| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| |
| #include <Eigen/CXX11/Tensor> |
| |
| using Eigen::Tensor; |
| |
| |
| struct InsertZeros { |
| DSizes<DenseIndex, 2> dimensions(const Tensor<float, 2>& input) const { |
| DSizes<DenseIndex, 2> result; |
| result[0] = input.dimension(0) * 2; |
| result[1] = input.dimension(1) * 2; |
| return result; |
| } |
| |
| template <typename Output, typename Device> |
| void eval(const Tensor<float, 2>& input, Output& output, const Device& device) const |
| { |
| array<DenseIndex, 2> strides; |
| strides[0] = 2; |
| strides[1] = 2; |
| output.stride(strides).device(device) = input; |
| |
| Eigen::DSizes<DenseIndex, 2> offsets(1,1); |
| Eigen::DSizes<DenseIndex, 2> extents(output.dimension(0)-1, output.dimension(1)-1); |
| output.slice(offsets, extents).stride(strides).device(device) = input.constant(0.0f); |
| } |
| }; |
| |
| static void test_custom_unary_op() |
| { |
| Tensor<float, 2> tensor(3,5); |
| tensor.setRandom(); |
| |
| Tensor<float, 2> result = tensor.customOp(InsertZeros()); |
| VERIFY_IS_EQUAL(result.dimension(0), 6); |
| VERIFY_IS_EQUAL(result.dimension(1), 10); |
| |
| for (int i = 0; i < 6; i+=2) { |
| for (int j = 0; j < 10; j+=2) { |
| VERIFY_IS_EQUAL(result(i, j), tensor(i/2, j/2)); |
| } |
| } |
| for (int i = 1; i < 6; i+=2) { |
| for (int j = 1; j < 10; j+=2) { |
| VERIFY_IS_EQUAL(result(i, j), 0); |
| } |
| } |
| } |
| |
| |
| struct BatchMatMul { |
| DSizes<DenseIndex, 3> dimensions(const Tensor<float, 3>& input1, const Tensor<float, 3>& input2) const { |
| DSizes<DenseIndex, 3> result; |
| result[0] = input1.dimension(0); |
| result[1] = input2.dimension(1); |
| result[2] = input2.dimension(2); |
| return result; |
| } |
| |
| template <typename Output, typename Device> |
| void eval(const Tensor<float, 3>& input1, const Tensor<float, 3>& input2, |
| Output& output, const Device& device) const |
| { |
| typedef Tensor<float, 3>::DimensionPair DimPair; |
| array<DimPair, 1> dims; |
| dims[0] = DimPair(1, 0); |
| for (int i = 0; i < output.dimension(2); ++i) { |
| output.template chip<2>(i).device(device) = input1.chip<2>(i).contract(input2.chip<2>(i), dims); |
| } |
| } |
| }; |
| |
| |
| static void test_custom_binary_op() |
| { |
| Tensor<float, 3> tensor1(2,3,5); |
| tensor1.setRandom(); |
| Tensor<float, 3> tensor2(3,7,5); |
| tensor2.setRandom(); |
| |
| Tensor<float, 3> result = tensor1.customOp(tensor2, BatchMatMul()); |
| for (int i = 0; i < 5; ++i) { |
| typedef Tensor<float, 3>::DimensionPair DimPair; |
| array<DimPair, 1> dims; |
| dims[0] = DimPair(1, 0); |
| Tensor<float, 2> reference = tensor1.chip<2>(i).contract(tensor2.chip<2>(i), dims); |
| TensorRef<Tensor<float, 2> > val = result.chip<2>(i); |
| for (int j = 0; j < 2; ++j) { |
| for (int k = 0; k < 7; ++k) { |
| VERIFY_IS_APPROX(val(j, k), reference(j, k)); |
| } |
| } |
| } |
| } |
| |
| |
| EIGEN_DECLARE_TEST(cxx11_tensor_custom_op) |
| { |
| CALL_SUBTEST(test_custom_unary_op()); |
| CALL_SUBTEST(test_custom_binary_op()); |
| } |