| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2016 |
| // Mehdi Goli Codeplay Software Ltd. |
| // Ralph Potter Codeplay Software Ltd. |
| // Luke Iwanski Codeplay Software Ltd. |
| // Contact: <eigen@codeplay.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #define EIGEN_TEST_NO_LONGDOUBLE |
| #define EIGEN_TEST_NO_COMPLEX |
| |
| #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t |
| #define EIGEN_USE_SYCL |
| |
| #include <algorithm> |
| #include <chrono> |
| #include <ctime> |
| #include <iostream> |
| |
| #include "main.h" |
| |
| #include <unsupported/Eigen/CXX11/Tensor> |
| |
| using Eigen::array; |
| using Eigen::SyclDevice; |
| using Eigen::Tensor; |
| using Eigen::TensorMap; |
| |
| template <int DataLayout, typename DataType, typename IndexType, |
| typename Device> |
| void static test_sycl_contraction(const Device &sycl_device, IndexType m_size, |
| IndexType k_size, IndexType n_size) { |
| typedef typename Tensor<DataType, 1, DataLayout, IndexType>::DimensionPair |
| DimPair; |
| static const DataType error_threshold = DataType(1e-4); |
| // with these dimensions, the output has 300 * 140 elements, which is |
| // more than 30 * 1024, which is the number of threads in blocks on |
| // a 15 SM GK110 GPU |
| Tensor<DataType, 2, DataLayout, IndexType> t_left(m_size, k_size); |
| Tensor<DataType, 2, DataLayout, IndexType> t_right(k_size, n_size); |
| Tensor<DataType, 2, DataLayout, IndexType> t_result(m_size, n_size); |
| Tensor<DataType, 2, DataLayout, IndexType> t_result_gpu(m_size, n_size); |
| Eigen::array<DimPair, 1> dims = {{DimPair(1, 0)}}; |
| Eigen::array<IndexType, 2> left_dims = {{m_size, k_size}}; |
| Eigen::array<IndexType, 2> right_dims = {{k_size, n_size}}; |
| Eigen::array<IndexType, 2> result_dims = {{m_size, n_size}}; |
| |
| t_left.setRandom(); |
| t_right.setRandom(); |
| |
| std::size_t t_left_bytes = t_left.size() * sizeof(DataType); |
| std::size_t t_right_bytes = t_right.size() * sizeof(DataType); |
| std::size_t t_result_bytes = t_result.size() * sizeof(DataType); |
| |
| DataType *d_t_left = |
| static_cast<DataType *>(sycl_device.allocate(t_left_bytes)); |
| DataType *d_t_right = |
| static_cast<DataType *>(sycl_device.allocate(t_right_bytes)); |
| DataType *d_t_result = |
| static_cast<DataType *>(sycl_device.allocate(t_result_bytes)); |
| |
| Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>> |
| gpu_t_left(d_t_left, left_dims); |
| Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>> |
| gpu_t_right(d_t_right, right_dims); |
| Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>> |
| gpu_t_result(d_t_result, result_dims); |
| |
| sycl_device.memcpyHostToDevice(d_t_left, t_left.data(), t_left_bytes); |
| sycl_device.memcpyHostToDevice(d_t_right, t_right.data(), t_right_bytes); |
| |
| gpu_t_result.device(sycl_device) = gpu_t_left.contract(gpu_t_right, dims); |
| sycl_device.memcpyDeviceToHost(t_result_gpu.data(), d_t_result, |
| t_result_bytes); |
| |
| t_result = t_left.contract(t_right, dims); |
| |
| for (IndexType i = 0; i < t_result.size(); i++) { |
| if (static_cast<DataType>(std::fabs(static_cast<DataType>( |
| t_result(i) - t_result_gpu(i)))) < error_threshold) { |
| continue; |
| } |
| if (Eigen::internal::isApprox(t_result(i), t_result_gpu(i), |
| error_threshold)) { |
| continue; |
| } |
| |
| std::cout << "M : " << m_size << ", N : " << n_size << ", K : " << k_size |
| << ", mismatch detected at IndexType " << i << ": " << t_result(i) |
| << " vs " << t_result_gpu(i) << std::endl; |
| VERIFY_IS_APPROX(t_result_gpu(i), t_result(i)); |
| } |
| sycl_device.deallocate(d_t_left); |
| sycl_device.deallocate(d_t_right); |
| sycl_device.deallocate(d_t_result); |
| } |
| |
| template <int DataLayout, typename DataType, typename IndexType, |
| typename Device> |
| void test_sycl_contraction_m(const Device &sycl_device) { |
| for (IndexType k = 32; k < 256; k++) { |
| test_sycl_contraction<DataLayout, DataType, IndexType>(sycl_device, k, 128, |
| 128); |
| } |
| } |
| |
| template <int DataLayout, typename DataType, typename IndexType, |
| typename Device> |
| void test_sycl_contraction_k(const Device &sycl_device) { |
| for (IndexType k = 32; k < 256; k++) { |
| test_sycl_contraction<DataLayout, DataType, IndexType>(sycl_device, 128, k, |
| 128); |
| } |
| } |
| |
| template <int DataLayout, typename DataType, typename IndexType, |
| typename Device> |
| void test_sycl_contraction_n(const Device &sycl_device) { |
| for (IndexType k = 32; k < 256; k++) { |
| test_sycl_contraction<DataLayout, DataType, IndexType>(sycl_device, 128, |
| 128, k); |
| } |
| } |
| |
| template <int DataLayout, typename DataType, typename IndexType, |
| typename Device> |
| void test_sycl_contraction_sizes(const Device &sycl_device) { |
| IndexType m_sizes[] = {31, 39, 63, 64, 65, 127, 129, 255, |
| 257, 511, 512, 513, 1023, 1024, 1025}; |
| |
| IndexType n_sizes[] = {31, 39, 63, 64, 65, 127, 129, 255, |
| 257, 511, 512, 513, 1023, 1024, 1025}; |
| |
| IndexType k_sizes[] = {31, 39, 63, 64, 65, 95, 96, 127, 129, |
| 255, 257, 511, 512, 513, 1023, 1024, 1025}; |
| |
| for (IndexType i = 0; i < 15; i++) { |
| for (IndexType j = 0; j < 15; j++) { |
| for (IndexType k = 0; k < 17; k++) { |
| test_sycl_contraction<DataLayout, DataType, IndexType>( |
| sycl_device, m_sizes[i], n_sizes[j], k_sizes[k]); |
| } |
| } |
| } |
| } |
| |
| template <int DataLayout, typename DataType, typename IndexType, |
