| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H |
| #define EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| template <typename MatrixType_, typename PermutationIndex_> |
| struct traits<FullPivHouseholderQR<MatrixType_, PermutationIndex_> > : traits<MatrixType_> { |
| typedef MatrixXpr XprKind; |
| typedef SolverStorage StorageKind; |
| typedef PermutationIndex_ PermutationIndex; |
| enum { Flags = 0 }; |
| }; |
| |
| template <typename MatrixType, typename PermutationIndex> |
| struct FullPivHouseholderQRMatrixQReturnType; |
| |
| template <typename MatrixType, typename PermutationIndex> |
| struct traits<FullPivHouseholderQRMatrixQReturnType<MatrixType, PermutationIndex> > { |
| typedef typename MatrixType::PlainObject ReturnType; |
| }; |
| |
| } // end namespace internal |
| |
| /** \ingroup QR_Module |
| * |
| * \class FullPivHouseholderQR |
| * |
| * \brief Householder rank-revealing QR decomposition of a matrix with full pivoting |
| * |
| * \tparam MatrixType_ the type of the matrix of which we are computing the QR decomposition |
| * |
| * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b P', \b Q and \b R |
| * such that |
| * \f[ |
| * \mathbf{P} \, \mathbf{A} \, \mathbf{P}' = \mathbf{Q} \, \mathbf{R} |
| * \f] |
| * by using Householder transformations. Here, \b P and \b P' are permutation matrices, \b Q a unitary matrix |
| * and \b R an upper triangular matrix. |
| * |
| * This decomposition performs a very prudent full pivoting in order to be rank-revealing and achieve optimal |
| * numerical stability. The trade-off is that it is slower than HouseholderQR and ColPivHouseholderQR. |
| * |
| * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. |
| * |
| * \sa MatrixBase::fullPivHouseholderQr() |
| */ |
| template <typename MatrixType_, typename PermutationIndex_> |
| class FullPivHouseholderQR : public SolverBase<FullPivHouseholderQR<MatrixType_, PermutationIndex_> > { |
| public: |
| typedef MatrixType_ MatrixType; |
| typedef SolverBase<FullPivHouseholderQR> Base; |
| friend class SolverBase<FullPivHouseholderQR>; |
| typedef PermutationIndex_ PermutationIndex; |
| EIGEN_GENERIC_PUBLIC_INTERFACE(FullPivHouseholderQR) |
| |
| enum { |
| MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
| }; |
| typedef internal::FullPivHouseholderQRMatrixQReturnType<MatrixType, PermutationIndex> MatrixQReturnType; |
| typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType; |
| typedef Matrix<PermutationIndex, 1, internal::min_size_prefer_dynamic(ColsAtCompileTime, RowsAtCompileTime), RowMajor, |
| 1, internal::min_size_prefer_fixed(MaxColsAtCompileTime, MaxRowsAtCompileTime)> |
| IntDiagSizeVectorType; |
| typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime, PermutationIndex> PermutationType; |
| typedef typename internal::plain_row_type<MatrixType>::type RowVectorType; |
| typedef typename internal::plain_col_type<MatrixType>::type ColVectorType; |
| typedef typename MatrixType::PlainObject PlainObject; |
| |
| /** \brief Default Constructor. |
| * |
| * The default constructor is useful in cases in which the user intends to |
| * perform decompositions via FullPivHouseholderQR::compute(const MatrixType&). |
| */ |
| FullPivHouseholderQR() |
| : m_qr(), |
| m_hCoeffs(), |
| m_rows_transpositions(), |
| m_cols_transpositions(), |
| m_cols_permutation(), |
| m_temp(), |
| m_isInitialized(false), |
| m_usePrescribedThreshold(false) {} |
| |
| /** \brief Default Constructor with memory preallocation |
| * |
| * Like the default constructor but with preallocation of the internal data |
| * according to the specified problem \a size. |
| * \sa FullPivHouseholderQR() |
| */ |
| FullPivHouseholderQR(Index rows, Index cols) |
| : m_qr(rows, cols), |
| m_hCoeffs((std::min)(rows, cols)), |
| m_rows_transpositions((std::min)(rows, cols)), |
| m_cols_transpositions((std::min)(rows, cols)), |
| m_cols_permutation(cols), |
| m_temp(cols), |
| m_isInitialized(false), |
| m_usePrescribedThreshold(false) {} |
| |
| /** \brief Constructs a QR factorization from a given matrix |
| * |
