blob: e8d6881ab2e18424eb50a44bd333584b20d3d38e [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
template<typename T>
struct other_matrix_type
{
typedef int type;
};
template<typename Scalar_, int Rows_, int Cols_, int Options_, int MaxRows_, int MaxCols_>
struct other_matrix_type<Matrix<Scalar_, Rows_, Cols_, Options_, MaxRows_, MaxCols_> >
{
typedef Matrix<Scalar_, Rows_, Cols_, Options_^RowMajor, MaxRows_, MaxCols_> type;
};
template <typename MatrixType>
std::enable_if_t<(MatrixType::RowsAtCompileTime==1 || MatrixType::RowsAtCompileTime==Dynamic), void>
check_row_swap(MatrixType& m1) {
if (m1.rows() != 1) {
// test assertion on mismatching size -- matrix case
VERIFY_RAISES_ASSERT(m1.swap(m1.row(0)));
// test assertion on mismatching size -- xpr case
VERIFY_RAISES_ASSERT(m1.row(0).swap(m1));
}
}
template <typename MatrixType>
std::enable_if_t<!(MatrixType::RowsAtCompileTime==1 || MatrixType::RowsAtCompileTime==Dynamic), void>
check_row_swap(MatrixType& /* unused */) {
}
template<typename MatrixType> void swap(const MatrixType& m)
{
typedef typename other_matrix_type<MatrixType>::type OtherMatrixType;
typedef typename MatrixType::Scalar Scalar;
eigen_assert((!internal::is_same<MatrixType,OtherMatrixType>::value));
Index rows = m.rows();
Index cols = m.cols();
// construct 3 matrix guaranteed to be distinct
MatrixType m1 = MatrixType::Random(rows,cols);
MatrixType m2 = MatrixType::Random(rows,cols) + Scalar(100) * MatrixType::Identity(rows,cols);
OtherMatrixType m3 = OtherMatrixType::Random(rows,cols) + Scalar(200) * OtherMatrixType::Identity(rows,cols);
MatrixType m1_copy = m1;
MatrixType m2_copy = m2;
OtherMatrixType m3_copy = m3;
// test swapping 2 matrices of same type
Scalar *d1=m1.data(), *d2=m2.data();
m1.swap(m2);
VERIFY_IS_APPROX(m1,m2_copy);
VERIFY_IS_APPROX(m2,m1_copy);
if(MatrixType::SizeAtCompileTime==Dynamic)
{
VERIFY(m1.data()==d2);
VERIFY(m2.data()==d1);
}
m1 = m1_copy;
m2 = m2_copy;
// test swapping 2 matrices of different types
m1.swap(m3);
VERIFY_IS_APPROX(m1,m3_copy);
VERIFY_IS_APPROX(m3,m1_copy);
m1 = m1_copy;
m3 = m3_copy;
// test swapping matrix with expression
m1.swap(m2.block(0,0,rows,cols));
VERIFY_IS_APPROX(m1,m2_copy);
VERIFY_IS_APPROX(m2,m1_copy);
m1 = m1_copy;
m2 = m2_copy;
// test swapping two expressions of different types
m1.transpose().swap(m3.transpose());
VERIFY_IS_APPROX(m1,m3_copy);
VERIFY_IS_APPROX(m3,m1_copy);
m1 = m1_copy;
m3 = m3_copy;
check_row_swap(m1);
}
EIGEN_DECLARE_TEST(swap)
{
int s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE);
CALL_SUBTEST_1( swap(Matrix3f()) ); // fixed size, no vectorization
CALL_SUBTEST_2( swap(Matrix4d()) ); // fixed size, possible vectorization
CALL_SUBTEST_3( swap(MatrixXd(s,s)) ); // dyn size, no vectorization
CALL_SUBTEST_4( swap(MatrixXf(s,s)) ); // dyn size, possible vectorization
TEST_SET_BUT_UNUSED_VARIABLE(s)
}