Update Eigen to commit:c18f94e3b017104284cd541e553472e62e85e526

CHANGELOG
=========
c18f94e3b - Geometry/EulerAngles: introduce canonicalEulerAngles
7d9bb90f1 - SVD: fix numerous compiler warnings / failures

PiperOrigin-RevId: 534097512
Change-Id: I4e03ec7d5d386244bafddfd6b7d61c66948a297e
diff --git a/Eigen/src/Core/MatrixBase.h b/Eigen/src/Core/MatrixBase.h
index 605a05e..6eb064b 100644
--- a/Eigen/src/Core/MatrixBase.h
+++ b/Eigen/src/Core/MatrixBase.h
@@ -399,9 +399,12 @@
     EIGEN_DEVICE_FUNC
     inline PlainObject unitOrthogonal(void) const;
 
-    EIGEN_DEVICE_FUNC
+    EIGEN_DEPRECATED EIGEN_DEVICE_FUNC
     inline Matrix<Scalar,3,1> eulerAngles(Index a0, Index a1, Index a2) const;
 
+    EIGEN_DEVICE_FUNC
+    inline Matrix<Scalar,3,1> canonicalEulerAngles(Index a0, Index a1, Index a2) const;
+
     // put this as separate enum value to work around possible GCC 4.3 bug (?)
     enum { HomogeneousReturnTypeDirection = ColsAtCompileTime==1&&RowsAtCompileTime==1 ? ((internal::traits<Derived>::Flags&RowMajorBit)==RowMajorBit ? Horizontal : Vertical)
                                           : ColsAtCompileTime==1 ? Vertical : Horizontal };
diff --git a/Eigen/src/Geometry/EulerAngles.h b/Eigen/src/Geometry/EulerAngles.h
index 2b99960..32689f0 100644
--- a/Eigen/src/Geometry/EulerAngles.h
+++ b/Eigen/src/Geometry/EulerAngles.h
@@ -2,6 +2,7 @@
 // for linear algebra.
 //
 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2023 Juraj Oršulić, University of Zagreb <juraj.orsulic@fer.hr>
 //
 // This Source Code Form is subject to the terms of the Mozilla
 // Public License v. 2.0. If a copy of the MPL was not distributed
@@ -12,12 +13,12 @@
 
 #include "./InternalHeaderCheck.h"
 
-namespace Eigen { 
+namespace Eigen {
 
 /** \geometry_module \ingroup Geometry_Module
   *
   *
-  * \returns the Euler-angles of the rotation matrix \c *this using the convention defined by the triplet (\a a0,\a a1,\a a2)
+  * \returns the canonical Euler-angles of the rotation matrix \c *this using the convention defined by the triplet (\a a0,\a a1,\a a2)
   *
   * Each of the three parameters \a a0,\a a1,\a a2 represents the respective rotation axis as an integer in {0,1,2}.
   * For instance, in:
@@ -29,85 +30,188 @@
   *      * AngleAxisf(ea[1], Vector3f::UnitX())
   *      * AngleAxisf(ea[2], Vector3f::UnitZ()); \endcode
   * This corresponds to the right-multiply conventions (with right hand side frames).
-  * 
-  * The returned angles are in the ranges [0:pi]x[-pi:pi]x[-pi:pi].
-  * 
+  *
+  * For Tait-Bryan angle configurations (a0 != a2), the returned angles are in the ranges [-pi:pi]x[-pi/2:pi/2]x[-pi:pi].
+  * For proper Euler angle configurations (a0 == a2), the returned angles are in the ranges [-pi:pi]x[0:pi]x[-pi:pi].
+  *
   * \sa class AngleAxis
   */
 template<typename Derived>
 EIGEN_DEVICE_FUNC inline Matrix<typename MatrixBase<Derived>::Scalar,3,1>
-MatrixBase<Derived>::eulerAngles(Index a0, Index a1, Index a2) const
+MatrixBase<Derived>::canonicalEulerAngles(Index a0, Index a1, Index a2) const
 {
-  EIGEN_USING_STD(atan2)
-  EIGEN_USING_STD(sin)
-  EIGEN_USING_STD(cos)
   /* Implemented from Graphics Gems IV */
-  EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived,3,3)
+  EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived, 3, 3)
 
-  Matrix<Scalar,3,1> res;
-  typedef Matrix<typename Derived::Scalar,2,1> Vector2;
+  Matrix<Scalar, 3, 1> res;
 