| * This constructor computes the QR factorization of the matrix \a matrix by calling |
| * the method compute(). It is a short cut for: |
| * |
| * \code |
| * FullPivHouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols()); |
| * qr.compute(matrix); |
| * \endcode |
| * |
| * \sa compute() |
| */ |
| template <typename InputType> |
| explicit FullPivHouseholderQR(const EigenBase<InputType>& matrix) |
| : m_qr(matrix.rows(), matrix.cols()), |
| m_hCoeffs((std::min)(matrix.rows(), matrix.cols())), |
| m_rows_transpositions((std::min)(matrix.rows(), matrix.cols())), |
| m_cols_transpositions((std::min)(matrix.rows(), matrix.cols())), |
| m_cols_permutation(matrix.cols()), |
| m_temp(matrix.cols()), |
| m_isInitialized(false), |
| m_usePrescribedThreshold(false) { |
| compute(matrix.derived()); |
| } |
| |
| /** \brief Constructs a QR factorization from a given matrix |
| * |
| * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c |
| * MatrixType is a Eigen::Ref. |
| * |
| * \sa FullPivHouseholderQR(const EigenBase&) |
| */ |
| template <typename InputType> |
| explicit FullPivHouseholderQR(EigenBase<InputType>& matrix) |
| : m_qr(matrix.derived()), |
| m_hCoeffs((std::min)(matrix.rows(), matrix.cols())), |
| m_rows_transpositions((std::min)(matrix.rows(), matrix.cols())), |
| m_cols_transpositions((std::min)(matrix.rows(), matrix.cols())), |
| m_cols_permutation(matrix.cols()), |
| m_temp(matrix.cols()), |
| m_isInitialized(false), |
| m_usePrescribedThreshold(false) { |
| computeInPlace(); |
| } |
| |
| #ifdef EIGEN_PARSED_BY_DOXYGEN |
| /** This method finds a solution x to the equation Ax=b, where A is the matrix of which |
| * \c *this is the QR decomposition. |
| * |
| * \param b the right-hand-side of the equation to solve. |
| * |
| * \returns the exact or least-square solution if the rank is greater or equal to the number of columns of A, |
| * and an arbitrary solution otherwise. |
| * |
| * \note_about_checking_solutions |
| * |
| * \note_about_arbitrary_choice_of_solution |
| * |
| * Example: \include FullPivHouseholderQR_solve.cpp |
| * Output: \verbinclude FullPivHouseholderQR_solve.out |
| */ |
| template <typename Rhs> |
| inline const Solve<FullPivHouseholderQR, Rhs> solve(const MatrixBase<Rhs>& b) const; |
| #endif |
| |
| /** \returns Expression object representing the matrix Q |
| */ |
| MatrixQReturnType matrixQ(void) const; |
| |
| /** \returns a reference to the matrix where the Householder QR decomposition is stored |
| */ |
| const MatrixType& matrixQR() const { |
| eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); |
| return m_qr; |
| } |
| |
| template <typename InputType> |
| FullPivHouseholderQR& compute(const EigenBase<InputType>& matrix); |
| |
| /** \returns a const reference to the column permutation matrix */ |
| const PermutationType& colsPermutation() const { |
| eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); |
| return m_cols_permutation; |
| } |
| |
| /** \returns a const reference to the vector of indices representing the rows transpositions */ |
| const IntDiagSizeVectorType& rowsTranspositions() const { |
| eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); |
| return m_rows_transpositions; |
| } |
| |
| /** \returns the determinant of the matrix of which |
| * *this is the QR decomposition. It has only linear complexity |
| * (that is, O(n) where n is the dimension of the square matrix) |
| * as the QR decomposition has already been computed. |
| * |
| * \note This is only for square matrices. |
| * |
| * \warning a determinant can be very big or small, so for matrices |
| * of large enough dimension, there is a risk of overflow/underflow. |
| * One way to work around that is to use logAbsDeterminant() instead. |
| * |
| * \sa absDeterminant(), logAbsDeterminant(), MatrixBase::determinant() |
| */ |
| typename MatrixType::Scalar determinant() const; |
| |
| /** \returns the absolute value of the determinant of the matrix of which |
| * *this is the QR decomposition. It has only linear complexity |
| * (that is, O(n) where n is the dimension of the square matrix) |
