| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2013 Christian Seiler <christian@iwakd.de> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_CXX11_TENSORSYMMETRY_TEMPLATEGROUPTHEORY_H |
| #define EIGEN_CXX11_TENSORSYMMETRY_TEMPLATEGROUPTHEORY_H |
| |
| // IWYU pragma: private |
| #include "../InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| namespace group_theory { |
| |
| /** \internal |
| * \file CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h |
| * This file contains C++ templates that implement group theory algorithms. |
| * |
| * The algorithms allow for a compile-time analysis of finite groups. |
| * |
| * Currently only Dimino's algorithm is implemented, which returns a list |
| * of all elements in a group given a set of (possibly redundant) generators. |
| * (One could also do that with the so-called orbital algorithm, but that |
| * is much more expensive and usually has no advantages.) |
| */ |
| |
| /********************************************************************** |
| * "Ok kid, here is where it gets complicated." |
| * - Amelia Pond in the "Doctor Who" episode |
| * "The Big Bang" |
| * |
| * Dimino's algorithm |
| * ================== |
| * |
| * The following is Dimino's algorithm in sequential form: |
| * |
| * Input: identity element, list of generators, equality check, |
| * multiplication operation |
| * Output: list of group elements |
| * |
| * 1. add identity element |
| * 2. remove identities from list of generators |
| * 3. add all powers of first generator that aren't the |
| * identity element |
| * 4. go through all remaining generators: |
| * a. if generator is already in the list of elements |
| * -> do nothing |
| * b. otherwise |
| * i. remember current # of elements |
| * (i.e. the size of the current subgroup) |
| * ii. add all current elements (which includes |
| * the identity) each multiplied from right |
| * with the current generator to the group |
| * iii. add all remaining cosets that are generated |
| * by products of the new generator with itself |
| * and all other generators seen so far |
| * |
| * In functional form, this is implemented as a long set of recursive |
| * templates that have a complicated relationship. |
| * |
| * The main interface for Dimino's algorithm is the template |
| * enumerate_group_elements. All lists are implemented as variadic |
| * type_list<typename...> and numeric_list<typename = int, int...> |
| * templates. |
| * |
| * 'Calling' templates is usually done via typedefs. |
| * |
| * This algorithm is an extended version of the basic version. The |
| * extension consists in the fact that each group element has a set |
| * of flags associated with it. Multiplication of two group elements |
| * with each other results in a group element whose flags are the |
| * XOR of the flags of the previous elements. Each time the algorithm |
| * notices that a group element it just calculated is already in the |
| * list of current elements, the flags of both will be compared and |
| * added to the so-called 'global flags' of the group. |
| * |
| * The rationale behind this extension is that this allows not only |
| * for the description of symmetries between tensor indices, but |
| * also allows for the description of hermiticity, antisymmetry and |
| * antihermiticity. Negation and conjugation each are specific bit |
| * in the flags value and if two different ways to reach a group |
| * element lead to two different flags, this poses a constraint on |
| * the allowed values of the resulting tensor. For example, if a |
| * group element is reach both with and without the conjugation |
| * flags, it is clear that the resulting tensor has to be real. |
| * |
| * Note that this flag mechanism is quite generic and may have other |
| * uses beyond tensor properties. |
| * |
| * IMPORTANT: |
| * This algorithm assumes the group to be finite. If you try to |
| * run it with a group that's infinite, the algorithm will only |
| * terminate once you hit a compiler limit (max template depth). |
| * Also note that trying to use this implementation to create a |
| * very large group will probably either make you hit the same |
| * limit, cause the compiler to segfault or at the very least |
