| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #define EIGEN_TEST_NO_LONGDOUBLE |
| #define EIGEN_TEST_NO_COMPLEX |
| |
| #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int |
| #define EIGEN_USE_GPU |
| |
| #include "main.h" |
| #include <Eigen/CXX11/Tensor> |
| |
| #include <Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h> |
| |
| void test_gpu_random_uniform() |
| { |
| Tensor<float, 2> out(72,97); |
| out.setZero(); |
| |
| std::size_t out_bytes = out.size() * sizeof(float); |
| |
| float* d_out; |
| gpuMalloc((void**)(&d_out), out_bytes); |
| |
| Eigen::GpuStreamDevice stream; |
| Eigen::GpuDevice gpu_device(&stream); |
| |
| Eigen::TensorMap<Eigen::Tensor<float, 2> > gpu_out(d_out, 72,97); |
| |
| gpu_out.device(gpu_device) = gpu_out.random(); |
| |
| assert(gpuMemcpyAsync(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess); |
| assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess); |
| |
| // For now we just check this code doesn't crash. |
| // TODO: come up with a valid test of randomness |
| } |
| |
| |
| void test_gpu_random_normal() |
| { |
| Tensor<float, 2> out(72,97); |
| out.setZero(); |
| |
| std::size_t out_bytes = out.size() * sizeof(float); |
| |
| float* d_out; |
| gpuMalloc((void**)(&d_out), out_bytes); |
| |
| Eigen::GpuStreamDevice stream; |
| Eigen::GpuDevice gpu_device(&stream); |
| |
| Eigen::TensorMap<Eigen::Tensor<float, 2> > gpu_out(d_out, 72,97); |
| |
| Eigen::internal::NormalRandomGenerator<float> gen(true); |
| gpu_out.device(gpu_device) = gpu_out.random(gen); |
| |
| assert(gpuMemcpyAsync(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess); |
| assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess); |
| } |
| |
| static void test_complex() |
| { |
| Tensor<std::complex<float>, 1> vec(6); |
| vec.setRandom(); |
| |
| // Fixme: we should check that the generated numbers follow a uniform |
| // distribution instead. |
| for (int i = 1; i < 6; ++i) { |
| VERIFY_IS_NOT_EQUAL(vec(i), vec(i-1)); |
| } |
| } |
| |
| |
| EIGEN_DECLARE_TEST(cxx11_tensor_random_gpu) |
| { |
| CALL_SUBTEST(test_gpu_random_uniform()); |
| CALL_SUBTEST(test_gpu_random_normal()); |
| CALL_SUBTEST(test_complex()); |
| } |