blob: ed0a731aa842a662207390efcd70768c8968d7f4 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016 Igor Babuschkin <igor@babuschk.in>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_SCAN_H
#define EIGEN_CXX11_TENSOR_TENSOR_SCAN_H
#include "./InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
template <typename Op, typename XprType>
struct traits<TensorScanOp<Op, XprType> >
: public traits<XprType> {
typedef typename XprType::Scalar Scalar;
typedef traits<XprType> XprTraits;
typedef typename XprTraits::StorageKind StorageKind;
typedef typename XprType::Nested Nested;
typedef std::remove_reference_t<Nested> Nested_;
static constexpr int NumDimensions = XprTraits::NumDimensions;
static constexpr int Layout = XprTraits::Layout;
typedef typename XprTraits::PointerType PointerType;
};
template<typename Op, typename XprType>
struct eval<TensorScanOp<Op, XprType>, Eigen::Dense>
{
typedef const TensorScanOp<Op, XprType>& type;
};
template<typename Op, typename XprType>
struct nested<TensorScanOp<Op, XprType>, 1,
typename eval<TensorScanOp<Op, XprType> >::type>
{
typedef TensorScanOp<Op, XprType> type;
};
} // end namespace internal
/** \class TensorScan
* \ingroup CXX11_Tensor_Module
*
* \brief Tensor scan class.
*/
template <typename Op, typename XprType>
class TensorScanOp
: public TensorBase<TensorScanOp<Op, XprType>, ReadOnlyAccessors> {
public:
typedef typename Eigen::internal::traits<TensorScanOp>::Scalar Scalar;
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename Eigen::internal::nested<TensorScanOp>::type Nested;
typedef typename Eigen::internal::traits<TensorScanOp>::StorageKind StorageKind;
typedef typename Eigen::internal::traits<TensorScanOp>::Index Index;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorScanOp(
const XprType& expr, const Index& axis, bool exclusive = false, const Op& op = Op())
: m_expr(expr), m_axis(axis), m_accumulator(op), m_exclusive(exclusive) {}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const Index axis() const { return m_axis; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const XprType& expression() const { return m_expr; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const Op accumulator() const { return m_accumulator; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
bool exclusive() const { return m_exclusive; }
protected:
typename XprType::Nested m_expr;
const Index m_axis;
const Op m_accumulator;
const bool m_exclusive;
};
namespace internal {
template <typename Self>
EIGEN_STRONG_INLINE void ReduceScalar(Self& self, Index offset,
typename Self::CoeffReturnType* data) {
// Compute the scan along the axis, starting at the given offset
typename Self::CoeffReturnType accum = self.accumulator().initialize();
if (self.stride() == 1) {
if (self.exclusive()) {
for (Index curr = offset; curr < offset + self.size(); ++curr) {
data[curr] = self.accumulator().finalize(accum);
self.accumulator().reduce(self.inner().coeff(curr), &accum);
}
} else {
for (Index curr = offset; curr < offset + self.size(); ++curr) {
self.accumulator().reduce(self.inner().coeff(curr), &accum);
data[curr] = self.accumulator().finalize(accum);
}
}
} else {
if (self.exclusive()) {
for (Index idx3 = 0; idx3 < self.size(); idx3++) {
Index curr = offset + idx3 * self.stride();
data[curr] = self.accumulator().finalize(accum);
self.accumulator().reduce(self.inner().coeff(curr), &accum);
}
} else {
for (Index idx3 = 0; idx3 < self.size(); idx3++) {
Index curr = offset + idx3 * self.stride();
self.accumulator().reduce(self.inner().coeff(curr), &accum);
data[curr] = self.accumulator().finalize(accum);
}
}
}
}
template <typename Self>
EIGEN_STRONG_INLINE void ReducePacket(Self& self, Index offset,
typename Self::CoeffReturnType* data) {
using Scalar = typename Self::CoeffReturnType;
using Packet = typename Self::PacketReturnType;
// Compute the scan along the axis, starting at the calculated offset
Packet accum = self.accumulator().template initializePacket<Packet>();
if (self.stride() == 1) {
if (self.exclusive()) {
for (Index curr = offset; curr < offset + self.size(); ++curr) {
internal::pstoreu<Scalar, Packet>(data + curr, self.accumulator().finalizePacket(accum));
self.accumulator().reducePacket(self.inner().template packet<Unaligned>(curr), &accum);
}
} else {
for (Index curr = offset; curr < offset + self.size(); ++curr) {
self.accumulator().reducePacket(self.inner().template packet<Unaligned>(curr), &accum);
internal::pstoreu<Scalar, Packet>(data + curr, self.accumulator().finalizePacket(accum));
}
}
} else {
if (self.exclusive()) {
for (Index idx3 = 0; idx3 < self.size(); idx3++) {
const Index curr = offset + idx3 * self.stride();
internal::pstoreu<Scalar, Packet>(data + curr, self.accumulator().finalizePacket(accum));
self.accumulator().reducePacket(self.inner().template packet<Unaligned>(curr), &accum);
}
} else {
for (Index idx3 = 0; idx3 < self.size(); idx3++) {
const Index curr = offset + idx3 * self.stride();
self.accumulator().reducePacket(self.inner().template packet<Unaligned>(curr), &accum);
internal::pstoreu<Scalar, Packet>(data + curr, self.accumulator().finalizePacket(accum));
}
}
}
}
template <typename Self, bool Vectorize, bool Parallel>
struct ReduceBlock {
EIGEN_STRONG_INLINE void operator()(Self& self, Index idx1,
typename Self::CoeffReturnType* data) {
for (Index idx2 = 0; idx2 < self.stride(); idx2++) {
// Calculate the starting offset for the scan
Index offset = idx1 + idx2;
ReduceScalar(self, offset, data);
}
}
};
// Specialization for vectorized reduction.