| * take a *really* long time (hours, days, weeks - sic!) to |
| * compile. It is not recommended to plug in more than 4 |
| * generators, unless they are independent of each other. |
| */ |
| |
| /** \internal |
| * |
| * \class strip_identities |
| * \ingroup CXX11_TensorSymmetry_Module |
| * |
| * \brief Cleanse a list of group elements of the identity element |
| * |
| * This template is used to make a first pass through all initial |
| * generators of Dimino's algorithm and remove the identity |
| * elements. |
| * |
| * \sa enumerate_group_elements |
| */ |
| template <template <typename, typename> class Equality, typename id, typename L> |
| struct strip_identities; |
| |
| template <template <typename, typename> class Equality, typename id, typename t, typename... ts> |
| struct strip_identities<Equality, id, type_list<t, ts...>> { |
| typedef std::conditional_t< |
| Equality<id, t>::value, typename strip_identities<Equality, id, type_list<ts...>>::type, |
| typename concat<type_list<t>, typename strip_identities<Equality, id, type_list<ts...>>::type>::type> |
| type; |
| constexpr static int global_flags = |
| Equality<id, t>::global_flags | strip_identities<Equality, id, type_list<ts...>>::global_flags; |
| }; |
| |
| template <template <typename, typename> class Equality, typename id EIGEN_TPL_PP_SPEC_HACK_DEFC(typename, ts)> |
| struct strip_identities<Equality, id, type_list<EIGEN_TPL_PP_SPEC_HACK_USE(ts)>> { |
| typedef type_list<> type; |
| constexpr static int global_flags = 0; |
| }; |
| |
| /** \internal |
| * |
| * \class dimino_first_step_elements_helper |
| * \ingroup CXX11_TensorSymmetry_Module |
| * |
| * \brief Recursive template that adds powers of the first generator to the list of group elements |
| * |
| * This template calls itself recursively to add powers of the first |
| * generator to the list of group elements. It stops if it reaches |
| * the identity element again. |
| * |
| * \sa enumerate_group_elements, dimino_first_step_elements |
| */ |
| template <template <typename, typename> class Multiply, template <typename, typename> class Equality, typename id, |
| typename g, typename current_element, typename elements, |
| bool dont_add_current_element // = false |
| > |
| struct dimino_first_step_elements_helper |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| : // recursive inheritance is too difficult for Doxygen |
| public dimino_first_step_elements_helper<Multiply, Equality, id, g, typename Multiply<current_element, g>::type, |
| typename concat<elements, type_list<current_element>>::type, |
| Equality<typename Multiply<current_element, g>::type, id>::value> { |
| }; |
| |
| template <template <typename, typename> class Multiply, template <typename, typename> class Equality, typename id, |
| typename g, typename current_element, typename elements> |
| struct dimino_first_step_elements_helper<Multiply, Equality, id, g, current_element, elements, true> |
| #endif // EIGEN_PARSED_BY_DOXYGEN |
| { |
| typedef elements type; |
| constexpr static int global_flags = Equality<current_element, id>::global_flags; |
| }; |
| |
| /** \internal |
| * |
| * \class dimino_first_step_elements |
| * \ingroup CXX11_TensorSymmetry_Module |
| * |
| * \brief Add all powers of the first generator to the list of group elements |
| * |
| * This template takes the first non-identity generator and generates the initial |
| * list of elements which consists of all powers of that generator. For a group |
| * with just one generated, it would be enumerated after this. |
| * |
| * \sa enumerate_group_elements |
| */ |
| template <template <typename, typename> class Multiply, template <typename, typename> class Equality, typename id, |
| typename generators> |
| struct dimino_first_step_elements { |
| typedef typename get<0, generators>::type first_generator; |
| typedef typename skip<1, generators>::type next_generators; |
| typedef type_list<first_generator> generators_done; |
| |
| typedef dimino_first_step_elements_helper<Multiply, Equality, id, first_generator, first_generator, type_list<id>, |
| false> |
| helper; |
| typedef typename helper::type type; |
| constexpr static int global_flags = helper::global_flags; |
| }; |
| |
| /** \internal |