-  const Index odd = ((a0+1)%3 == a1) ? 0 : 1;
+  const Index odd = ((a0 + 1) % 3 == a1) ? 0 : 1;
   const Index i = a0;
-  const Index j = (a0 + 1 + odd)%3;
-  const Index k = (a0 + 2 - odd)%3;
-  
-  if (a0==a2)
+  const Index j = (a0 + 1 + odd) % 3;
+  const Index k = (a0 + 2 - odd) % 3;
+
+  if (a0 == a2)
   {
-    res[0] = atan2(coeff(j,i), coeff(k,i));
-    if((odd && res[0]<Scalar(0)) || ((!odd) && res[0]>Scalar(0)))
+    // Proper Euler angles (same first and last axis).
+    // The i, j, k indices enable addressing the input matrix as the XYX archetype matrix (see Graphics Gems IV),
+    // where e.g. coeff(k, i) means third column, first row in the XYX archetype matrix:
+    //  c2      s2s1              s2c1
+    //  s2s3   -c2s1s3 + c1c3    -c2c1s3 - s1c3
+    // -s2c3    c2s1c3 + c1s3     c2c1c3 - s1s3
+
+    // Note: s2 is always positive.
+    Scalar s2 = numext::hypot(coeff(j, i), coeff(k, i));
+    if (odd)
     {
-      if(res[0] > Scalar(0)) {
-        res[0] -= Scalar(EIGEN_PI);
-      }
-      else {
-        res[0] += Scalar(EIGEN_PI);
-      }
-      Scalar s2 = Vector2(coeff(j,i), coeff(k,i)).norm();
-      res[1] = -atan2(s2, coeff(i,i));
+      res[0] = numext::atan2(coeff(j, i), coeff(k, i));
+      // s2 is always positive, so res[1] will be within the canonical [0, pi] range
+      res[1] = numext::atan2(s2, coeff(i, i));
     }
     else
     {
-      Scalar s2 = Vector2(coeff(j,i), coeff(k,i)).norm();
-      res[1] = atan2(s2, coeff(i,i));
+      // In the !odd case, signs of all three angles are flipped at the very end. To keep the solution within the canonical range,
+      // we flip the solution and make res[1] always negative here (since s2 is always positive, -atan2(s2, c2) will always be negative).
+      // The final flip at the end due to !odd will thus make res[1] positive and canonical.
+      // NB: in the general case, there are two correct solutions, but only one is canonical. For proper Euler angles,
+      // flipping from one solution to the other involves flipping the sign of the second angle res[1] and adding/subtracting pi
+      // to the first and third angles. The addition/subtraction of pi to the first angle res[0] is handled here by flipping
+      // the signs of arguments to atan2, while the calculation of the third angle does not need special adjustment since
+      // it uses the adjusted res[0] as the input and produces a correct result.
+      res[0] = numext::atan2(-coeff(j, i), -coeff(k, i));
+      res[1] = -numext::atan2(s2, coeff(i, i));
     }
-    
+
     // With a=(0,1,0), we have i=0; j=1; k=2, and after computing the first two angles,
     // we can compute their respective rotation, and apply its inverse to M. Since the result must
     // be a rotation around x, we have:
     //
-    //  c2  s1.s2 c1.s2                   1  0   0 
+    //  c2  s1.s2 c1.s2                   1  0   0
     //  0   c1    -s1       *    M    =   0  c3  s3
     //  -s2 s1.c2 c1.c2                   0 -s3  c3
     //
     //  Thus:  m11.c1 - m21.s1 = c3  &   m12.c1 - m22.s1 = s3
-    
-    Scalar s1 = sin(res[0]);
-    Scalar c1 = cos(res[0]);
-    res[2] = atan2(c1*coeff(j,k)-s1*coeff(k,k), c1*coeff(j,j) - s1 * coeff(k,j));
-  } 
+
+    Scalar s1 = numext::sin(res[0]);
+    Scalar c1 = numext::cos(res[0]);
+    res[2] = numext::atan2(c1 * coeff(j, k) - s1 * coeff(k, k), c1 * coeff(j, j) - s1 * coeff(k, j));
+  }
   else
   {
-    res[0] = atan2(coeff(j,k), coeff(k,k));
-    Scalar c2 = Vector2(coeff(i,i), coeff(i,j)).norm();