| typename Device> |
| void static test_no_out_of_bounds(const Device &sycl_device, IndexType m_size, |
| IndexType k_size, IndexType n_size) { |
| typedef typename Tensor<DataType, 1, DataLayout, IndexType>::DimensionPair |
| DimPair; |
| static const DataType error_threshold = DataType(1e-4); |
| Tensor<DataType, 2, DataLayout, IndexType> t_left(m_size, k_size); |
| Tensor<DataType, 2, DataLayout, IndexType> t_right(k_size, n_size); |
| Tensor<DataType, 2, DataLayout, IndexType> t_result(m_size, n_size); |
| |
| Eigen::array<DimPair, 1> dims = {{DimPair(1, 0)}}; |
| Eigen::array<IndexType, 2> left_dims = {{m_size, k_size}}; |
| Eigen::array<IndexType, 2> right_dims = {{k_size, n_size}}; |
| Eigen::array<IndexType, 2> result_dims = {{m_size, n_size}}; |
| |
| t_left.setRandom(); |
| t_right.setRandom(); |
| |
| // Allocate buffers twice as big to check for invalid read and write |
| auto padded_left_size = 2 * t_left.size(); |
| auto padded_right_size = 2 * t_right.size(); |
| auto padded_result_size = 2 * t_result.size(); |
| |
| std::size_t t_left_bytes = padded_left_size * sizeof(DataType); |
| std::size_t t_right_bytes = padded_right_size * sizeof(DataType); |
| std::size_t t_result_bytes = padded_result_size * sizeof(DataType); |
| |
| DataType *d_t_left = |
| static_cast<DataType *>(sycl_device.allocate(t_left_bytes)); |
| DataType *d_t_right = |
| static_cast<DataType *>(sycl_device.allocate(t_right_bytes)); |
| DataType *d_t_result = |
| static_cast<DataType *>(sycl_device.allocate(t_result_bytes)); |
| |
| // TensorMaps are still of the same size than the Tensors |
| Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>> |
| gpu_t_left(d_t_left, left_dims); |
| Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>> |
| gpu_t_right(d_t_right, right_dims); |
| Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>> |
| gpu_t_result(d_t_result, result_dims); |
| |
| // Write nan after the actual buffer to propagate nans everywhere in case of |
| // invalid reads |
| DataType nan = std::numeric_limits<DataType>::quiet_NaN(); |
| auto host_left_data = new DataType[padded_left_size]; |
| std::copy_n(t_left.data(), t_left.size(), host_left_data); |
| std::fill_n(host_left_data + t_left.size(), t_left.size(), nan); |
| auto host_right_data = new DataType[padded_right_size]; |
| std::copy_n(t_right.data(), t_right.size(), host_right_data); |
| std::fill_n(host_right_data + t_right.size(), t_right.size(), nan); |
| auto host_result_data = new DataType[padded_result_size]; |
| std::fill_n(host_result_data, padded_result_size, nan); |
| |
| sycl_device.memcpyHostToDevice(d_t_left, host_left_data, t_left_bytes); |
| sycl_device.memcpyHostToDevice(d_t_right, host_right_data, t_right_bytes); |
| sycl_device.memcpyHostToDevice(d_t_result, host_result_data, t_result_bytes); |
| |
| gpu_t_result.device(sycl_device) = gpu_t_left.contract(gpu_t_right, dims); |
| sycl_device.memcpyDeviceToHost(host_result_data, d_t_result, t_result_bytes); |
| |
| t_result = t_left.contract(t_right, dims); |
| |
| for (IndexType i = 0; i < t_result.size(); i++) { |
| if (static_cast<DataType>(std::fabs(static_cast<DataType>( |
| t_result(i) - host_result_data[i]))) < error_threshold) { |
| continue; |
| } |
| if (Eigen::internal::isApprox(t_result(i), host_result_data[i], |
| error_threshold)) { |
| continue; |
| } |
| if (std::isnan(host_result_data[i])) { |
| std::cout << "M : " << m_size << ", N : " << n_size << ", K : " << k_size |
| << ", invalid read detected at IndexType " << i << ": " |
| << t_result(i) << " vs " << host_result_data[i] << std::endl; |
| } else { |
| std::cout << "M : " << m_size << ", N : " << n_size << ", K : " << k_size |
| << ", mismatch detected at IndexType " << i << ": " |
| << t_result(i) << " vs " << host_result_data[i] << std::endl; |
| } |
| VERIFY_IS_APPROX(host_result_data[i], t_result(i)); |
| } |
| // Make sure that the rest of the result is still nans |
| for (IndexType i = t_result.size(); i < padded_result_size; i++) { |
| if (std::isnan(host_result_data[i])) { |
| continue; |
| } |
| std::cout << "M : " << m_size << ", N : " << n_size << ", K : " << k_size |
| << ", invalid write detected at IndexType " << i << ": " |
| << host_result_data[i] << std::endl; |
| VERIFY_IS_APPROX(host_result_data[i], t_result(i)); |
| } |
| sycl_device.deallocate(d_t_left); |
| sycl_device.deallocate(d_t_right); |
| sycl_device.deallocate(d_t_result); |
| |
| delete[] host_left_data; |
| delete[] host_right_data; |
| delete[] host_result_data; |
| } |
| |
| template <int DataLayout, typename DataType, typename IndexType, |
| typename Device> |
| void test_scalar(const Device &sycl_device, IndexType m_size, IndexType k_size, |
| IndexType n_size) { |
| // std::cout << "Testing for (" << m_size << "," << k_size << "," << n_size << |
| // ")" << std::endl; |
| // with these dimensions, the output has 300 * 140 elements, which is |
| // more than 30 * 1024, which is the number of threads in blocks on |
| // a 15 SM GK110 GPU |
| typedef typename Tensor<DataType, 1, DataLayout, IndexType>::DimensionPair |
| DimPair; |
| static const DataType error_threshold = DataType(1e-4); |
| Tensor<DataType, 2, DataLayout, IndexType> t_left(m_size, k_size); |
| Tensor<DataType, 2, DataLayout, IndexType> t_right(k_size, n_size); |
| Tensor<DataType, 0, DataLayout, IndexType> t_result; |
