| |
| #include "main.h" |
| |
| namespace Eigen { |
| |
| template <typename Lhs, typename Rhs> |
| const Product<Lhs, Rhs> prod(const Lhs& lhs, const Rhs& rhs) { |
| return Product<Lhs, Rhs>(lhs, rhs); |
| } |
| |
| template <typename Lhs, typename Rhs> |
| const Product<Lhs, Rhs, LazyProduct> lazyprod(const Lhs& lhs, const Rhs& rhs) { |
| return Product<Lhs, Rhs, LazyProduct>(lhs, rhs); |
| } |
| |
| template <typename DstXprType, typename SrcXprType> |
| EIGEN_STRONG_INLINE DstXprType& copy_using_evaluator(const EigenBase<DstXprType>& dst, const SrcXprType& src) { |
| call_assignment(dst.const_cast_derived(), src.derived(), |
| internal::assign_op<typename DstXprType::Scalar, typename SrcXprType::Scalar>()); |
| return dst.const_cast_derived(); |
| } |
| |
| template <typename DstXprType, template <typename> class StorageBase, typename SrcXprType> |
| EIGEN_STRONG_INLINE const DstXprType& copy_using_evaluator(const NoAlias<DstXprType, StorageBase>& dst, |
| const SrcXprType& src) { |
| call_assignment(dst, src.derived(), internal::assign_op<typename DstXprType::Scalar, typename SrcXprType::Scalar>()); |
| return dst.expression(); |
| } |
| |
| template <typename DstXprType, typename SrcXprType> |
| EIGEN_STRONG_INLINE DstXprType& copy_using_evaluator(const PlainObjectBase<DstXprType>& dst, const SrcXprType& src) { |
| #ifdef EIGEN_NO_AUTOMATIC_RESIZING |
| eigen_assert((dst.size() == 0 || (IsVectorAtCompileTime ? (dst.size() == src.size()) |
| : (dst.rows() == src.rows() && dst.cols() == src.cols()))) && |
| "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined"); |
| #else |
| dst.const_cast_derived().resizeLike(src.derived()); |
| #endif |
| |
| call_assignment(dst.const_cast_derived(), src.derived(), |
| internal::assign_op<typename DstXprType::Scalar, typename SrcXprType::Scalar>()); |
| return dst.const_cast_derived(); |
| } |
| |
| template <typename DstXprType, typename SrcXprType> |
| void add_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src) { |
| typedef typename DstXprType::Scalar Scalar; |
| call_assignment(const_cast<DstXprType&>(dst), src.derived(), |
| internal::add_assign_op<Scalar, typename SrcXprType::Scalar>()); |
| } |
| |
| template <typename DstXprType, typename SrcXprType> |
| void subtract_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src) { |
| typedef typename DstXprType::Scalar Scalar; |
| call_assignment(const_cast<DstXprType&>(dst), src.derived(), |
| internal::sub_assign_op<Scalar, typename SrcXprType::Scalar>()); |
| } |
| |
| template <typename DstXprType, typename SrcXprType> |
| void multiply_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src) { |
| typedef typename DstXprType::Scalar Scalar; |
| call_assignment(dst.const_cast_derived(), src.derived(), |
| internal::mul_assign_op<Scalar, typename SrcXprType::Scalar>()); |
| } |
| |
| template <typename DstXprType, typename SrcXprType> |
| void divide_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src) { |
| typedef typename DstXprType::Scalar Scalar; |
| call_assignment(dst.const_cast_derived(), src.derived(), |
| internal::div_assign_op<Scalar, typename SrcXprType::Scalar>()); |
| } |
| |