| * as the QR decomposition has already been computed. |
| * |
| * \note This is only for square matrices. |
| * |
| * \warning a determinant can be very big or small, so for matrices |
| * of large enough dimension, there is a risk of overflow/underflow. |
| * One way to work around that is to use logAbsDeterminant() instead. |
| * |
| * \sa determinant(), logAbsDeterminant(), MatrixBase::determinant() |
| */ |
| typename MatrixType::RealScalar absDeterminant() const; |
| |
| /** \returns the natural log of the absolute value of the determinant of the matrix of which |
| * *this is the QR decomposition. It has only linear complexity |
| * (that is, O(n) where n is the dimension of the square matrix) |
| * as the QR decomposition has already been computed. |
| * |
| * \note This is only for square matrices. |
| * |
| * \note This method is useful to work around the risk of overflow/underflow that's inherent |
| * to determinant computation. |
| * |
| * \sa determinant(), absDeterminant(), MatrixBase::determinant() |
| */ |
| typename MatrixType::RealScalar logAbsDeterminant() const; |
| |
| /** \returns the sign of the determinant of the matrix of which |
| * *this is the QR decomposition. It has only linear complexity |
| * (that is, O(n) where n is the dimension of the square matrix) |
| * as the QR decomposition has already been computed. |
| * |
| * \note This is only for square matrices. |
| * |
| * \note This method is useful to work around the risk of overflow/underflow that's inherent |
| * to determinant computation. |
| * |
| * \sa determinant(), absDeterminant(), logAbsDeterminant(), MatrixBase::determinant() |
| */ |
| typename MatrixType::Scalar signDeterminant() const; |
| |
| /** \returns the rank of the matrix of which *this is the QR decomposition. |
| * |
| * \note This method has to determine which pivots should be considered nonzero. |
| * For that, it uses the threshold value that you can control by calling |
| * setThreshold(const RealScalar&). |
| */ |
| inline Index rank() const { |
| using std::abs; |
| eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); |
| RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold(); |
| Index result = 0; |
| for (Index i = 0; i < m_nonzero_pivots; ++i) result += (abs(m_qr.coeff(i, i)) > premultiplied_threshold); |
| return result; |
| } |
| |
| /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition. |
| * |
| * \note This method has to determine which pivots should be considered nonzero. |
| * For that, it uses the threshold value that you can control by calling |
| * setThreshold(const RealScalar&). |
| */ |
| inline Index dimensionOfKernel() const { |
| eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); |
| return cols() - rank(); |
| } |
| |
| /** \returns true if the matrix of which *this is the QR decomposition represents an injective |
| * linear map, i.e. has trivial kernel; false otherwise. |
| * |
| * \note This method has to determine which pivots should be considered nonzero. |
| * For that, it uses the threshold value that you can control by calling |
| * setThreshold(const RealScalar&). |
| */ |
| inline bool isInjective() const { |
| eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); |
| return rank() == cols(); |
| } |
| |
| /** \returns true if the matrix of which *this is the QR decomposition represents a surjective |
| * linear map; false otherwise. |
| * |
| * \note This method has to determine which pivots should be considered nonzero. |
| * For that, it uses the threshold value that you can control by calling |
| * setThreshold(const RealScalar&). |
| */ |
| inline bool isSurjective() const { |
| eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); |
| return rank() == rows(); |
| } |
| |
| /** \returns true if the matrix of which *this is the QR decomposition is invertible. |
| * |
| * \note This method has to determine which pivots should be considered nonzero. |
| * For that, it uses the threshold value that you can control by calling |
| * setThreshold(const RealScalar&). |
| */ |
| inline bool isInvertible() const { |
| eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); |
| return isInjective() && isSurjective(); |
| } |
| |
| /** \returns the inverse of the matrix of which *this is the QR decomposition. |
| * |
| * \note If this matrix is not invertible, the returned matrix has undefined coefficients. |
| * Use isInvertible() to first determine whether this matrix is invertible. |
| */ |
| inline const Inverse<FullPivHouseholderQR> inverse() const { |
| eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); |
| return Inverse<FullPivHouseholderQR>(*this); |
| } |
| |
| inline Index rows() const { return m_qr.rows(); } |
| inline Index cols() const { return m_qr.cols(); } |
| |
| /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q. |
| * |
| * For advanced uses only. |
| */ |
| const HCoeffsType& hCoeffs() const { return m_hCoeffs; } |
| |
| /** Allows to prescribe a threshold to be used by certain methods, such as rank(), |
| * who need to determine when pivots are to be considered nonzero. This is not used for the |
| * QR decomposition itself. |
| * |
| * When it needs to get the threshold value, Eigen calls threshold(). By default, this |
| * uses a formula to automatically determine a reasonable threshold. |
| * Once you have called the present method setThreshold(const RealScalar&), |
| * your value is used instead. |
| * |
| * \param threshold The new value to use as the threshold. |
| * |
| * A pivot will be considered nonzero if its absolute value is strictly greater than |
| * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$ |
| * where maxpivot is the biggest pivot. |
| * |
| * If you want to come back to the default behavior, call setThreshold(Default_t) |
| */ |
| FullPivHouseholderQR& setThreshold(const RealScalar& threshold) { |
| m_usePrescribedThreshold = true; |
| m_prescribedThreshold = threshold; |
| return *this; |
| } |
| |
| /** Allows to come back to the default behavior, letting Eigen use its default formula for |
| * determining the threshold. |
| * |
| * You should pass the special object Eigen::Default as parameter here. |
| * \code qr.setThreshold(Eigen::Default); \endcode |
| * |
| * See the documentation of setThreshold(const RealScalar&). |
| */ |
| FullPivHouseholderQR& setThreshold(Default_t) { |
| m_usePrescribedThreshold = false; |
| return *this; |
| } |
| |
| /** Returns the threshold that will be used by certain methods such as rank(). |
| * |
| * See the documentation of setThreshold(const RealScalar&). |
| */ |
| RealScalar threshold() const { |
| eigen_assert(m_isInitialized || m_usePrescribedThreshold); |
| return m_usePrescribedThreshold ? m_prescribedThreshold |
| // this formula comes from experimenting (see "LU precision tuning" thread on the |
| // list) and turns out to be identical to Higham's formula used already in LDLt. |
| : NumTraits<Scalar>::epsilon() * RealScalar(m_qr.diagonalSize()); |
| } |
| |
| /** \returns the number of nonzero pivots in the QR decomposition. |
| * Here nonzero is meant in the exact sense, not in a fuzzy sense. |
| * So that notion isn't really intrinsically interesting, but it is |
| * still useful when implementing algorithms. |
| * |
| * \sa rank() |
| */ |
| inline Index nonzeroPivots() const { |
| eigen_assert(m_isInitialized && "LU is not initialized."); |
| return m_nonzero_pivots; |
| } |
| |
| /** \returns the absolute value of the biggest pivot, i.e. the biggest |
| * diagonal coefficient of U. |
| */ |
| RealScalar maxPivot() const { return m_maxpivot; } |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| template <typename RhsType, typename DstType> |
| void _solve_impl(const RhsType& rhs, DstType& dst) const; |
| |
| template <bool Conjugate, typename RhsType, typename DstType> |
| void _solve_impl_transposed(const RhsType& rhs, DstType& dst) const; |
| #endif |
| |
| protected: |
| EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) |
| |
| void computeInPlace(); |
| |
| MatrixType m_qr; |
| HCoeffsType m_hCoeffs; |
| IntDiagSizeVectorType m_rows_transpositions; |
| IntDiagSizeVectorType m_cols_transpositions; |
| PermutationType m_cols_permutation; |