| Tensor<DataType, 0, DataLayout, IndexType> t_result_gpu; |
| Eigen::array<DimPair, 2> dims = {{DimPair(0, 0), DimPair(1, 1)}}; |
| Eigen::array<IndexType, 2> left_dims = {{m_size, k_size}}; |
| Eigen::array<IndexType, 2> right_dims = {{k_size, n_size}}; |
| t_left.setRandom(); |
| t_right.setRandom(); |
| |
| std::size_t t_left_bytes = t_left.size() * sizeof(DataType); |
| std::size_t t_right_bytes = t_right.size() * sizeof(DataType); |
| std::size_t t_result_bytes = sizeof(DataType); |
| |
| DataType *d_t_left = |
| static_cast<DataType *>(sycl_device.allocate(t_left_bytes)); |
| DataType *d_t_right = |
| static_cast<DataType *>(sycl_device.allocate(t_right_bytes)); |
| DataType *d_t_result = |
| static_cast<DataType *>(sycl_device.allocate(t_result_bytes)); |
| |
| Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>> |
| gpu_t_left(d_t_left, left_dims); |
| Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>> |
| gpu_t_right(d_t_right, right_dims); |
| Eigen::TensorMap<Eigen::Tensor<DataType, 0, DataLayout, IndexType>> |
| gpu_t_result(d_t_result); |
| |
| sycl_device.memcpyHostToDevice(d_t_left, t_left.data(), t_left_bytes); |
| sycl_device.memcpyHostToDevice(d_t_right, t_right.data(), t_right_bytes); |
| |
| gpu_t_result.device(sycl_device) = gpu_t_left.contract(gpu_t_right, dims); |
| sycl_device.memcpyDeviceToHost(t_result_gpu.data(), d_t_result, |
| t_result_bytes); |
| |
| t_result = t_left.contract(t_right, dims); |
| |
| if (static_cast<DataType>(std::fabs(static_cast<DataType>( |
| t_result() - t_result_gpu()))) > error_threshold && |
| !Eigen::internal::isApprox(t_result(), t_result_gpu(), error_threshold)) { |
| std::cout << "K: " << k_size << ", N: " << n_size << ", M: " << m_size |
| << " : mismatch detected: " << t_result() << " vs " |
| << t_result_gpu() << std::endl; |
| VERIFY_IS_APPROX(t_result_gpu(), t_result()); |
| } |
| |
| sycl_device.deallocate(d_t_left); |
| sycl_device.deallocate(d_t_right); |
| sycl_device.deallocate(d_t_result); |
| } |
| |
| template <int DataLayout, typename DataType, typename IndexType, |
| typename Device> |
| void contraction_batch(const Device &sycl_device, IndexType m_size, |
| IndexType k_size, IndexType n_size, IndexType m_batch, |
| IndexType start, IndexType limit) { |
| typedef typename Tensor<DataType, 1, DataLayout, IndexType>::DimensionPair |
| DimPair; |
| static const DataType error_threshold = DataType(1e-4); |
| typedef Eigen::array<IndexType, 3> TensorDim; |
| typedef Eigen::Tensor<DataType, 3, DataLayout, IndexType> TensorType; |
| TensorDim left_dims = {{m_batch, k_size, m_size}}; |
| TensorDim right_dims = {{m_batch, n_size, k_size}}; |
| TensorDim res_dims = {{m_batch, m_size, n_size}}; |
| Eigen::array<DimPair, 1> contract_pairs = {{DimPair(0, 1)}}; |
| |
| TensorType t_left(left_dims); |
| TensorType t_right(right_dims); |
| TensorType t_result_gpu(res_dims); |
| TensorType t_result(res_dims); |
| |
| t_left.setRandom(); |
| t_right.setRandom(); |
| |
| std::size_t t_left_bytes = t_left.size() * sizeof(DataType); |
| std::size_t t_right_bytes = t_right.size() * sizeof(DataType); |
| std::size_t t_result_bytes = t_result.size() * sizeof(DataType); |
| |
| DataType *d_t_left = |
| static_cast<DataType *>(sycl_device.allocate(t_left_bytes)); |
| DataType *d_t_right = |
| static_cast<DataType *>(sycl_device.allocate(t_right_bytes)); |
| DataType *d_t_result = |
| static_cast<DataType *>(sycl_device.allocate(t_result_bytes)); |
| |
| Eigen::TensorMap<TensorType> gpu_t_left(d_t_left, left_dims); |
| Eigen::TensorMap<TensorType> gpu_t_right(d_t_right, right_dims); |
| Eigen::TensorMap<TensorType> gpu_t_result(d_t_result, res_dims); |
| |
| sycl_device.memcpyHostToDevice(d_t_left, t_left.data(), t_left_bytes); |
| sycl_device.memcpyHostToDevice(d_t_right, t_right.data(), t_right_bytes); |
| for (int i = start; i < limit; ++i) { |
| auto x = gpu_t_left.template chip<0>(i); |
| auto y = gpu_t_right.template chip<0>(i); |
| auto z = gpu_t_result.template chip<0>(i); |
| z.device(sycl_device) = x.contract(y, contract_pairs); |
| } |
| sycl_device.memcpyDeviceToHost(t_result_gpu.data(), d_t_result, |
| t_result_bytes); |
| |
| for (int i = start; i < limit; ++i) { |
| auto x = t_left.template chip<0>(i); |
| auto y = t_right.template chip<0>(i); |
| auto z = t_result.template chip<0>(i); |
| z = x.contract(y, contract_pairs); |
| } |
| |
| for (IndexType i = 0; i < t_result.size(); i++) { |
| if (static_cast<DataType>(std::fabs(static_cast<DataType>( |
| t_result(i) - t_result_gpu(i)))) < error_threshold) { |
| continue; |
| } |
| if (Eigen::internal::isApprox(t_result(i), t_result_gpu(i), |
| error_threshold)) { |
| continue; |
| } |
| std::cout << "mismatch detected at IndexType " << i << ": " << t_result(i) |
| << " vs " << t_result_gpu(i) << std::endl; |
| VERIFY_IS_APPROX(t_result_gpu(i), t_result(i)); |
| } |
| sycl_device.deallocate(d_t_left); |
| sycl_device.deallocate(d_t_right); |
| sycl_device.deallocate(d_t_result); |
| } |
| |
| template <int DataLayout, typename DataType, typename IndexType, |
| typename Device> |
| void contraction_rhs_transposed(const Device &sycl_device, IndexType m_size, |
| IndexType k_size, IndexType n_size) { |
| typedef typename Tensor<DataType, 1, DataLayout, IndexType>::DimensionPair |
| DimPair; |
| static const DataType error_threshold = DataType(1e-4); |
| Eigen::array<IndexType, 2> left_dims = {{m_size, k_size}}; |
