationIndex_>::_solve_impl(const RhsType& rhs, DstType& dst) const { |
| const Index nonzero_pivots = nonzeroPivots(); |
| |
| if (nonzero_pivots == 0) { |
| dst.setZero(); |
| return; |
| } |
| |
| typename RhsType::PlainObject c(rhs); |
| |
| c.applyOnTheLeft(householderQ().setLength(nonzero_pivots).adjoint()); |
| |
| m_qr.topLeftCorner(nonzero_pivots, nonzero_pivots) |
| .template triangularView<Upper>() |
| .solveInPlace(c.topRows(nonzero_pivots)); |
| |
| for (Index i = 0; i < nonzero_pivots; ++i) dst.row(m_colsPermutation.indices().coeff(i)) = c.row(i); |
| for (Index i = nonzero_pivots; i < cols(); ++i) dst.row(m_colsPermutation.indices().coeff(i)).setZero(); |
| } |
| |
| template <typename MatrixType_, typename PermutationIndex_> |
| template <bool Conjugate, typename RhsType, typename DstType> |
| void ColPivHouseholderQR<MatrixType_, PermutationIndex_>::_solve_impl_transposed(const RhsType& rhs, |
| DstType& dst) const { |
| const Index nonzero_pivots = nonzeroPivots(); |
| |
| if (nonzero_pivots == 0) { |
| dst.setZero(); |
| return; |
| } |
| |
| typename RhsType::PlainObject c(m_colsPermutation.transpose() * rhs); |
| |
| m_qr.topLeftCorner(nonzero_pivots, nonzero_pivots) |
| .template triangularView<Upper>() |
| .transpose() |
| .template conjugateIf<Conjugate>() |
| .solveInPlace(c.topRows(nonzero_pivots)); |
| |
| dst.topRows(nonzero_pivots) = c.topRows(nonzero_pivots); |
| dst.bottomRows(rows() - nonzero_pivots).setZero(); |
| |
| dst.applyOnTheLeft(householderQ().setLength(nonzero_pivots).template conjugateIf<!Conjugate>()); |
| } |
| #endif |
| |
| namespace internal { |
| |
| template <typename DstXprType, typename MatrixType, typename PermutationIndex> |
| struct Assignment<DstXprType, Inverse<ColPivHouseholderQR<MatrixType, PermutationIndex>>, |
| internal::assign_op<typename DstXprType::Scalar, |
| typename ColPivHouseholderQR<MatrixType, PermutationIndex>::Scalar>, |
| Dense2Dense> { |
| typedef ColPivHouseholderQR<MatrixType, PermutationIndex> QrType; |
| typedef Inverse<QrType> SrcXprType; |
| static void run(DstXprType& dst, const SrcXprType& src, |
| const internal::assign_op<typename DstXprType::Scalar, typename QrType::Scalar>&) { |
| dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols())); |
| } |
| }; |
| |
| } // end namespace internal |
| |
| /** \returns the matrix Q as a sequence of householder transformations. |
| * You can extract the meaningful part only by using: |
| * \code qr.householderQ().setLength(qr.nonzeroPivots()) \endcode*/ |
| template <typename MatrixType, typename PermutationIndex> |
| typename ColPivHouseholderQR<MatrixType, PermutationIndex>::HouseholderSequenceType |
| ColPivHouseholderQR<MatrixType, PermutationIndex>::householderQ() const { |
| eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); |
| return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate()); |
| } |
| |
| /** \return the column-pivoting Householder QR decomposition of \c *this. |
| * |
| * \sa class ColPivHouseholderQR |
| */ |
| template <typename Derived> |
| template <typename PermutationIndexType> |
| const ColPivHouseholderQR<typename MatrixBase<Derived>::PlainObject, PermutationIndexType> |
| MatrixBase<Derived>::colPivHouseholderQr() const { |
| return ColPivHouseholderQR<PlainObject, PermutationIndexType>(eval()); |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_COLPIVOTINGHOUSEHOLDERQR_H |