| RowVectorType m_temp; |
| bool m_isInitialized, m_usePrescribedThreshold; |
| RealScalar m_prescribedThreshold, m_maxpivot; |
| Index m_nonzero_pivots; |
| RealScalar m_precision; |
| Index m_det_p; |
| }; |
| |
| template <typename MatrixType, typename PermutationIndex> |
| typename MatrixType::Scalar FullPivHouseholderQR<MatrixType, PermutationIndex>::determinant() const { |
| eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); |
| eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); |
| Scalar detQ; |
| internal::householder_determinant<HCoeffsType, Scalar, NumTraits<Scalar>::IsComplex>::run(m_hCoeffs, detQ); |
| return isInjective() ? (detQ * Scalar(m_det_p)) * m_qr.diagonal().prod() : Scalar(0); |
| } |
| |
| template <typename MatrixType, typename PermutationIndex> |
| typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType, PermutationIndex>::absDeterminant() const { |
| using std::abs; |
| eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); |
| eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); |
| return isInjective() ? abs(m_qr.diagonal().prod()) : RealScalar(0); |
| } |
| |
| template <typename MatrixType, typename PermutationIndex> |
| typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType, PermutationIndex>::logAbsDeterminant() const { |
| eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); |
| eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); |
| return isInjective() ? m_qr.diagonal().cwiseAbs().array().log().sum() : -NumTraits<RealScalar>::infinity(); |
| } |
| |
| template <typename MatrixType, typename PermutationIndex> |
| typename MatrixType::Scalar FullPivHouseholderQR<MatrixType, PermutationIndex>::signDeterminant() const { |
| eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); |
| eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); |
| Scalar detQ; |
| internal::householder_determinant<HCoeffsType, Scalar, NumTraits<Scalar>::IsComplex>::run(m_hCoeffs, detQ); |
| return isInjective() ? (detQ * Scalar(m_det_p)) * m_qr.diagonal().array().sign().prod() : Scalar(0); |
| } |
| |
| /** Performs the QR factorization of the given matrix \a matrix. The result of |
| * the factorization is stored into \c *this, and a reference to \c *this |
| * is returned. |
| * |
| * \sa class FullPivHouseholderQR, FullPivHouseholderQR(const MatrixType&) |
| */ |
| template <typename MatrixType, typename PermutationIndex> |
| template <typename InputType> |
| FullPivHouseholderQR<MatrixType, PermutationIndex>& FullPivHouseholderQR<MatrixType, PermutationIndex>::compute( |
| const EigenBase<InputType>& matrix) { |
| m_qr = matrix.derived(); |
| computeInPlace(); |
| return *this; |
| } |
| |
| template <typename MatrixType, typename PermutationIndex> |
| void FullPivHouseholderQR<MatrixType, PermutationIndex>::computeInPlace() { |
| eigen_assert(m_qr.cols() <= NumTraits<PermutationIndex>::highest()); |
| using std::abs; |
| Index rows = m_qr.rows(); |
| Index cols = m_qr.cols(); |
| Index size = (std::min)(rows, cols); |
| |
| m_hCoeffs.resize(size); |
| |
| m_temp.resize(cols); |
| |
| m_precision = NumTraits<Scalar>::epsilon() * RealScalar(size); |
| |
| m_rows_transpositions.resize(size); |
| m_cols_transpositions.resize(size); |
| Index number_of_transpositions = 0; |
| |
| RealScalar biggest(0); |
| |
| m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case) |
| m_maxpivot = RealScalar(0); |
| |
| for (Index k = 0; k < size; ++k) { |
| Index row_of_biggest_in_corner, col_of_biggest_in_corner; |
| typedef internal::scalar_score_coeff_op<Scalar> Scoring; |
| typedef typename Scoring::result_type Score; |
| |
| Score score = m_qr.bottomRightCorner(rows - k, cols - k) |
| .unaryExpr(Scoring()) |
| .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner); |
| row_of_biggest_in_corner += k; |
| col_of_biggest_in_corner += k; |
| RealScalar biggest_in_corner = |
| internal::abs_knowing_score<Scalar>()(m_qr(row_of_biggest_in_corner, col_of_biggest_in_corner), score); |
| if (k == 0) biggest = biggest_in_corner; |
| |
| // if the corner is negligible, then we have less than full rank, and we can finish early |