| template <typename DstXprType, typename SrcXprType> |
| void swap_using_evaluator(const DstXprType& dst, const SrcXprType& src) { |
| typedef typename DstXprType::Scalar Scalar; |
| call_assignment(dst.const_cast_derived(), src.const_cast_derived(), internal::swap_assign_op<Scalar>()); |
| } |
| |
| namespace internal { |
| template <typename Dst, template <typename> class StorageBase, typename Src, typename Func> |
| EIGEN_DEVICE_FUNC void call_assignment(const NoAlias<Dst, StorageBase>& dst, const Src& src, const Func& func) { |
| call_assignment_no_alias(dst.expression(), src, func); |
| } |
| |
| template <typename Dst, template <typename> class StorageBase, typename Src, typename Func> |
| EIGEN_DEVICE_FUNC void call_restricted_packet_assignment(const NoAlias<Dst, StorageBase>& dst, const Src& src, |
| const Func& func) { |
| call_restricted_packet_assignment_no_alias(dst.expression(), src, func); |
| } |
| } // namespace internal |
| |
| } // namespace Eigen |
| |
| template <typename XprType> |
| long get_cost(const XprType&) { |
| return Eigen::internal::evaluator<XprType>::CoeffReadCost; |
| } |
| |
| using namespace std; |
| |
| #define VERIFY_IS_APPROX_EVALUATOR(DEST, EXPR) VERIFY_IS_APPROX(copy_using_evaluator(DEST, (EXPR)), (EXPR).eval()); |
| #define VERIFY_IS_APPROX_EVALUATOR2(DEST, EXPR, REF) VERIFY_IS_APPROX(copy_using_evaluator(DEST, (EXPR)), (REF).eval()); |
| |
| EIGEN_DECLARE_TEST(evaluators) { |
| // Testing Matrix evaluator and Transpose |
| Vector2d v = Vector2d::Random(); |
| const Vector2d v_const(v); |
| Vector2d v2; |
| RowVector2d w; |
| |
| VERIFY_IS_APPROX_EVALUATOR(v2, v); |
| VERIFY_IS_APPROX_EVALUATOR(v2, v_const); |
| |
| // Testing Transpose |
| VERIFY_IS_APPROX_EVALUATOR(w, v.transpose()); // Transpose as rvalue |
| VERIFY_IS_APPROX_EVALUATOR(w, v_const.transpose()); |
| |
| copy_using_evaluator(w.transpose(), v); // Transpose as lvalue |
| VERIFY_IS_APPROX(w, v.transpose().eval()); |
| |
| copy_using_evaluator(w.transpose(), v_const); |
| VERIFY_IS_APPROX(w, v_const.transpose().eval()); |
| |
| // Testing Array evaluator |
| { |
| ArrayXXf a(2, 3); |
| ArrayXXf b(3, 2); |
| a << 1, 2, 3, 4, 5, 6; |
| const ArrayXXf a_const(a); |
| |
| VERIFY_IS_APPROX_EVALUATOR(b, a.transpose()); |
| |
| VERIFY_IS_APPROX_EVALUATOR(b, a_const.transpose()); |
| |
| // Testing CwiseNullaryOp evaluator |
| copy_using_evaluator(w, RowVector2d::Random()); |
| VERIFY((w.array() >= -1).all() && (w.array() <= 1).all()); // not easy to test ... |
| |
| VERIFY_IS_APPROX_EVALUATOR(w, RowVector2d::Zero()); |
| |
| VERIFY_IS_APPROX_EVALUATOR(w, RowVector2d::Constant(3)); |
| |
| // mix CwiseNullaryOp and transpose |
| VERIFY_IS_APPROX_EVALUATOR(w, Vector2d::Zero().transpose()); |
| } |
| |
| { |
| // test product expressions |
| int s = internal::random<int>(1, 100); |
| MatrixXf a(s, s), b(s, s), c(s, s), d(s, s); |
| a.setRandom(); |
| b.setRandom(); |
| c.setRandom(); |
| d.setRandom(); |
| VERIFY_IS_APPROX_EVALUATOR(d, (a + b)); |
| VERIFY_IS_APPROX_EVALUATOR(d, (a + b).transpose()); |
| VERIFY_IS_APPROX_EVALUATOR2(d, prod(a, b), a * b); |
| VERIFY_IS_APPROX_EVALUATOR2(d.noalias(), prod(a, b), a * b); |