| * |
| * \class dimino_get_coset_elements |
| * \ingroup CXX11_TensorSymmetry_Module |
| * |
| * \brief Generate all elements of a specific coset |
| * |
| * This template generates all the elements of a specific coset by |
| * multiplying all elements in the given subgroup with the new |
| * coset representative. Note that the first element of the |
| * subgroup is always the identity element, so the first element of |
| * the result of this template is going to be the coset |
| * representative itself. |
| * |
| * Note that this template accepts an additional boolean parameter |
| * that specifies whether to actually generate the coset (true) or |
| * just return an empty list (false). |
| * |
| * \sa enumerate_group_elements, dimino_add_cosets_for_rep |
| */ |
| template <template <typename, typename> class Multiply, typename sub_group_elements, typename new_coset_rep, |
| bool generate_coset // = true |
| > |
| struct dimino_get_coset_elements { |
| typedef typename apply_op_from_right<Multiply, new_coset_rep, sub_group_elements>::type type; |
| }; |
| |
| template <template <typename, typename> class Multiply, typename sub_group_elements, typename new_coset_rep> |
| struct dimino_get_coset_elements<Multiply, sub_group_elements, new_coset_rep, false> { |
| typedef type_list<> type; |
| }; |
| |
| /** \internal |
| * |
| * \class dimino_add_cosets_for_rep |
| * \ingroup CXX11_TensorSymmetry_Module |
| * |
| * \brief Recursive template for adding coset spaces |
| * |
| * This template multiplies the coset representative with a generator |
| * from the list of previous generators. If the new element is not in |
| * the group already, it adds the corresponding coset. Finally it |
| * proceeds to call itself with the next generator from the list. |
| * |
| * \sa enumerate_group_elements, dimino_add_all_coset_spaces |
| */ |
| template <template <typename, typename> class Multiply, template <typename, typename> class Equality, typename id, |
| typename sub_group_elements, typename elements, typename generators, typename rep_element, int sub_group_size> |
| struct dimino_add_cosets_for_rep; |
| |
| template <template <typename, typename> class Multiply, template <typename, typename> class Equality, typename id, |
| typename sub_group_elements, typename elements, typename g, typename... gs, typename rep_element, |
| int sub_group_size> |
| struct dimino_add_cosets_for_rep<Multiply, Equality, id, sub_group_elements, elements, type_list<g, gs...>, rep_element, |
| sub_group_size> { |
| typedef typename Multiply<rep_element, g>::type new_coset_rep; |
| typedef contained_in_list_gf<Equality, new_coset_rep, elements> _cil; |
| constexpr static bool add_coset = !_cil::value; |
| |
| typedef |
| typename dimino_get_coset_elements<Multiply, sub_group_elements, new_coset_rep, add_coset>::type coset_elements; |
| |
| typedef dimino_add_cosets_for_rep<Multiply, Equality, id, sub_group_elements, |
| typename concat<elements, coset_elements>::type, type_list<gs...>, rep_element, |
| sub_group_size> |
| _helper; |
| |
| typedef typename _helper::type type; |
| constexpr static int global_flags = _cil::global_flags | _helper::global_flags; |
| |
| /* Note that we don't have to update global flags here, since |
| * we will only add these elements if they are not part of |
| * the group already. But that only happens if the coset rep |
| * is not already in the group, so the check for the coset rep |
| * will catch this. |
| */ |
| }; |
| |
| template <template <typename, typename> class Multiply, template <typename, typename> class Equality, typename id, |
| typename sub_group_elements, typename elements EIGEN_TPL_PP_SPEC_HACK_DEFC(typename, empty), |
| typename rep_element, int sub_group_size> |
| struct dimino_add_cosets_for_rep<Multiply, Equality, id, sub_group_elements, elements, |
| type_list<EIGEN_TPL_PP_SPEC_HACK_USE(empty)>, rep_element, sub_group_size> { |
| typedef elements type; |
| constexpr static int global_flags = 0; |
| }; |
| |
| /** \internal |
| * |
| * \class dimino_add_all_coset_spaces |
| * \ingroup CXX11_TensorSymmetry_Module |
| * |
| * \brief Recursive template for adding all coset spaces for a new generator |
| * |
| * This template tries to go through the list of generators (with |