| if (internal::isMuchSmallerThan(biggest_in_corner, biggest, m_precision)) { |
| m_nonzero_pivots = k; |
| for (Index i = k; i < size; i++) { |
| m_rows_transpositions.coeffRef(i) = internal::convert_index<PermutationIndex>(i); |
| m_cols_transpositions.coeffRef(i) = internal::convert_index<PermutationIndex>(i); |
| m_hCoeffs.coeffRef(i) = Scalar(0); |
| } |
| break; |
| } |
| |
| m_rows_transpositions.coeffRef(k) = internal::convert_index<PermutationIndex>(row_of_biggest_in_corner); |
| m_cols_transpositions.coeffRef(k) = internal::convert_index<PermutationIndex>(col_of_biggest_in_corner); |
| if (k != row_of_biggest_in_corner) { |
| m_qr.row(k).tail(cols - k).swap(m_qr.row(row_of_biggest_in_corner).tail(cols - k)); |
| ++number_of_transpositions; |
| } |
| if (k != col_of_biggest_in_corner) { |
| m_qr.col(k).swap(m_qr.col(col_of_biggest_in_corner)); |
| ++number_of_transpositions; |
| } |
| |
| RealScalar beta; |
| m_qr.col(k).tail(rows - k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta); |
| m_qr.coeffRef(k, k) = beta; |
| |
| // remember the maximum absolute value of diagonal coefficients |
| if (abs(beta) > m_maxpivot) m_maxpivot = abs(beta); |
| |
| m_qr.bottomRightCorner(rows - k, cols - k - 1) |
| .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows - k - 1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k + 1)); |
| } |
| |
| m_cols_permutation.setIdentity(cols); |
| for (Index k = 0; k < size; ++k) m_cols_permutation.applyTranspositionOnTheRight(k, m_cols_transpositions.coeff(k)); |
| |
| m_det_p = (number_of_transpositions % 2) ? -1 : 1; |
| m_isInitialized = true; |
| } |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| template <typename MatrixType_, typename PermutationIndex_> |
| template <typename RhsType, typename DstType> |
| void FullPivHouseholderQR<MatrixType_, PermutationIndex_>::_solve_impl(const RhsType& rhs, DstType& dst) const { |
| const Index l_rank = rank(); |
| |
| // FIXME introduce nonzeroPivots() and use it here. and more generally, |
| // make the same improvements in this dec as in FullPivLU. |
| if (l_rank == 0) { |
| dst.setZero(); |
| return; |
| } |
| |
| typename RhsType::PlainObject c(rhs); |
| |
| Matrix<typename RhsType::Scalar, 1, RhsType::ColsAtCompileTime> temp(rhs.cols()); |
| for (Index k = 0; k < l_rank; ++k) { |
| Index remainingSize = rows() - k; |
| c.row(k).swap(c.row(m_rows_transpositions.coeff(k))); |
| c.bottomRightCorner(remainingSize, rhs.cols()) |
| .applyHouseholderOnTheLeft(m_qr.col(k).tail(remainingSize - 1), m_hCoeffs.coeff(k), &temp.coeffRef(0)); |
| } |
| |
| m_qr.topLeftCorner(l_rank, l_rank).template triangularView<Upper>().solveInPlace(c.topRows(l_rank)); |
| |
| for (Index i = 0; i < l_rank; ++i) dst.row(m_cols_permutation.indices().coeff(i)) = c.row(i); |
| for (Index i = l_rank; i < cols(); ++i) dst.row(m_cols_permutation.indices().coeff(i)).setZero(); |
| } |
| |
| template <typename MatrixType_, typename PermutationIndex_> |
| template <bool Conjugate, typename RhsType, typename DstType> |
| void FullPivHouseholderQR<MatrixType_, PermutationIndex_>::_solve_impl_transposed(const RhsType& rhs, |
| DstType& dst) const { |
| const Index l_rank = rank(); |
| |
| if (l_rank == 0) { |
| dst.setZero(); |
| return; |
| } |
| |
| typename RhsType::PlainObject c(m_cols_permutation.transpose() * rhs); |
| |
| m_qr.topLeftCorner(l_rank, l_rank) |
| .template triangularView<Upper>() |
| .transpose() |
| .template conjugateIf<Conjugate>() |
| .solveInPlace(c.topRows(l_rank)); |
| |
| dst.topRows(l_rank) = c.topRows(l_rank); |
| dst.bottomRows(rows() - l_rank).setZero(); |
| |
| Matrix<Scalar, 1, DstType::ColsAtCompileTime> temp(dst.cols()); |
| const Index size = (std::min)(rows(), cols()); |
| for (Index k = size - 1; k >= 0; --k) { |
| Index remainingSize = rows() - k; |
| |
| dst.bottomRightCorner(remainingSize, dst.cols()) |
| .applyHouseholderOnTheLeft(m_qr.col(k).tail(remainingSize - 1).template conjugateIf<!Conjugate>(), |
| m_hCoeffs.template conjugateIf<Conjugate>().coeff(k), &temp.coeffRef(0)); |
| |