| VERIFY_IS_APPROX_EVALUATOR2(d, prod(a, b) + c, a * b + c); |
| VERIFY_IS_APPROX_EVALUATOR2(d, s * prod(a, b), s * a * b); |
| VERIFY_IS_APPROX_EVALUATOR2(d, prod(a, b).transpose(), (a * b).transpose()); |
| VERIFY_IS_APPROX_EVALUATOR2(d, prod(a, b) + prod(b, c), a * b + b * c); |
| |
| // check that prod works even with aliasing present |
| c = a * a; |
| copy_using_evaluator(a, prod(a, a)); |
| VERIFY_IS_APPROX(a, c); |
| |
| // check compound assignment of products |
| d = c; |
| add_assign_using_evaluator(c.noalias(), prod(a, b)); |
| d.noalias() += a * b; |
| VERIFY_IS_APPROX(c, d); |
| |
| d = c; |
| subtract_assign_using_evaluator(c.noalias(), prod(a, b)); |
| d.noalias() -= a * b; |
| VERIFY_IS_APPROX(c, d); |
| } |
| |
| { |
| // test product with all possible sizes |
| int s = internal::random<int>(1, 100); |
| Matrix<float, 1, 1> m11, res11; |
| m11.setRandom(1, 1); |
| Matrix<float, 1, 4> m14, res14; |
| m14.setRandom(1, 4); |
| Matrix<float, 1, Dynamic> m1X, res1X; |
| m1X.setRandom(1, s); |
| Matrix<float, 4, 1> m41, res41; |
| m41.setRandom(4, 1); |
| Matrix<float, 4, 4> m44, res44; |
| m44.setRandom(4, 4); |
| Matrix<float, 4, Dynamic> m4X, res4X; |
| m4X.setRandom(4, s); |
| Matrix<float, Dynamic, 1> mX1, resX1; |
| mX1.setRandom(s, 1); |
| Matrix<float, Dynamic, 4> mX4, resX4; |
| mX4.setRandom(s, 4); |
| Matrix<float, Dynamic, Dynamic> mXX, resXX; |
| mXX.setRandom(s, s); |
| |
| VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m11, m11), m11 * m11); |
| VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m14, m41), m14 * m41); |
| VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m1X, mX1), m1X * mX1); |
| VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m11, m14), m11 * m14); |
| VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m14, m44), m14 * m44); |
| VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m1X, mX4), m1X * mX4); |
| VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m11, m1X), m11 * m1X); |
| VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m14, m4X), m14 * m4X); |
| VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m1X, mXX), m1X * mXX); |
| VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m41, m11), m41 * m11); |
| VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m44, m41), m44 * m41); |
| VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m4X, mX1), m4X * mX1); |
| VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m41, m14), m41 * m14); |
| VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m44, m44), m44 * m44); |
| VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m4X, mX4), m4X * mX4); |
| VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m41, m1X), m41 * m1X); |
| VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m44, m4X), m44 * m4X); |
| VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m4X, mXX), m4X * mXX); |
| VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mX1, m11), mX1 * m11); |
| VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mX4, m41), mX4 * m41); |
| VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mXX, mX1), mXX * mX1); |
| VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mX1, m14), mX1 * m14); |
| VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mX4, m44), mX4 * m44); |
| VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mXX, mX4), mXX * mX4); |
| VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mX1, m1X), mX1 * m1X); |
| VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mX4, m4X), mX4 * m4X); |
| VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mXX, mXX), mXX * mXX); |
| } |
| |
| { |
| ArrayXXf a(2, 3); |
| ArrayXXf b(3, 2); |
| a << 1, 2, 3, 4, 5, 6; |
| const ArrayXXf a_const(a); |
| |
| // this does not work because Random is eval-before-nested: |
| // copy_using_evaluator(w, Vector2d::Random().transpose()); |
| |
| // test CwiseUnaryOp |
| VERIFY_IS_APPROX_EVALUATOR(v2, 3 * v); |
| VERIFY_IS_APPROX_EVALUATOR(w, (3 * v).transpose()); |
| VERIFY_IS_APPROX_EVALUATOR(b, (a + 3).transpose()); |
| VERIFY_IS_APPROX_EVALUATOR(b, (2 * a_const + 3).transpose()); |
| |
| // test CwiseBinaryOp |
| VERIFY_IS_APPROX_EVALUATOR(v2, v + Vector2d::Ones()); |
| VERIFY_IS_APPROX_EVALUATOR(w, (v + Vector2d::Ones()).transpose().cwiseProduct(RowVector2d::Constant(3))); |
| |
| // dynamic matrices and arrays |
| MatrixXd mat1(6, 6), mat2(6, 6); |
| VERIFY_IS_APPROX_EVALUATOR(mat1, MatrixXd::Identity(6, 6)); |
| VERIFY_IS_APPROX_EVALUATOR(mat2, mat1); |
| copy_using_evaluator(mat2.transpose(), mat1); |
| VERIFY_IS_APPROX(mat2.transpose(), mat1); |
| |
| ArrayXXd arr1(6, 6), arr2(6, 6); |
| VERIFY_IS_APPROX_EVALUATOR(arr1, ArrayXXd::Constant(6, 6, 3.0)); |
| VERIFY_IS_APPROX_EVALUATOR(arr2, arr1); |
| |
| // test automatic resizing |
| mat2.resize(3, 3); |
| VERIFY_IS_APPROX_EVALUATOR(mat2, mat1); |
| arr2.resize(9, 9); |
| VERIFY_IS_APPROX_EVALUATOR(arr2, arr1); |
| |
| // test direct traversal |
| Matrix3f m3; |
| Array33f a3; |
| VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Identity()); // matrix, nullary |
| // TODO: find a way to test direct traversal with array |
| VERIFY_IS_APPROX_EVALUATOR(m3.transpose(), Matrix3f::Identity().transpose()); // transpose |
| VERIFY_IS_APPROX_EVALUATOR(m3, 2 * Matrix3f::Identity()); // unary |
| VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Identity() + Matrix3f::Zero()); // binary |
| VERIFY_IS_APPROX_EVALUATOR(m3.block(0, 0, 2, 2), Matrix3f::Identity().block(1, 1, 2, 2)); // block |
| |
| // test linear traversal |
| VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Zero()); // matrix, nullary |
| VERIFY_IS_APPROX_EVALUATOR(a3, Array33f::Zero()); // array |
| VERIFY_IS_APPROX_EVALUATOR(m3.transpose(), Matrix3f::Zero().transpose()); // transpose |
| VERIFY_IS_APPROX_EVALUATOR(m3, 2 * Matrix3f::Zero()); // unary |
| VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Zero() + m3); // binary |
| |
| // test inner vectorization |
| Matrix4f m4, m4src = Matrix4f::Random(); |
| Array44f a4, a4src = Matrix4f::Random(); |
| VERIFY_IS_APPROX_EVALUATOR(m4, m4src); // matrix |
| VERIFY_IS_APPROX_EVALUATOR(a4, a4src); // array |
| VERIFY_IS_APPROX_EVALUATOR(m4.transpose(), m4src.transpose()); // transpose |
| // TODO: find out why Matrix4f::Zero() does not allow inner vectorization |