| * the help of the dimino_add_cosets_for_rep template) as long as |
| * it still finds elements that are not part of the group and add |
| * the corresponding cosets. |
| * |
| * \sa enumerate_group_elements, dimino_add_cosets_for_rep |
| */ |
| template <template <typename, typename> class Multiply, template <typename, typename> class Equality, typename id, |
| typename sub_group_elements, typename elements, typename generators, int sub_group_size, int rep_pos, |
| bool stop_condition // = false |
| > |
| struct dimino_add_all_coset_spaces { |
| typedef typename get<rep_pos, elements>::type rep_element; |
| typedef dimino_add_cosets_for_rep<Multiply, Equality, id, sub_group_elements, elements, generators, rep_element, |
| sub_group_elements::count> |
| _ac4r; |
| typedef typename _ac4r::type new_elements; |
| |
| constexpr static int new_rep_pos = rep_pos + sub_group_elements::count; |
| constexpr static bool new_stop_condition = new_rep_pos >= new_elements::count; |
| |
| typedef dimino_add_all_coset_spaces<Multiply, Equality, id, sub_group_elements, new_elements, generators, |
| sub_group_size, new_rep_pos, new_stop_condition> |
| _helper; |
| |
| typedef typename _helper::type type; |
| constexpr static int global_flags = _helper::global_flags | _ac4r::global_flags; |
| }; |
| |
| template <template <typename, typename> class Multiply, template <typename, typename> class Equality, typename id, |
| typename sub_group_elements, typename elements, typename generators, int sub_group_size, int rep_pos> |
| struct dimino_add_all_coset_spaces<Multiply, Equality, id, sub_group_elements, elements, generators, sub_group_size, |
| rep_pos, true> { |
| typedef elements type; |
| constexpr static int global_flags = 0; |
| }; |
| |
| /** \internal |
| * |
| * \class dimino_add_generator |
| * \ingroup CXX11_TensorSymmetry_Module |
| * |
| * \brief Enlarge the group by adding a new generator. |
| * |
| * It accepts a boolean parameter that determines if the generator is redundant, |
| * i.e. was already seen in the group. In that case, it reduces to a no-op. |
| * |
| * \sa enumerate_group_elements, dimino_add_all_coset_spaces |
| */ |
| template <template <typename, typename> class Multiply, template <typename, typename> class Equality, typename id, |
| typename elements, typename generators_done, typename current_generator, |
| bool redundant // = false |
| > |
| struct dimino_add_generator { |
| /* this template is only called if the generator is not redundant |
| * => all elements of the group multiplied with the new generator |
| * are going to be new elements of the most trivial coset space |
| */ |
| typedef typename apply_op_from_right<Multiply, current_generator, elements>::type multiplied_elements; |
| typedef typename concat<elements, multiplied_elements>::type new_elements; |
| |
| constexpr static int rep_pos = elements::count; |
| |
| typedef dimino_add_all_coset_spaces< |
| Multiply, Equality, id, |
| elements, // elements of previous subgroup |
| new_elements, typename concat<generators_done, type_list<current_generator>>::type, |
| elements::count, // size of previous subgroup |
| rep_pos, |
| false // don't stop (because rep_pos >= new_elements::count is always false at this point) |
| > |
| _helper; |
| typedef typename _helper::type type; |
| constexpr static int global_flags = _helper::global_flags; |
| }; |
| |
| template <template <typename, typename> class Multiply, template <typename, typename> class Equality, typename id, |
| typename elements, typename generators_done, typename current_generator> |
| struct dimino_add_generator<Multiply, Equality, id, elements, generators_done, current_generator, true> { |
| // redundant case |
| typedef elements type; |
| constexpr static int global_flags = 0; |
| }; |
| |
| /** \internal |
| * |
| * \class dimino_add_remaining_generators |
| * \ingroup CXX11_TensorSymmetry_Module |
| * |
| * \brief Recursive template that adds all remaining generators to a group |
| * |
| * Loop through the list of generators that remain and successively |
| * add them to the group. |
| * |
| * \sa enumerate_group_elements, dimino_add_generator |
| */ |