template <typename Self>
struct ReduceBlock<Self, /*Vectorize=*/true, /*Parallel=*/false> {
EIGEN_STRONG_INLINE void operator()(Self& self, Index idx1,
typename Self::CoeffReturnType* data) {
using Packet = typename Self::PacketReturnType;
const int PacketSize = internal::unpacket_traits<Packet>::size;
Index idx2 = 0;
for (; idx2 + PacketSize <= self.stride(); idx2 += PacketSize) {
// Calculate the starting offset for the packet scan
Index offset = idx1 + idx2;
ReducePacket(self, offset, data);
}
for (; idx2 < self.stride(); idx2++) {
// Calculate the starting offset for the scan
Index offset = idx1 + idx2;
ReduceScalar(self, offset, data);
}
}
};
// Single-threaded CPU implementation of scan
template <typename Self, typename Reducer, typename Device,
bool Vectorize =
(TensorEvaluator<typename Self::ChildTypeNoConst, Device>::PacketAccess &&
internal::reducer_traits<Reducer, Device>::PacketAccess)>
struct ScanLauncher {
void operator()(Self& self, typename Self::CoeffReturnType* data) {
Index total_size = internal::array_prod(self.dimensions());
// We fix the index along the scan axis to 0 and perform a
// scan per remaining entry. The iteration is split into two nested
// loops to avoid an integer division by keeping track of each idx1 and
// idx2.
for (Index idx1 = 0; idx1 < total_size; idx1 += self.stride() * self.size()) {
ReduceBlock<Self, Vectorize, /*Parallel=*/false> block_reducer;
block_reducer(self, idx1, data);
}
}
};
#ifdef EIGEN_USE_THREADS
// Adjust block_size to avoid false sharing of cachelines among
// threads. Currently set to twice the cache line size on Intel and ARM
// processors.
EIGEN_STRONG_INLINE Index AdjustBlockSize(Index item_size, Index block_size) {
EIGEN_CONSTEXPR Index kBlockAlignment = 128;
const Index items_per_cacheline =
numext::maxi<Index>(1, kBlockAlignment / item_size);
return items_per_cacheline * divup(block_size, items_per_cacheline);
}
template <typename Self>
struct ReduceBlock<Self, /*Vectorize=*/true, /*Parallel=*/true> {
EIGEN_STRONG_INLINE void operator()(Self& self, Index idx1,
typename Self::CoeffReturnType* data) {
using Scalar = typename Self::CoeffReturnType;
using Packet = typename Self::PacketReturnType;
const int PacketSize = internal::unpacket_traits<Packet>::size;
Index num_scalars = self.stride();
Index num_packets = 0;
if (self.stride() >= PacketSize) {
num_packets = self.stride() / PacketSize;
self.device().parallelFor(
num_packets,
TensorOpCost(PacketSize * self.size(), PacketSize * self.size(),
16 * PacketSize * self.size(), true, PacketSize),
// Make the shard size large enough that two neighboring threads
// won't write to the same cacheline of `data`.
[=](Index blk_size) {
return AdjustBlockSize(PacketSize * sizeof(Scalar), blk_size);
},
[&](Index first, Index last) {
for (Index packet = first; packet < last; ++packet) {
const Index idx2 = packet * PacketSize;
ReducePacket(self, idx1 + idx2, data);
}
});
num_scalars -= num_packets * PacketSize;
}
self.device().parallelFor(
num_scalars, TensorOpCost(self.size(), self.size(), 16 * self.size()),
// Make the shard size large enough that two neighboring threads
// won't write to the same cacheline of `data`.