| Eigen::array<IndexType, 2> right_dims = {{n_size, k_size}}; |
| Eigen::array<IndexType, 2> res_dims = {{m_size, n_size}}; |
| Eigen::array<DimPair, 1> dims = {{DimPair(1, 1)}}; |
| |
| Tensor<DataType, 2, DataLayout, IndexType> t_left(left_dims); |
| Tensor<DataType, 2, DataLayout, IndexType> t_right(right_dims); |
| Tensor<DataType, 2, DataLayout, IndexType> t_result_gpu(res_dims); |
| Tensor<DataType, 2, DataLayout, IndexType> t_result(res_dims); |
| |
| t_left.setRandom(); |
| t_right.setRandom(); |
| |
| std::size_t t_left_bytes = t_left.size() * sizeof(DataType); |
| std::size_t t_right_bytes = t_right.size() * sizeof(DataType); |
| std::size_t t_result_bytes = t_result.size() * sizeof(DataType); |
| |
| DataType *d_t_left = |
| static_cast<DataType *>(sycl_device.allocate(t_left_bytes)); |
| DataType *d_t_right = |
| static_cast<DataType *>(sycl_device.allocate(t_right_bytes)); |
| DataType *d_t_result = |
| static_cast<DataType *>(sycl_device.allocate(t_result_bytes)); |
| |
| Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>> |
| gpu_t_left(d_t_left, left_dims); |
| Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>> |
| gpu_t_right(d_t_right, right_dims); |
| Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>> |
| gpu_t_result(d_t_result, res_dims); |
| |
| sycl_device.memcpyHostToDevice(d_t_left, t_left.data(), t_left_bytes); |
| sycl_device.memcpyHostToDevice(d_t_right, t_right.data(), t_right_bytes); |
| |
| gpu_t_result.device(sycl_device) = gpu_t_left.contract(gpu_t_right, dims); |
| sycl_device.memcpyDeviceToHost(t_result_gpu.data(), d_t_result, |
| t_result_bytes); |
| |
| t_result = t_left.contract(t_right, dims); |
| |
| for (IndexType j = 0; j < m_size; j++) { |
| for (IndexType i = 0; i < n_size; i++) { |
| if (static_cast<DataType>(std::fabs(static_cast<DataType>( |
| t_result(j, i) - t_result_gpu(j, i)))) < error_threshold) { |
| continue; |
| } |
| if (Eigen::internal::isApprox(t_result(j, i), t_result_gpu(j, i), |
| error_threshold)) { |
| continue; |
| } |
| std::cout << "M : " << m_size << ", N : " << n_size << ", K : " << k_size |
| << ", mismatch detected at IndexType m: " << j << " n: " << i |
| << " CPU : " << t_result(j, i) |
| << " vs SYCL:" << t_result_gpu(j, i) << std::endl; |
| VERIFY_IS_APPROX(t_result_gpu(j, i), t_result(j, i)); |
| } |
| } |
| sycl_device.deallocate(d_t_left); |
| sycl_device.deallocate(d_t_right); |
| sycl_device.deallocate(d_t_result); |
| } |
| |
| template <int DataLayout, typename DataType, typename IndexType, |
| typename Device> |
| void contraction_lhs_transposed(const Device &sycl_device, IndexType m_size, |
| IndexType k_size, IndexType n_size) { |
| typedef typename Tensor<DataType, 1, DataLayout, IndexType>::DimensionPair |
| DimPair; |
| static const DataType error_threshold = DataType(1e-4); |
| Eigen::array<IndexType, 2> left_dims = {{k_size, m_size}}; |
| Eigen::array<IndexType, 2> right_dims = {{k_size, n_size}}; |
| Eigen::array<IndexType, 2> res_dims = {{m_size, n_size}}; |
| Eigen::array<DimPair, 1> dims = {{DimPair(0, 0)}}; |
| |
| Tensor<DataType, 2, DataLayout, IndexType> t_left(left_dims); |
| Tensor<DataType, 2, DataLayout, IndexType> t_right(right_dims); |
| Tensor<DataType, 2, DataLayout, IndexType> t_result_gpu(res_dims); |
| Tensor<DataType, 2, DataLayout, IndexType> t_result(res_dims); |
| |
| t_left.setRandom(); |
| t_right.setRandom(); |
| |
| std::size_t t_left_bytes = t_left.size() * sizeof(DataType); |
| std::size_t t_right_bytes = t_right.size() * sizeof(DataType); |
| std::size_t t_result_bytes = t_result.size() * sizeof(DataType); |
| |
| DataType *d_t_left = |
| static_cast<DataType *>(sycl_device.allocate(t_left_bytes)); |
| DataType *d_t_right = |
| static_cast<DataType *>(sycl_device.allocate(t_right_bytes)); |
| DataType *d_t_result = |
| static_cast<DataType *>(sycl_device.allocate(t_result_bytes)); |
| |
| Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>> |
| gpu_t_left(d_t_left, left_dims); |
| Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>> |
| gpu_t_right(d_t_right, right_dims); |
| Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>> |
| gpu_t_result(d_t_result, res_dims); |
| |
| sycl_device.memcpyHostToDevice(d_t_left, t_left.data(), t_left_bytes); |
| sycl_device.memcpyHostToDevice(d_t_right, t_right.data(), t_right_bytes); |
| |
| gpu_t_result.device(sycl_device) = gpu_t_left.contract(gpu_t_right, dims); |
| sycl_device.memcpyDeviceToHost(t_result_gpu.data(), d_t_result, |
| t_result_bytes); |
| |
| t_result = t_left.contract(t_right, dims); |
| |
| for (IndexType i = 0; i < t_result.size(); i++) { |
| if (static_cast<DataType>(std::fabs(static_cast<DataType>( |
| t_result(i) - t_result_gpu(i)))) < error_threshold) { |
| continue; |
| } |
| if (Eigen::internal::isApprox(t_result(i), t_result_gpu(i), |
| error_threshold)) { |
| continue; |
| } |
| std::cout << "M : " << m_size << ", N : " << n_size << ", K : " << k_size |
| << ", mismatch detected at IndexType " << i << ": " << t_result(i) |
| << " vs " << t_result_gpu(i) << std::endl; |
| VERIFY_IS_APPROX(t_result_gpu(i), t_result(i)); |
| } |
| sycl_device.deallocate(d_t_left); |
| sycl_device.deallocate(d_t_right); |
| sycl_device.deallocate(d_t_result); |
| } |
| |
| template <int DataLayout, typename DataType, typename IndexType, |
| typename Device> |
| void contraction_both_transposed(const Device &sycl_device, IndexType m_size, |