| template <template <typename, typename> class Multiply, template <typename, typename> class Equality, typename id, |
| typename generators_done, typename remaining_generators, typename elements> |
| struct dimino_add_remaining_generators { |
| typedef typename get<0, remaining_generators>::type first_generator; |
| typedef typename skip<1, remaining_generators>::type next_generators; |
| |
| typedef contained_in_list_gf<Equality, first_generator, elements> _cil; |
| |
| typedef dimino_add_generator<Multiply, Equality, id, elements, generators_done, first_generator, _cil::value> _helper; |
| |
| typedef typename _helper::type new_elements; |
| |
| typedef dimino_add_remaining_generators<Multiply, Equality, id, |
| typename concat<generators_done, type_list<first_generator>>::type, |
| next_generators, new_elements> |
| _next_iter; |
| |
| typedef typename _next_iter::type type; |
| constexpr static int global_flags = _cil::global_flags | _helper::global_flags | _next_iter::global_flags; |
| }; |
| |
| template <template <typename, typename> class Multiply, template <typename, typename> class Equality, typename id, |
| typename generators_done, typename elements> |
| struct dimino_add_remaining_generators<Multiply, Equality, id, generators_done, type_list<>, elements> { |
| typedef elements type; |
| constexpr static int global_flags = 0; |
| }; |
| |
| /** \internal |
| * |
| * \class enumerate_group_elements_noid |
| * \ingroup CXX11_TensorSymmetry_Module |
| * |
| * \brief Helper template that implements group element enumeration |
| * |
| * This is a helper template that implements the actual enumeration |
| * of group elements. This has been split so that the list of |
| * generators can be cleansed of the identity element before |
| * performing the actual operation. |
| * |
| * \sa enumerate_group_elements |
| */ |
| template <template <typename, typename> class Multiply, template <typename, typename> class Equality, typename id, |
| typename generators, int initial_global_flags = 0> |
| struct enumerate_group_elements_noid { |
| typedef dimino_first_step_elements<Multiply, Equality, id, generators> first_step; |
| typedef typename first_step::type first_step_elements; |
| |
| typedef dimino_add_remaining_generators<Multiply, Equality, id, typename first_step::generators_done, |
| typename first_step::next_generators, // remaining_generators |
| typename first_step::type // first_step elements |
| > |
| _helper; |
| |
| typedef typename _helper::type type; |
| constexpr static int global_flags = initial_global_flags | first_step::global_flags | _helper::global_flags; |
| }; |
| |
| // in case when no generators are specified |
| template <template <typename, typename> class Multiply, template <typename, typename> class Equality, typename id, |
| int initial_global_flags> |
| struct enumerate_group_elements_noid<Multiply, Equality, id, type_list<>, initial_global_flags> { |
| typedef type_list<id> type; |
| constexpr static int global_flags = initial_global_flags; |
| }; |
| |
| /** \internal |
| * |
| * \class enumerate_group_elements |
| * \ingroup CXX11_TensorSymmetry_Module |
| * |
| * \brief Enumerate all elements in a finite group |
| * |
| * This template enumerates all elements in a finite group. It accepts |
| * the following template parameters: |
| * |
| * \tparam Multiply The multiplication operation that multiplies two group elements |
| * with each other. |
| * \tparam Equality The equality check operation that checks if two group elements |
| * are equal to another. |
| * \tparam id The identity element |
| * \tparam Generators_ A list of (possibly redundant) generators of the group |
| */ |
| template <template <typename, typename> class Multiply, template <typename, typename> class Equality, typename id, |
| typename Generators_> |
| struct enumerate_group_elements |
| : public enumerate_group_elements_noid<Multiply, Equality, id, |
| typename strip_identities<Equality, id, Generators_>::type, |
| strip_identities<Equality, id, Generators_>::global_flags> {}; |
| |
| } // end namespace group_theory |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_CXX11_TENSORSYMMETRY_TEMPLATEGROUPTHEORY_H |
| |
| /* |
| * kate: space-indent on; indent-width 2; mixedindent off; indent-mode cstyle; |
| */ |