| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2006-2008, 2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_DOT_H |
| #define EIGEN_DOT_H |
| |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| // helper function for dot(). The problem is that if we put that in the body of dot(), then upon calling dot |
| // with mismatched types, the compiler emits errors about failing to instantiate cwiseProduct BEFORE |
| // looking at the static assertions. Thus this is a trick to get better compile errors. |
| template<typename T, typename U, |
| bool NeedToTranspose = T::IsVectorAtCompileTime && U::IsVectorAtCompileTime && |
| ((int(T::RowsAtCompileTime) == 1 && int(U::ColsAtCompileTime) == 1) || |
| (int(T::ColsAtCompileTime) == 1 && int(U::RowsAtCompileTime) == 1))> |
| struct dot_nocheck |
| { |
| typedef scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> conj_prod; |
| typedef typename conj_prod::result_type ResScalar; |
| EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE EIGEN_CONSTEXPR |
| static ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b) |
| { |
| return a.template binaryExpr<conj_prod>(b).sum(); |
| } |
| }; |
| |
| template<typename T, typename U> |
| struct dot_nocheck<T, U, true> |
| { |
| typedef scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> conj_prod; |
| typedef typename conj_prod::result_type ResScalar; |
| EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE EIGEN_CONSTEXPR |
| static ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b) |
| { |
| return a.transpose().template binaryExpr<conj_prod>(b).sum(); |
| } |
| }; |
| |
| } // end namespace internal |
| |
| /** \fn MatrixBase::dot |
| * \returns the dot product of *this with other. |
| * |
| * \only_for_vectors |
| * |
| * \note If the scalar type is complex numbers, then this function returns the hermitian |
| * (sesquilinear) dot product, conjugate-linear in the first variable and linear in the |
| * second variable. |
| * |
| * \sa squaredNorm(), norm() |
| */ |
| template<typename Derived> |
| template<typename OtherDerived> |
| EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE EIGEN_CONSTEXPR |
| typename ScalarBinaryOpTraits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType |
| MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const |
| { |
| EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) |
| EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) |
| EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived) |
| #if !(defined(EIGEN_NO_STATIC_ASSERT) && defined(EIGEN_NO_DEBUG)) |
| typedef internal::scalar_conj_product_op<Scalar,typename OtherDerived::Scalar> func; |
| EIGEN_CHECK_BINARY_COMPATIBILIY(func,Scalar,typename OtherDerived::Scalar); |
| #endif |
| |
| eigen_assert(size() == other.size()); |
| |
| return internal::dot_nocheck<Derived,OtherDerived>::run(*this, other); |
| } |
| |
| //---------- implementation of L2 norm and related functions ---------- |
| |
| /** \returns, for vectors, the squared \em l2 norm of \c *this, and for matrices the squared Frobenius norm. |
| * In both cases, it consists in the sum of the square of all the matrix entries. |
| * For vectors, this is also equals to the dot product of \c *this with itself. |
| * |
| * \sa dot(), norm(), lpNorm() |
| */ |
| template<typename Derived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::squaredNorm() const |
| { |
| return numext::real((*this).cwiseAbs2().sum()); |
| } |
| |
| /** \returns, for vectors, the \em l2 norm of \c *this, and for matrices the Frobenius norm. |
| * In both cases, it consists in the square root of the sum of the square of all the matrix entries. |
| * For vectors, this is also equals to the square root of the dot product of \c *this with itself. |
| * |
| * \sa lpNorm(), dot(), squaredNorm() |
| */ |
| template<typename Derived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::norm() const |
| { |
| return numext::sqrt(squaredNorm()); |
| } |
| |
| /** \returns an expression of the quotient of \c *this by its own norm. |
| * |
| * \warning If the input vector is too small (i.e., this->norm()==0), |
| * then this function returns a copy of the input. |
| * |
| * \only_for_vectors |
| * |
| * \sa norm(), normalize() |
| */ |
| template<typename Derived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::PlainObject |
| MatrixBase<Derived>::normalized() const |
| { |
| typedef typename internal::nested_eval<Derived,2>::type Nested_; |
| Nested_ n(derived()); |
| RealScalar z = n.squaredNorm(); |
| // NOTE: after extensive benchmarking, this conditional does not impact performance, at least on recent x86 CPU |
| if(z>RealScalar(0)) |
| return n / numext::sqrt(z); |
| else |
| return n; |
| } |
| |
| /** Normalizes the vector, i.e. divides it by its own norm. |
| * |
| * \only_for_vectors |
| * |
| * \warning If the input vector is too small (i.e., this->norm()==0), then \c *this is left unchanged. |
| * |
| * \sa norm(), normalized() |
| */ |
| template<typename Derived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void MatrixBase<Derived>::normalize() |
| { |
| RealScalar z = squaredNorm(); |
| // NOTE: after extensive benchmarking, this conditional does not impact performance, at least on recent x86 CPU |
| if(z>RealScalar(0)) |
| derived() /= numext::sqrt(z); |
| } |
| |
| /** \returns an expression of the quotient of \c *this by its own norm while avoiding underflow and overflow. |
| * |
| * \only_for_vectors |
| * |
| * This method is analogue to the normalized() method, but it reduces the risk of |
| * underflow and overflow when computing the norm. |
| * |
| * \warning If the input vector is too small (i.e., this->norm()==0), |