| IndexType k_size, IndexType n_size) { |
| typedef typename Tensor<DataType, 1, DataLayout, IndexType>::DimensionPair |
| DimPair; |
| static const DataType error_threshold = DataType(1e-4); |
| Eigen::array<IndexType, 2> left_dims = {{k_size, m_size}}; |
| Eigen::array<IndexType, 2> right_dims = {{n_size, k_size}}; |
| Eigen::array<IndexType, 2> res_dims = {{m_size, n_size}}; |
| Eigen::array<DimPair, 1> dims = {{DimPair(0, 1)}}; |
| |
| Tensor<DataType, 2, DataLayout, IndexType> t_left(left_dims); |
| Tensor<DataType, 2, DataLayout, IndexType> t_right(right_dims); |
| Tensor<DataType, 2, DataLayout, IndexType> t_result_gpu(res_dims); |
| Tensor<DataType, 2, DataLayout, IndexType> t_result(res_dims); |
| |
| t_left.setRandom(); |
| t_right.setRandom(); |
| |
| std::size_t t_left_bytes = t_left.size() * sizeof(DataType); |
| std::size_t t_right_bytes = t_right.size() * sizeof(DataType); |
| std::size_t t_result_bytes = t_result.size() * sizeof(DataType); |
| |
| DataType *d_t_left = |
| static_cast<DataType *>(sycl_device.allocate(t_left_bytes)); |
| DataType *d_t_right = |
| static_cast<DataType *>(sycl_device.allocate(t_right_bytes)); |
| DataType *d_t_result = |
| static_cast<DataType *>(sycl_device.allocate(t_result_bytes)); |
| |
| Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>> |
| gpu_t_left(d_t_left, left_dims); |
| Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>> |
| gpu_t_right(d_t_right, right_dims); |
| Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>> |
| gpu_t_result(d_t_result, res_dims); |
| |
| sycl_device.memcpyHostToDevice(d_t_left, t_left.data(), t_left_bytes); |
| sycl_device.memcpyHostToDevice(d_t_right, t_right.data(), t_right_bytes); |
| |
| gpu_t_result.device(sycl_device) = gpu_t_left.contract(gpu_t_right, dims); |
| sycl_device.memcpyDeviceToHost(t_result_gpu.data(), d_t_result, |
| t_result_bytes); |
| |
| t_result = t_left.contract(t_right, dims); |
| |
| for (IndexType i = 0; i < t_result.size(); i++) { |
| if (static_cast<DataType>(std::fabs(static_cast<DataType>( |
| t_result(i) - t_result_gpu(i)))) < error_threshold) { |
| continue; |
| } |
| if (Eigen::internal::isApprox(t_result(i), t_result_gpu(i), |
| error_threshold)) { |
| continue; |
| } |
| std::cout << "M : " << m_size << ", N : " << n_size << ", K : " << k_size |
| << ", mismatch detected at IndexType " << i << ": " << t_result(i) |
| << " vs " << t_result_gpu(i) << std::endl; |
| |
| VERIFY_IS_APPROX(t_result_gpu(i), t_result(i)); |
| } |
| sycl_device.deallocate(d_t_left); |
| sycl_device.deallocate(d_t_right); |
| sycl_device.deallocate(d_t_result); |
| } |
| |
| template <typename Dev> |
| void inline tensorOutofBound(const Dev &sycl_device) { |
| typedef float DataType; |
| typedef int64_t IndexType; |
| std::chrono::time_point<std::chrono::system_clock> start, end; |
| start = std::chrono::system_clock::now(); |
| // Test out of bound for Tensor-Tensor |
| test_no_out_of_bounds<RowMajor, DataType, IndexType>(sycl_device, 10, 1024, |
| 1024); |
| test_no_out_of_bounds<RowMajor, DataType, IndexType>(sycl_device, 1024, 1024, |
| 4096); |
| test_no_out_of_bounds<RowMajor, DataType, IndexType>(sycl_device, 4096, 1024, |
| 2048); |
| test_no_out_of_bounds<ColMajor, DataType, IndexType>(sycl_device, 784, 2048, |
| 1024); |
| test_no_out_of_bounds<ColMajor, DataType, IndexType>(sycl_device, 2048, 1024, |
| 784); |
| test_no_out_of_bounds<RowMajor, DataType, IndexType>(sycl_device, 10, 1024, |
| 10); |
| test_no_out_of_bounds<RowMajor, DataType, IndexType>(sycl_device, 513, 4096, |
| 513); |
| test_no_out_of_bounds<RowMajor, DataType, IndexType>(sycl_device, 783, 1024, |
| 783); |
| test_no_out_of_bounds<ColMajor, DataType, IndexType>(sycl_device, 784, 2048, |
| 784); |
| test_no_out_of_bounds<ColMajor, DataType, IndexType>(sycl_device, 11, 1024, |
| 11); |
| end = std::chrono::system_clock::now(); |
| std::chrono::duration<double> elapsed_seconds = end - start; |
| std::time_t end_time = std::chrono::system_clock::to_time_t(end); |
| std::cout << "tensor out of bound tests finished computation at " |
| << std::ctime(&end_time) |
| << "elapsed time: " << elapsed_seconds.count() << "s\n"; |
| } |
| |
| template <typename Dev> |
| void inline tensorTensor(const Dev &sycl_device) { |
| typedef float DataType; |
| typedef int64_t IndexType; |
| std::chrono::time_point<std::chrono::system_clock> start, end; |
| start = std::chrono::system_clock::now(); |
| // Tensor Tensor Contraction |
| test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 128, 128, |
| 128); |
| test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 128, 128, |
| 128); |
| end = std::chrono::system_clock::now(); |
| std::chrono::duration<double> elapsed_seconds = end - start; |
| std::time_t end_time = std::chrono::system_clock::to_time_t(end); |
| std::cout << "tensor tensor tests finished computation at " |
| << std::ctime(&end_time) |
| << "elapsed time: " << elapsed_seconds.count() << "s\n"; |
| } |
| |
| template <typename Dev> |
| void inline tensorTensor_m(const Dev &sycl_device) { |
| typedef float DataType; |
| typedef int64_t IndexType; |
| std::chrono::time_point<std::chrono::system_clock> start, end; |
| start = std::chrono::system_clock::now(); |
| // Tensor Tensor Contraction |
| test_sycl_contraction_m<ColMajor, DataType, IndexType>(sycl_device); |
| test_sycl_contraction_m<RowMajor, DataType, IndexType>(sycl_device); |