[=](Index blk_size) {
return AdjustBlockSize(sizeof(Scalar), blk_size);
},
[&](Index first, Index last) {
for (Index scalar = first; scalar < last; ++scalar) {
const Index idx2 = num_packets * PacketSize + scalar;
ReduceScalar(self, idx1 + idx2, data);
}
});
}
};
template <typename Self>
struct ReduceBlock<Self, /*Vectorize=*/false, /*Parallel=*/true> {
EIGEN_STRONG_INLINE void operator()(Self& self, Index idx1,
typename Self::CoeffReturnType* data) {
using Scalar = typename Self::CoeffReturnType;
self.device().parallelFor(
self.stride(), TensorOpCost(self.size(), self.size(), 16 * self.size()),
// Make the shard size large enough that two neighboring threads
// won't write to the same cacheline of `data`.
[=](Index blk_size) {
return AdjustBlockSize(sizeof(Scalar), blk_size);
},
[&](Index first, Index last) {
for (Index idx2 = first; idx2 < last; ++idx2) {
ReduceScalar(self, idx1 + idx2, data);
}
});
}
};
// Specialization for multi-threaded execution.
template <typename Self, typename Reducer, bool Vectorize>
struct ScanLauncher<Self, Reducer, ThreadPoolDevice, Vectorize> {
void operator()(Self& self, typename Self::CoeffReturnType* data) {
using Scalar = typename Self::CoeffReturnType;
using Packet = typename Self::PacketReturnType;
const int PacketSize = internal::unpacket_traits<Packet>::size;
const Index total_size = internal::array_prod(self.dimensions());
const Index inner_block_size = self.stride() * self.size();
bool parallelize_by_outer_blocks = (total_size >= (self.stride() * inner_block_size));
if ((parallelize_by_outer_blocks && total_size <= 4096) ||
(!parallelize_by_outer_blocks && self.stride() < PacketSize)) {
ScanLauncher<Self, Reducer, DefaultDevice, Vectorize> launcher;
launcher(self, data);
return;
}
if (parallelize_by_outer_blocks) {
// Parallelize over outer blocks.
const Index num_outer_blocks = total_size / inner_block_size;
self.device().parallelFor(
num_outer_blocks,
TensorOpCost(inner_block_size, inner_block_size,
16 * PacketSize * inner_block_size, Vectorize,
PacketSize),
[=](Index blk_size) {
return AdjustBlockSize(inner_block_size * sizeof(Scalar), blk_size);
},
[&](Index first, Index last) {
for (Index idx1 = first; idx1 < last; ++idx1) {
ReduceBlock<Self, Vectorize, /*Parallelize=*/false> block_reducer;
block_reducer(self, idx1 * inner_block_size, data);
}
});
} else {
// Parallelize over inner packets/scalars dimensions when the reduction
// axis is not an inner dimension.
ReduceBlock<Self, Vectorize, /*Parallelize=*/true> block_reducer;
for (Index idx1 = 0; idx1 < total_size;
idx1 += self.stride() * self.size()) {
block_reducer(self, idx1, data);
}
}
}
};
#endif // EIGEN_USE_THREADS
#if defined(EIGEN_USE_GPU) && (defined(EIGEN_GPUCC))
// GPU implementation of scan
// TODO(ibab) This placeholder implementation performs multiple scans in
// parallel, but it would be better to use a parallel scan algorithm and
// optimize memory access.