| dst.row(k).swap(dst.row(m_rows_transpositions.coeff(k))); |
| } |
| } |
| #endif |
| |
| namespace internal { |
| |
| template <typename DstXprType, typename MatrixType, typename PermutationIndex> |
| struct Assignment<DstXprType, Inverse<FullPivHouseholderQR<MatrixType, PermutationIndex> >, |
| internal::assign_op<typename DstXprType::Scalar, |
| typename FullPivHouseholderQR<MatrixType, PermutationIndex>::Scalar>, |
| Dense2Dense> { |
| typedef FullPivHouseholderQR<MatrixType, PermutationIndex> QrType; |
| typedef Inverse<QrType> SrcXprType; |
| static void run(DstXprType& dst, const SrcXprType& src, |
| const internal::assign_op<typename DstXprType::Scalar, typename QrType::Scalar>&) { |
| dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols())); |
| } |
| }; |
| |
| /** \ingroup QR_Module |
| * |
| * \brief Expression type for return value of FullPivHouseholderQR::matrixQ() |
| * |
| * \tparam MatrixType type of underlying dense matrix |
| */ |
| template <typename MatrixType, typename PermutationIndex> |
| struct FullPivHouseholderQRMatrixQReturnType |
| : public ReturnByValue<FullPivHouseholderQRMatrixQReturnType<MatrixType, PermutationIndex> > { |
| public: |
| typedef typename FullPivHouseholderQR<MatrixType, PermutationIndex>::IntDiagSizeVectorType IntDiagSizeVectorType; |
| typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType; |
| typedef Matrix<typename MatrixType::Scalar, 1, MatrixType::RowsAtCompileTime, RowMajor, 1, |
| MatrixType::MaxRowsAtCompileTime> |
| WorkVectorType; |
| |
| FullPivHouseholderQRMatrixQReturnType(const MatrixType& qr, const HCoeffsType& hCoeffs, |
| const IntDiagSizeVectorType& rowsTranspositions) |
| : m_qr(qr), m_hCoeffs(hCoeffs), m_rowsTranspositions(rowsTranspositions) {} |
| |
| template <typename ResultType> |
| void evalTo(ResultType& result) const { |
| const Index rows = m_qr.rows(); |
| WorkVectorType workspace(rows); |
| evalTo(result, workspace); |
| } |
| |
| template <typename ResultType> |
| void evalTo(ResultType& result, WorkVectorType& workspace) const { |
| using numext::conj; |
| // compute the product H'_0 H'_1 ... H'_n-1, |
| // where H_k is the k-th Householder transformation I - h_k v_k v_k' |
| // and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...] |
| const Index rows = m_qr.rows(); |
| const Index cols = m_qr.cols(); |
| const Index size = (std::min)(rows, cols); |
| workspace.resize(rows); |
| result.setIdentity(rows, rows); |
| for (Index k = size - 1; k >= 0; k--) { |
| result.block(k, k, rows - k, rows - k) |
| .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows - k - 1), conj(m_hCoeffs.coeff(k)), &workspace.coeffRef(k)); |
| result.row(k).swap(result.row(m_rowsTranspositions.coeff(k))); |
| } |
| } |
| |
| Index rows() const { return m_qr.rows(); } |
| Index cols() const { return m_qr.rows(); } |
| |
| protected: |
| typename MatrixType::Nested m_qr; |
| typename HCoeffsType::Nested m_hCoeffs; |
| typename IntDiagSizeVectorType::Nested m_rowsTranspositions; |
| }; |
| |
| // template<typename MatrixType> |
| // struct evaluator<FullPivHouseholderQRMatrixQReturnType<MatrixType> > |
| // : public evaluator<ReturnByValue<FullPivHouseholderQRMatrixQReturnType<MatrixType> > > |
| // {}; |
| |
| } // end namespace internal |
| |
| template <typename MatrixType, typename PermutationIndex> |
| inline typename FullPivHouseholderQR<MatrixType, PermutationIndex>::MatrixQReturnType |
| FullPivHouseholderQR<MatrixType, PermutationIndex>::matrixQ() const { |
| eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); |
| return MatrixQReturnType(m_qr, m_hCoeffs, m_rows_transpositions); |
| } |
| |
| /** \return the full-pivoting Householder QR decomposition of \c *this. |
| * |
| * \sa class FullPivHouseholderQR |
| */ |
| template <typename Derived> |
| template <typename PermutationIndex> |
| const FullPivHouseholderQR<typename MatrixBase<Derived>::PlainObject, PermutationIndex> |
| MatrixBase<Derived>::fullPivHouseholderQr() const { |
| return FullPivHouseholderQR<PlainObject, PermutationIndex>(eval()); |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H |