| |
| end = std::chrono::system_clock::now(); |
| std::chrono::duration<double> elapsed_seconds = end - start; |
| std::time_t end_time = std::chrono::system_clock::to_time_t(end); |
| std::cout << "tensor tensor tests finished computation at " |
| << std::ctime(&end_time) |
| << "elapsed time: " << elapsed_seconds.count() << "s\n"; |
| } |
| |
| template <typename Dev> |
| void inline tensorTensor_n(const Dev &sycl_device) { |
| typedef float DataType; |
| typedef int64_t IndexType; |
| std::chrono::time_point<std::chrono::system_clock> start, end; |
| start = std::chrono::system_clock::now(); |
| // Tensor Tensor Contraction |
| test_sycl_contraction_n<ColMajor, DataType, IndexType>(sycl_device); |
| test_sycl_contraction_n<RowMajor, DataType, IndexType>(sycl_device); |
| |
| end = std::chrono::system_clock::now(); |
| std::chrono::duration<double> elapsed_seconds = end - start; |
| std::time_t end_time = std::chrono::system_clock::to_time_t(end); |
| std::cout << "tensor tensor tests finished computation at " |
| << std::ctime(&end_time) |
| << "elapsed time: " << elapsed_seconds.count() << "s\n"; |
| } |
| |
| template <typename Dev> |
| void inline tensorTensor_k(const Dev &sycl_device) { |
| typedef float DataType; |
| typedef int64_t IndexType; |
| std::chrono::time_point<std::chrono::system_clock> start, end; |
| start = std::chrono::system_clock::now(); |
| test_sycl_contraction_k<ColMajor, DataType, IndexType>(sycl_device); |
| test_sycl_contraction_k<RowMajor, DataType, IndexType>(sycl_device); |
| |
| end = std::chrono::system_clock::now(); |
| std::chrono::duration<double> elapsed_seconds = end - start; |
| std::time_t end_time = std::chrono::system_clock::to_time_t(end); |
| std::cout << "tensor tensor tests finished computation at " |
| << std::ctime(&end_time) |
| << "elapsed time: " << elapsed_seconds.count() << "s\n"; |
| } |
| |
| template <typename Dev> |
| void inline tensorTensor_sizes(const Dev &sycl_device) { |
| typedef float DataType; |
| typedef int64_t IndexType; |
| std::chrono::time_point<std::chrono::system_clock> start, end; |
| start = std::chrono::system_clock::now(); |
| // Tensor Tensor Contraction |
| test_sycl_contraction_sizes<ColMajor, DataType, IndexType>(sycl_device); |
| test_sycl_contraction_sizes<RowMajor, DataType, IndexType>(sycl_device); |
| |
| end = std::chrono::system_clock::now(); |
| std::chrono::duration<double> elapsed_seconds = end - start; |
| std::time_t end_time = std::chrono::system_clock::to_time_t(end); |
| std::cout << "tensor tensor tests finished computation at " |
| << std::ctime(&end_time) |
| << "elapsed time: " << elapsed_seconds.count() << "s\n"; |
| } |
| template <typename Dev> |
| void inline vectorVector(const Dev &sycl_device) { |
| typedef float DataType; |
| typedef int64_t IndexType; |
| std::chrono::time_point<std::chrono::system_clock> start, end; |
| start = std::chrono::system_clock::now(); |
| // VECTOR-VECTOR |
| test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 1025, 1, |
| 1025); |
| test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 1025, 1, |
| 1025); |
| test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 1024, 1, |
| 1024); |
| test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 1024, 1, |
| 1024); |
| test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 1023, 1, |
| 1023); |
| test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 1023, 1, |
| 1023); |
| |
| end = std::chrono::system_clock::now(); |
| std::chrono::duration<double> elapsed_seconds = end - start; |
| std::time_t end_time = std::chrono::system_clock::to_time_t(end); |
| std::cout << "contracted tensor tests finished computation at " |
| << std::ctime(&end_time) |
| << "elapsed time: " << elapsed_seconds.count() << "s\n"; |
| } |
| |
| template <typename Dev> |
| void inline vectorTensor(const Dev &sycl_device) { |
| typedef float DataType; |
| typedef int64_t IndexType; |
| std::chrono::time_point<std::chrono::system_clock> start, end; |
| start = std::chrono::system_clock::now(); |
| // Vector-Tensor |
| test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 1, 1025, |
| 1025); |
| test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 1, 1025, |
| 1025); |
| test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 1, 1024, |
| 1024); |
| test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 1, 1024, |
| 1024); |
| test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 1, 1023, |
| 1023); |
| test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 1, 1023, |
| 1023); |
| |
| test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 1, 4097, |
| 4097); |
| test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 1, 4097, |
| 4097); |
| test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 1, 4096, |
| 4096); |
| test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 1, 4096, |
| 4096); |
| test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 1, 4095, |
| 4095); |
| test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 1, 4095, |
| 4095); |
| test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 1, 802816, |
| 32); |
| |
| end = std::chrono::system_clock::now(); |
| std::chrono::duration<double> elapsed_seconds = end - start; |
| std::time_t end_time = std::chrono::system_clock::to_time_t(end); |
| std::cout << "finished computation at " << std::ctime(&end_time) |