| VERIFY_IS_APPROX_EVALUATOR(m4, 2 * m4src); // unary |
| VERIFY_IS_APPROX_EVALUATOR(m4, m4src + m4src); // binary |
| |
| // test linear vectorization |
| MatrixXf mX(6, 6), mXsrc = MatrixXf::Random(6, 6); |
| ArrayXXf aX(6, 6), aXsrc = ArrayXXf::Random(6, 6); |
| VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc); // matrix |
| VERIFY_IS_APPROX_EVALUATOR(aX, aXsrc); // array |
| VERIFY_IS_APPROX_EVALUATOR(mX.transpose(), mXsrc.transpose()); // transpose |
| VERIFY_IS_APPROX_EVALUATOR(mX, MatrixXf::Zero(6, 6)); // nullary |
| VERIFY_IS_APPROX_EVALUATOR(mX, 2 * mXsrc); // unary |
| VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc + mXsrc); // binary |
| |
| // test blocks and slice vectorization |
| VERIFY_IS_APPROX_EVALUATOR(m4, (mXsrc.block<4, 4>(1, 0))); |
| VERIFY_IS_APPROX_EVALUATOR(aX, ArrayXXf::Constant(10, 10, 3.0).block(2, 3, 6, 6)); |
| |
| Matrix4f m4ref = m4; |
| copy_using_evaluator(m4.block(1, 1, 2, 3), m3.bottomRows(2)); |
| m4ref.block(1, 1, 2, 3) = m3.bottomRows(2); |
| VERIFY_IS_APPROX(m4, m4ref); |
| |
| mX.setIdentity(20, 20); |
| MatrixXf mXref = MatrixXf::Identity(20, 20); |
| mXsrc = MatrixXf::Random(9, 12); |
| copy_using_evaluator(mX.block(4, 4, 9, 12), mXsrc); |
| mXref.block(4, 4, 9, 12) = mXsrc; |
| VERIFY_IS_APPROX(mX, mXref); |
| |
| // test Map |
| const float raw[3] = {1, 2, 3}; |
| float buffer[3] = {0, 0, 0}; |
| Vector3f v3; |
| Array3f a3f; |
| VERIFY_IS_APPROX_EVALUATOR(v3, Map<const Vector3f>(raw)); |
| VERIFY_IS_APPROX_EVALUATOR(a3f, Map<const Array3f>(raw)); |
| Vector3f::Map(buffer) = 2 * v3; |
| VERIFY(buffer[0] == 2); |
| VERIFY(buffer[1] == 4); |
| VERIFY(buffer[2] == 6); |
| |
| // test CwiseUnaryView |
| mat1.setRandom(); |
| mat2.setIdentity(); |
| MatrixXcd matXcd(6, 6), matXcd_ref(6, 6); |
| copy_using_evaluator(matXcd.real(), mat1); |
| copy_using_evaluator(matXcd.imag(), mat2); |
| matXcd_ref.real() = mat1; |
| matXcd_ref.imag() = mat2; |
| VERIFY_IS_APPROX(matXcd, matXcd_ref); |
| |
| // test Select |
| VERIFY_IS_APPROX_EVALUATOR(aX, (aXsrc > 0).select(aXsrc, -aXsrc)); |
| |
| // test Replicate |
| mXsrc = MatrixXf::Random(6, 6); |
| VectorXf vX = VectorXf::Random(6); |
| mX.resize(6, 6); |
| VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc.colwise() + vX); |
| matXcd.resize(12, 12); |
| VERIFY_IS_APPROX_EVALUATOR(matXcd, matXcd_ref.replicate(2, 2)); |
| VERIFY_IS_APPROX_EVALUATOR(matXcd, (matXcd_ref.replicate<2, 2>())); |
| |
| // test partial reductions |
| VectorXd vec1(6); |
| VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.rowwise().sum()); |
| VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.colwise().sum().transpose()); |
| |
| // test MatrixWrapper and ArrayWrapper |
| mat1.setRandom(6, 6); |
| arr1.setRandom(6, 6); |
| VERIFY_IS_APPROX_EVALUATOR(mat2, arr1.matrix()); |
| VERIFY_IS_APPROX_EVALUATOR(arr2, mat1.array()); |
| VERIFY_IS_APPROX_EVALUATOR(mat2, (arr1 + 2).matrix()); |
| VERIFY_IS_APPROX_EVALUATOR(arr2, mat1.array() + 2); |
| mat2.array() = arr1 * arr1; |
| VERIFY_IS_APPROX(mat2, (arr1 * arr1).matrix()); |
| arr2.matrix() = MatrixXd::Identity(6, 6); |
| VERIFY_IS_APPROX(arr2, MatrixXd::Identity(6, 6).array()); |
| |
| // test Reverse |
| VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.reverse()); |
| VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.colwise().reverse()); |
| VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.rowwise().reverse()); |
| arr2.reverse() = arr1; |
| VERIFY_IS_APPROX(arr2, arr1.reverse()); |
| mat2.array() = mat1.array().reverse(); |
| VERIFY_IS_APPROX(mat2.array(), mat1.array().reverse()); |
| |
| // test Diagonal |
| VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal()); |
| vec1.resize(5); |
| VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal(1)); |
| VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal<-1>()); |
| vec1.setRandom(); |
| |
| mat2 = mat1; |
| copy_using_evaluator(mat1.diagonal(1), vec1); |
| mat2.diagonal(1) = vec1; |
| VERIFY_IS_APPROX(mat1, mat2); |
| |
| copy_using_evaluator(mat1.diagonal<-1>(), mat1.diagonal(1)); |
| mat2.diagonal<-1>() = mat2.diagonal(1); |
| VERIFY_IS_APPROX(mat1, mat2); |
| } |
| |
| { |
| // test swapping |
| MatrixXd mat1, mat2, mat1ref, mat2ref; |
| mat1ref = mat1 = MatrixXd::Random(6, 6); |
| mat2ref = mat2 = 2 * mat1 + MatrixXd::Identity(6, 6); |
| swap_using_evaluator(mat1, mat2); |
| mat1ref.swap(mat2ref); |
| VERIFY_IS_APPROX(mat1, mat1ref); |
| VERIFY_IS_APPROX(mat2, mat2ref); |
| |
| swap_using_evaluator(mat1.block(0, 0, 3, 3), mat2.block(3, 3, 3, 3)); |
| mat1ref.block(0, 0, 3, 3).swap(mat2ref.block(3, 3, 3, 3)); |
| VERIFY_IS_APPROX(mat1, mat1ref); |
| VERIFY_IS_APPROX(mat2, mat2ref); |
| |
| swap_using_evaluator(mat1.row(2), mat2.col(3).transpose()); |
| mat1.row(2).swap(mat2.col(3).transpose()); |
| VERIFY_IS_APPROX(mat1, mat1ref); |
| VERIFY_IS_APPROX(mat2, mat2ref); |
| } |
| |
| { |
| // test compound assignment |
| const Matrix4d mat_const = Matrix4d::Random(); |
| Matrix4d mat, mat_ref; |
| mat = mat_ref = Matrix4d::Identity(); |
| add_assign_using_evaluator(mat, mat_const); |
| mat_ref += mat_const; |
| VERIFY_IS_APPROX(mat, mat_ref); |
| |
| subtract_assign_using_evaluator(mat.row(1), 2 * mat.row(2)); |
| mat_ref.row(1) -= 2 * mat_ref.row(2); |
| VERIFY_IS_APPROX(mat, mat_ref); |
| |
| const ArrayXXf arr_const = ArrayXXf::Random(5, 3); |
| ArrayXXf arr, arr_ref; |
| arr = arr_ref = ArrayXXf::Constant(5, 3, 0.5); |
| multiply_assign_using_evaluator(arr, arr_const); |
| arr_ref *= arr_const; |
| VERIFY_IS_APPROX(arr, arr_ref); |
| |
| divide_assign_using_evaluator(arr.row(1), arr.row(2) + 1); |
| arr_ref.row(1) /= (arr_ref.row(2) + 1); |
| VERIFY_IS_APPROX(arr, arr_ref); |
| } |
| |
| { |
| // test triangular shapes |
| MatrixXd A = MatrixXd::Random(6, 6), B(6, 6), C(6, 6), D(6, 6); |
| A.setRandom(); |
| B.setRandom(); |
| VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<Upper>(), MatrixXd(A.triangularView<Upper>())); |
| |
| A.setRandom(); |
| B.setRandom(); |
| VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<UnitLower>(), MatrixXd(A.triangularView<UnitLower>())); |
| |
| A.setRandom(); |
| B.setRandom(); |
| VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<UnitUpper>(), MatrixXd(A.triangularView<UnitUpper>())); |
| |
| A.setRandom(); |
| B.setRandom(); |
| C = B; |
| C.triangularView<Upper>() = A; |