template <typename Self, typename Reducer>
__global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void ScanKernel(Self self, Index total_size, typename Self::CoeffReturnType* data) {
// Compute offset as in the CPU version
Index val = threadIdx.x + blockIdx.x * blockDim.x;
Index offset = (val / self.stride()) * self.stride() * self.size() + val % self.stride();
if (offset + (self.size() - 1) * self.stride() < total_size) {
// Compute the scan along the axis, starting at the calculated offset
typename Self::CoeffReturnType accum = self.accumulator().initialize();
for (Index idx = 0; idx < self.size(); idx++) {
Index curr = offset + idx * self.stride();
if (self.exclusive()) {
data[curr] = self.accumulator().finalize(accum);
self.accumulator().reduce(self.inner().coeff(curr), &accum);
} else {
self.accumulator().reduce(self.inner().coeff(curr), &accum);
data[curr] = self.accumulator().finalize(accum);
}
}
}
__syncthreads();
}
template <typename Self, typename Reducer, bool Vectorize>
struct ScanLauncher<Self, Reducer, GpuDevice, Vectorize> {
void operator()(const Self& self, typename Self::CoeffReturnType* data) {
Index total_size = internal::array_prod(self.dimensions());
Index num_blocks = (total_size / self.size() + 63) / 64;
Index block_size = 64;
LAUNCH_GPU_KERNEL((ScanKernel<Self, Reducer>), num_blocks, block_size, 0, self.device(), self, total_size, data);
}
};
#endif // EIGEN_USE_GPU && (EIGEN_GPUCC)
} // namespace internal
// Eval as rvalue
template <typename Op, typename ArgType, typename Device>
struct TensorEvaluator<const TensorScanOp<Op, ArgType>, Device> {
typedef TensorScanOp<Op, ArgType> XprType;
typedef typename XprType::Index Index;
typedef const ArgType ChildTypeNoConst;
typedef const ArgType ChildType;
static constexpr int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
typedef DSizes<Index, NumDims> Dimensions;
typedef std::remove_const_t<typename XprType::Scalar> Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
typedef TensorEvaluator<const TensorScanOp<Op, ArgType>, Device> Self;
typedef StorageMemory<Scalar, Device> Storage;
typedef typename Storage::Type EvaluatorPointerType;
static constexpr int Layout = TensorEvaluator<ArgType, Device>::Layout;
enum {
IsAligned = false,
PacketAccess = (PacketType<CoeffReturnType, Device>::size > 1),
BlockAccess = false,
PreferBlockAccess = false,
CoordAccess = false,
RawAccess = true
};
//===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
typedef internal::TensorBlockNotImplemented TensorBlock;
//===--------------------------------------------------------------------===//
EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
: m_impl(op.expression(), device),
m_device(device),
m_exclusive(op.exclusive()),
m_accumulator(op.accumulator()),
m_size(m_impl.dimensions()[op.axis()]),
m_stride(1), m_consume_dim(op.axis()),
m_output(NULL) {
// Accumulating a scalar isn't supported.
EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
eigen_assert(op.axis() >= 0 && op.axis() < NumDims);
// Compute stride of scan axis
const Dimensions& dims = m_impl.dimensions();
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
for (int i = 0; i < op.axis(); ++i) {
m_stride = m_stride * dims[i];
}
} else {
// dims can only be indexed through unsigned integers,
// so let's use an unsigned type to let the compiler knows.
// This prevents stupid warnings: ""'*((void*)(& evaluator)+64)[18446744073709551615]' may be used uninitialized in this function"
unsigned int axis = internal::convert_index<unsigned int>(op.axis());
for (unsigned int i = NumDims - 1; i > axis; --i) {
m_stride = m_stride * dims[i];
}
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const {
return m_impl.dimensions();
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Index& stride() const {
return m_stride;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Index& consume_dim() const {
return m_consume_dim;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Index& size() const {
return m_size;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Op& accumulator() const {
return m_accumulator;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool exclusive() const {
return m_exclusive;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorEvaluator<ArgType, Device>& inner() const {
return m_impl;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Device& device() const {
return m_device;
}
EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType data) {
m_impl.evalSubExprsIfNeeded(NULL);
internal::ScanLauncher<Self, Op, Device> launcher;
if (data) {
launcher(*this, data);
return false;
}
const Index total_size = internal::array_prod(dimensions());
m_output = static_cast<EvaluatorPointerType>(m_device.get((Scalar*) m_device.allocate_temp(total_size * sizeof(Scalar))));
launcher(*this, m_output);
return true;
}
template<int LoadMode>
EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const {
return internal::ploadt<PacketReturnType, LoadMode>(m_output + index);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EvaluatorPointerType data() const
{
return m_output;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
{
return m_output[index];
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool) const {
return TensorOpCost(sizeof(CoeffReturnType), 0, 0);
}
EIGEN_STRONG_INLINE void cleanup() {
if (m_output) {
m_device.deallocate_temp(m_output);
m_output = NULL;
}
m_impl.cleanup();
}
#ifdef EIGEN_USE_SYCL
// binding placeholder accessors to a command group handler for SYCL
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const {
m_impl.bind(cgh);
m_output.bind(cgh);
}
#endif
protected:
TensorEvaluator<ArgType, Device> m_impl;
const Device EIGEN_DEVICE_REF m_device;
const bool m_exclusive;
Op m_accumulator;
const Index m_size;
Index m_stride;
Index m_consume_dim;
EvaluatorPointerType m_output;
};
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_SCAN_H