| << "elapsed time: " << elapsed_seconds.count() << "s\n"; |
| } |
| |
| template <typename Dev> |
| void inline tensorVector(const Dev &sycl_device) { |
| typedef float DataType; |
| typedef int64_t IndexType; |
| std::chrono::time_point<std::chrono::system_clock> start, end; |
| start = std::chrono::system_clock::now(); |
| // Matrix-Vector |
| test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 1025, 1025, |
| 1); |
| test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 1125, 1025, |
| 1); |
| test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 1224, 1024, |
| 1); |
| test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 1024, 1024, |
| 1); |
| test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 1023, 1023, |
| 1); |
| test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 1023, 1023, |
| 1); |
| test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 4097, 4197, |
| 1); |
| test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 4097, 4097, |
| 1); |
| test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 4096, 4096, |
| 1); |
| test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 4096, 8196, |
| 1); |
| test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 4095, 4095, |
| 1); |
| test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 4095, 4095, |
| 1); |
| // If the GEMV disabled it will creates one kernel to calculate the contraction. |
| // Therefore the acumuation of float number will overflow the precision |
| // threshold for float and cause the test to fail. While it the GMV multiple |
| // kernel will be created and each one run the overflow of accumutation breaks |
| // among the kernels. |
| #ifndef EIGEN_SYCL_DISABLE_GEMV |
| test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 32, 802032, |
| 1); |
| #endif |
| |
| end = std::chrono::system_clock::now(); |
| std::chrono::duration<double> elapsed_seconds = end - start; |
| std::time_t end_time = std::chrono::system_clock::to_time_t(end); |
| std::cout << "finished computation at " << std::ctime(&end_time) |
| << "elapsed time: " << elapsed_seconds.count() << "s\n"; |
| } |
| |
| template <typename Dev> |
| void inline tensorScalar(const Dev &sycl_device) { |
| typedef float DataType; |
| typedef int64_t IndexType; |
| std::chrono::time_point<std::chrono::system_clock> start, end; |
| start = std::chrono::system_clock::now(); |
| // SCALAR Contraction |
| test_scalar<ColMajor, DataType, IndexType>(sycl_device, 127, 127, 127); |
| test_scalar<RowMajor, DataType, IndexType>(sycl_device, 127, 127, 127); |
| test_scalar<ColMajor, DataType, IndexType>(sycl_device, 128, 128, 128); |
| test_scalar<RowMajor, DataType, IndexType>(sycl_device, 128, 128, 128); |
| test_scalar<ColMajor, DataType, IndexType>(sycl_device, 129, 129, 129); |
| test_scalar<RowMajor, DataType, IndexType>(sycl_device, 129, 129, 129); |
| |
| end = std::chrono::system_clock::now(); |
| std::chrono::duration<double> elapsed_seconds = end - start; |
| std::time_t end_time = std::chrono::system_clock::to_time_t(end); |
| std::cout << "finished computation at " << std::ctime(&end_time) |
| << "elapsed time: " << elapsed_seconds.count() << "s\n"; |
| } |
| |
| template <typename Dev> |
| void inline skinnyTensor_row(const Dev &sycl_device) { |
| typedef float DataType; |
| typedef int64_t IndexType; |
| std::chrono::time_point<std::chrono::system_clock> start, end; |
| start = std::chrono::system_clock::now(); |
| // Tensor Tensor Contraction |
| test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 16, 4, 16); |
| test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 257, 131073, |
| 257); |
| test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 256, 131072, |
| 256); |
| test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 16, 131073, |
| 16); |
| test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 17, 131072, |
| 17); |
| end = std::chrono::system_clock::now(); |
| std::chrono::duration<double> elapsed_seconds = end - start; |
| std::time_t end_time = std::chrono::system_clock::to_time_t(end); |
| std::cout << "finished computation at " << std::ctime(&end_time) |
| << "elapsed time: " << elapsed_seconds.count() << "s\n"; |
| } |
| |
| template <typename Dev> |
| void inline skinnyTensor_col(const Dev &sycl_device) { |
| typedef float DataType; |
| typedef int64_t IndexType; |
| std::chrono::time_point<std::chrono::system_clock> start, end; |
| start = std::chrono::system_clock::now(); |
| // Tensor Tensor Contraction |
| test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 16, 4, 16); |
| test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 257, 131073, |
| 257); |
| test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 256, 131072, |
| 256); |
| test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 16, 131073, |
| 16); |
| test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 17, 131072, |
| 17); |
| end = std::chrono::system_clock::now(); |
| std::chrono::duration<double> elapsed_seconds = end - start; |
| std::time_t end_time = std::chrono::system_clock::to_time_t(end); |
| std::cout << "finished computation at " << std::ctime(&end_time) |
| << "elapsed time: " << elapsed_seconds.count() << "s\n"; |
| } |
| |
| template <typename Dev> |
| void inline tensor_contraction_batch_per_device(const Dev &sycl_device) { |
| typedef float DataType; |
| typedef int64_t IndexType; |