| copy_using_evaluator(B.triangularView<Upper>(), A); |
| VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Upper>(), A)"); |
| |
| A.setRandom(); |
| B.setRandom(); |
| C = B; |
| C.triangularView<Lower>() = A.triangularView<Lower>(); |
| copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>()); |
| VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>())"); |
| |
| A.setRandom(); |
| B.setRandom(); |
| C = B; |
| C.triangularView<Lower>() = A.triangularView<Upper>().transpose(); |
| copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Upper>().transpose()); |
| VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>().transpose())"); |
| |
| A.setRandom(); |
| B.setRandom(); |
| C = B; |
| D = A; |
| C.triangularView<Upper>().swap(D.triangularView<Upper>()); |
| swap_using_evaluator(B.triangularView<Upper>(), A.triangularView<Upper>()); |
| VERIFY(B.isApprox(C) && "swap_using_evaluator(B.triangularView<Upper>(), A.triangularView<Upper>())"); |
| |
| VERIFY_IS_APPROX_EVALUATOR2(B, prod(A.triangularView<Upper>(), A), MatrixXd(A.triangularView<Upper>() * A)); |
| |
| VERIFY_IS_APPROX_EVALUATOR2(B, prod(A.selfadjointView<Upper>(), A), MatrixXd(A.selfadjointView<Upper>() * A)); |
| } |
| |
| { |
| // test diagonal shapes |
| VectorXd d = VectorXd::Random(6); |
| MatrixXd A = MatrixXd::Random(6, 6), B(6, 6); |
| A.setRandom(); |
| B.setRandom(); |
| |
| VERIFY_IS_APPROX_EVALUATOR2(B, lazyprod(d.asDiagonal(), A), MatrixXd(d.asDiagonal() * A)); |
| VERIFY_IS_APPROX_EVALUATOR2(B, lazyprod(A, d.asDiagonal()), MatrixXd(A * d.asDiagonal())); |
| } |
| |
| { |
| // test CoeffReadCost |
| Matrix4d a, b; |
| VERIFY_IS_EQUAL(get_cost(a), 1); |
| VERIFY_IS_EQUAL(get_cost(a + b), 3); |
| VERIFY_IS_EQUAL(get_cost(2 * a + b), 4); |
| VERIFY_IS_EQUAL(get_cost(a * b), 1); |
| VERIFY_IS_EQUAL(get_cost(a.lazyProduct(b)), 15); |
| VERIFY_IS_EQUAL(get_cost(a * (a * b)), 1); |
| VERIFY_IS_EQUAL(get_cost(a.lazyProduct(a * b)), 15); |
| VERIFY_IS_EQUAL(get_cost(a * (a + b)), 1); |
| VERIFY_IS_EQUAL(get_cost(a.lazyProduct(a + b)), 15); |
| } |
| |
| // regression test for PR 544 and bug 1622 (introduced in #71609c4) |
| { |
| // test restricted_packet_assignment with an unaligned destination |
| const size_t M = 2; |
| const size_t K = 2; |
| const size_t N = 5; |
| float* destMem = new float[(M * N) + 1]; |
| // In case of no alignment, avoid division by zero. |
| constexpr int alignment = (std::max<int>)(EIGEN_MAX_ALIGN_BYTES, 1); |
| float* dest = (std::uintptr_t(destMem) % alignment) == 0 ? destMem + 1 : destMem; |
| |
| const Matrix<float, Dynamic, Dynamic, RowMajor> a = Matrix<float, Dynamic, Dynamic, RowMajor>::Random(M, K); |
| const Matrix<float, Dynamic, Dynamic, RowMajor> b = Matrix<float, Dynamic, Dynamic, RowMajor>::Random(K, N); |
| |
| Map<Matrix<float, Dynamic, Dynamic, RowMajor> > z(dest, M, N); |
| ; |
| Product<Matrix<float, Dynamic, Dynamic, RowMajor>, Matrix<float, Dynamic, Dynamic, RowMajor>, LazyProduct> tmp(a, |
| b); |
| internal::call_restricted_packet_assignment(z.noalias(), tmp.derived(), internal::assign_op<float, float>()); |
| |
| VERIFY_IS_APPROX(z, a * b); |
| delete[] destMem; |
| } |
| } |