| * then this function returns a copy of the input. |
| * |
| * \sa stableNorm(), stableNormalize(), normalized() |
| */ |
| template<typename Derived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::PlainObject |
| MatrixBase<Derived>::stableNormalized() const |
| { |
| typedef typename internal::nested_eval<Derived,3>::type Nested_; |
| Nested_ n(derived()); |
| RealScalar w = n.cwiseAbs().maxCoeff(); |
| RealScalar z = (n/w).squaredNorm(); |
| if(z>RealScalar(0)) |
| return n / (numext::sqrt(z)*w); |
| else |
| return n; |
| } |
| |
| /** Normalizes the vector while avoid underflow and overflow |
| * |
| * \only_for_vectors |
| * |
| * This method is analogue to the normalize() method, but it reduces the risk of |
| * underflow and overflow when computing the norm. |
| * |
| * \warning If the input vector is too small (i.e., this->norm()==0), then \c *this is left unchanged. |
| * |
| * \sa stableNorm(), stableNormalized(), normalize() |
| */ |
| template<typename Derived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void MatrixBase<Derived>::stableNormalize() |
| { |
| RealScalar w = cwiseAbs().maxCoeff(); |
| RealScalar z = (derived()/w).squaredNorm(); |
| if(z>RealScalar(0)) |
| derived() /= numext::sqrt(z)*w; |
| } |
| |
| //---------- implementation of other norms ---------- |
| |
| namespace internal { |
| |
| template<typename Derived, int p> |
| struct lpNorm_selector |
| { |
| typedef typename NumTraits<typename traits<Derived>::Scalar>::Real RealScalar; |
| EIGEN_DEVICE_FUNC |
| static inline RealScalar run(const MatrixBase<Derived>& m) |
| { |
| EIGEN_USING_STD(pow) |
| return pow(m.cwiseAbs().array().pow(p).sum(), RealScalar(1)/p); |
| } |
| }; |
| |
| template<typename Derived> |
| struct lpNorm_selector<Derived, 1> |
| { |
| EIGEN_DEVICE_FUNC |
| static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m) |
| { |
| return m.cwiseAbs().sum(); |
| } |
| }; |
| |
| template<typename Derived> |
| struct lpNorm_selector<Derived, 2> |
| { |
| EIGEN_DEVICE_FUNC |
| static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m) |
| { |
| return m.norm(); |
| } |
| }; |
| |
| template<typename Derived> |
| struct lpNorm_selector<Derived, Infinity> |
| { |
| typedef typename NumTraits<typename traits<Derived>::Scalar>::Real RealScalar; |
| EIGEN_DEVICE_FUNC |
| static inline RealScalar run(const MatrixBase<Derived>& m) |
| { |
| if(Derived::SizeAtCompileTime==0 || (Derived::SizeAtCompileTime==Dynamic && m.size()==0)) |
| return RealScalar(0); |
| return m.cwiseAbs().maxCoeff(); |
| } |
| }; |
| |
| } // end namespace internal |
| |
| /** \returns the \b coefficient-wise \f$ \ell^p \f$ norm of \c *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values |
| * of the coefficients of \c *this. If \a p is the special value \a Eigen::Infinity, this function returns the \f$ \ell^\infty \f$ |
| * norm, that is the maximum of the absolute values of the coefficients of \c *this. |
| * |
| * In all cases, if \c *this is empty, then the value 0 is returned. |
| * |
| * \note For matrices, this function does not compute the <a href="https://en.wikipedia.org/wiki/Operator_norm">operator-norm</a>. That is, if \c *this is a matrix, then its coefficients are interpreted as a 1D vector. Nonetheless, you can easily compute the 1-norm and \f$\infty\f$-norm matrix operator norms using \link TutorialReductionsVisitorsBroadcastingReductionsNorm partial reductions \endlink. |
| * |
| * \sa norm() |
| */ |
| template<typename Derived> |
| template<int p> |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| EIGEN_DEVICE_FUNC inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real |
| #else |
| EIGEN_DEVICE_FUNC MatrixBase<Derived>::RealScalar |
| #endif |
| MatrixBase<Derived>::lpNorm() const |
| { |
| return internal::lpNorm_selector<Derived, p>::run(*this); |
| } |
| |
| //---------- implementation of isOrthogonal / isUnitary ---------- |
| |
| /** \returns true if *this is approximately orthogonal to \a other, |
| * within the precision given by \a prec. |
| * |
| * Example: \include MatrixBase_isOrthogonal.cpp |
| * Output: \verbinclude MatrixBase_isOrthogonal.out |
| */ |
| template<typename Derived> |
| template<typename OtherDerived> |
| bool MatrixBase<Derived>::isOrthogonal |
| (const MatrixBase<OtherDerived>& other, const RealScalar& prec) const |
| { |
| typename internal::nested_eval<Derived,2>::type nested(derived()); |
| typename internal::nested_eval<OtherDerived,2>::type otherNested(other.derived()); |
| return numext::abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm(); |
| } |
| |
| /** \returns true if *this is approximately an unitary matrix, |
| * within the precision given by \a prec. In the case where the \a Scalar |
| * type is real numbers, a unitary matrix is an orthogonal matrix, whence the name. |
| * |
| * \note This can be used to check whether a family of vectors forms an orthonormal basis. |
| * Indeed, \c m.isUnitary() returns true if and only if the columns (equivalently, the rows) of m form an |
| * orthonormal basis. |
| * |
| * Example: \include MatrixBase_isUnitary.cpp |
| * Output: \verbinclude MatrixBase_isUnitary.out |
| */ |
| template<typename Derived> |
| bool MatrixBase<Derived>::isUnitary(const RealScalar& prec) const |
| { |
| typename internal::nested_eval<Derived,1>::type self(derived()); |
| for(Index i = 0; i < cols(); ++i) |
| { |
| if(!internal::isApprox(self.col(i).squaredNorm(), static_cast<RealScalar>(1), prec)) |
| return false; |
| for(Index j = 0; j < i; ++j) |
| if(!internal::isMuchSmallerThan(self.col(i).dot(self.col(j)), static_cast<Scalar>(1), prec)) |
| return false; |
| } |
| return true; |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_DOT_H |