| std::chrono::time_point<std::chrono::system_clock> start, end; |
| start = std::chrono::system_clock::now(); |
| |
| contraction_batch<RowMajor, DataType, IndexType>(sycl_device, 64, 75, 30, 4, |
| 0, 4); |
| contraction_batch<ColMajor, DataType, IndexType>(sycl_device, 64, 75, 30, 4, |
| 0, 4); |
| end = std::chrono::system_clock::now(); |
| std::chrono::duration<double> elapsed_seconds = end - start; |
| std::time_t end_time = std::chrono::system_clock::to_time_t(end); |
| std::cout << "finished computation at " << std::ctime(&end_time) |
| << "elapsed time: " << elapsed_seconds.count() << "s\n"; |
| } |
| |
| template <typename Dev> |
| void inline tensor_contraction_lhs_transposed_per_device( |
| const Dev &sycl_device) { |
| typedef float DataType; |
| typedef int64_t IndexType; |
| std::chrono::time_point<std::chrono::system_clock> start, end; |
| start = std::chrono::system_clock::now(); |
| |
| contraction_lhs_transposed<RowMajor, DataType, IndexType>(sycl_device, 8, 4, |
| 8); |
| contraction_lhs_transposed<RowMajor, DataType, IndexType>(sycl_device, 32, 8, |
| 32); |
| contraction_lhs_transposed<RowMajor, DataType, IndexType>(sycl_device, 64, 16, |
| 64); |
| contraction_lhs_transposed<RowMajor, DataType, IndexType>(sycl_device, 784, |
| 2048, 1024); |
| contraction_lhs_transposed<RowMajor, DataType, IndexType>(sycl_device, 1024, |
| 10, 1024); |
| contraction_lhs_transposed<RowMajor, DataType, IndexType>(sycl_device, 4096, |
| 1024, 1024); |
| contraction_lhs_transposed<RowMajor, DataType, IndexType>(sycl_device, 2048, |
| 4096, 1024); |
| end = std::chrono::system_clock::now(); |
| std::chrono::duration<double> elapsed_seconds = end - start; |
| std::time_t end_time = std::chrono::system_clock::to_time_t(end); |
| std::cout << "finished computation at " << std::ctime(&end_time) |
| << "elapsed time: " << elapsed_seconds.count() << "s\n"; |
| } |
| |
| template <typename Dev> |
| void inline tensor_contraction_rhs_transposed_per_device( |
| const Dev &sycl_device) { |
| typedef float DataType; |
| typedef int64_t IndexType; |
| std::chrono::time_point<std::chrono::system_clock> start, end; |
| start = std::chrono::system_clock::now(); |
| |
| contraction_rhs_transposed<RowMajor, DataType, IndexType>(sycl_device, 16, 4, |
| 16); |
| contraction_rhs_transposed<RowMajor, DataType, IndexType>(sycl_device, 17, 5, |
| 17); |
| contraction_rhs_transposed<RowMajor, DataType, IndexType>(sycl_device, 32, 8, |
| 32); |
| contraction_rhs_transposed<RowMajor, DataType, IndexType>(sycl_device, 64, 16, |
| 64); |
| contraction_rhs_transposed<RowMajor, DataType, IndexType>(sycl_device, 10, |
| 1024, 1024); |
| contraction_rhs_transposed<RowMajor, DataType, IndexType>(sycl_device, 1024, |
| 1024, 4096); |
| contraction_rhs_transposed<RowMajor, DataType, IndexType>(sycl_device, 4096, |
| 1024, 2048); |
| contraction_rhs_transposed<RowMajor, DataType, IndexType>(sycl_device, 2048, |
| 1024, 784); |
| end = std::chrono::system_clock::now(); |
| std::chrono::duration<double> elapsed_seconds = end - start; |
| std::time_t end_time = std::chrono::system_clock::to_time_t(end); |
| std::cout << "finished computation at " << std::ctime(&end_time) |
| << "elapsed time: " << elapsed_seconds.count() << "s\n"; |
| } |
| |
| template <typename Dev> |
| void inline tensor_contraction_both_transposed_per_device( |
| const Dev &sycl_device) { |
| typedef float DataType; |
| typedef int64_t IndexType; |
| std::chrono::time_point<std::chrono::system_clock> start, end; |
| start = std::chrono::system_clock::now(); |
| |
| contraction_both_transposed<RowMajor, DataType, IndexType>(sycl_device, 17, 5, |
| 17); |
| contraction_both_transposed<RowMajor, DataType, IndexType>(sycl_device, 32, 8, |
| 32); |
| contraction_both_transposed<RowMajor, DataType, IndexType>(sycl_device, 64, |
| 16, 64); |
| end = std::chrono::system_clock::now(); |
| std::chrono::duration<double> elapsed_seconds = end - start; |
| std::time_t end_time = std::chrono::system_clock::to_time_t(end); |
| std::cout << "finished computation at " << std::ctime(&end_time) |
| << "elapsed time: " << elapsed_seconds.count() << "s\n"; |
| } |
| |
| EIGEN_DECLARE_TEST(cxx11_tensor_contract_sycl) { |
| for (const auto &device : Eigen::get_sycl_supported_devices()) { |
| std::cout << "Running on " |
| << device.template get_info<cl::sycl::info::device::name>() |
| << std::endl; |
| QueueInterface queueInterface(device); |
| auto sycl_device = Eigen::SyclDevice(&queueInterface); |
| CALL_SUBTEST_1(tensorOutofBound(sycl_device)); |
| CALL_SUBTEST_2(tensorTensor(sycl_device)); |
| CALL_SUBTEST_2(tensorTensor_m(sycl_device)); |
| CALL_SUBTEST_2(tensorTensor_n(sycl_device)); |
| CALL_SUBTEST_2(tensorTensor_k(sycl_device)); |
| CALL_SUBTEST_2(tensorTensor_sizes(sycl_device)); |
| CALL_SUBTEST_3(vectorVector(sycl_device)); |
| CALL_SUBTEST_4(vectorTensor(sycl_device)); |
| CALL_SUBTEST_5(tensorVector(sycl_device)); |
| CALL_SUBTEST_6(tensorScalar(sycl_device)); |
| CALL_SUBTEST_7(skinnyTensor_row(sycl_device)); |
| CALL_SUBTEST_7(skinnyTensor_col(sycl_device)); |
| CALL_SUBTEST_8(tensor_contraction_batch_per_device(sycl_device)); |
| CALL_SUBTEST_9(tensor_contraction_lhs_transposed_per_device(sycl_device)); |
| CALL_SUBTEST_10(tensor_contraction_rhs_transposed_per_device(sycl_device)); |
| CALL_SUBTEST_11(tensor_contraction_both_transposed_per_device(sycl_device)); |
| } |
| } |