-    if((odd && res[0]<Scalar(0)) || ((!odd) && res[0]>Scalar(0))) {
-      if(res[0] > Scalar(0)) {
-        res[0] -= Scalar(EIGEN_PI);
-      }
-      else {
-        res[0] += Scalar(EIGEN_PI);
-      }
-      res[1] = atan2(-coeff(i,k), -c2);
-    }
-    else
-      res[1] = atan2(-coeff(i,k), c2);
-    Scalar s1 = sin(res[0]);
-    Scalar c1 = cos(res[0]);
-    res[2] = atan2(s1*coeff(k,i)-c1*coeff(j,i), c1*coeff(j,j) - s1 * coeff(k,j));
+    // Tait-Bryan angles (all three axes are different; typically used for yaw-pitch-roll calculations).
+    // The i, j, k indices enable addressing the input matrix as the XYZ archetype matrix (see Graphics Gems IV),
+    // where e.g. coeff(k, i) means third column, first row in the XYZ archetype matrix:
+    //  c2c3    s2s1c3 - c1s3     s2c1c3 + s1s3
+    //  c2s3    s2s1s3 + c1c3     s2c1s3 - s1c3
+    // -s2      c2s1              c2c1
+
+    res[0] = numext::atan2(coeff(j, k), coeff(k, k));
+
+    Scalar c2 = numext::hypot(coeff(i, i), coeff(i, j));
+    // c2 is always positive, so the following atan2 will always return a result in the correct canonical middle angle range [-pi/2, pi/2]
+    res[1] = numext::atan2(-coeff(i, k), c2);
+
+    Scalar s1 = numext::sin(res[0]);
+    Scalar c1 = numext::cos(res[0]);
+    res[2] = numext::atan2(s1 * coeff(k, i) - c1 * coeff(j, i), c1 * coeff(j, j) - s1 * coeff(k, j));
   }
   if (!odd)
+  {
     res = -res;
-  
+  }
+
+  return res;
+}
+
+/** \geometry_module \ingroup Geometry_Module
+  *
+  *
+  * \returns the Euler-angles of the rotation matrix \c *this using the convention defined by the triplet (\a a0,\a a1,\a a2)
+  *
+  * NB: The returned angles are in non-canonical ranges [0:pi]x[-pi:pi]x[-pi:pi]. For canonical Tait-Bryan/proper Euler ranges, use canonicalEulerAngles.
+  *
+  * \sa MatrixBase::canonicalEulerAngles
+  * \sa class AngleAxis
+  */
+template<typename Derived>
+EIGEN_DEPRECATED EIGEN_DEVICE_FUNC inline Matrix<typename MatrixBase<Derived>::Scalar,3,1>
+MatrixBase<Derived>::eulerAngles(Index a0, Index a1, Index a2) const
+{
+  /* Implemented from Graphics Gems IV */
+  EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived, 3, 3)
+
+  Matrix<Scalar, 3, 1> res;
+
+  const Index odd = ((a0 + 1) % 3 == a1) ? 0 : 1;
+  const Index i = a0;
+  const Index j = (a0 + 1 + odd) % 3;
+  const Index k = (a0 + 2 - odd) % 3;
+
+  if (a0 == a2)
+  {
+    res[0] = numext::atan2(coeff(j, i), coeff(k, i));
+    if ((odd && res[0] < Scalar(0)) || ((!odd) && res[0] > Scalar(0)))
+    {
+      if (res[0] > Scalar(0))
+      {
+        res[0] -= Scalar(EIGEN_PI);
+      }
+      else
+      {
+        res[0] += Scalar(EIGEN_PI);
+      }
+
+      Scalar s2 = numext::hypot(coeff(j, i), coeff(k, i));
+      res[1] = -numext::atan2(s2, coeff(i, i));
+    }
+    else
+    {
+      Scalar s2 = numext::hypot(coeff(j, i), coeff(k, i));
+      res[1] = numext::atan2(s2, coeff(i, i));
+    }
+
+    // With a=(0,1,0), we have i=0; j=1; k=2, and after computing the first two angles,
+    // we can compute their respective rotation, and apply its inverse to M. Since the result must
+    // be a rotation around x, we have:
+    //
+    //  c2  s1.s2 c1.s2                   1  0   0
+    //  0   c1    -s1       *    M    =   0  c3  s3
+    //  -s2 s1.c2 c1.c2                   0 -s3  c3
+    //
+    //  Thus:  m11.c1 - m21.s1 = c3  &   m12.c1 - m22.s1 = s3
+
+    Scalar s1 = numext::sin(res[0]);
+    Scalar c1 = numext::cos(res[0]);
+    res[2] = numext::atan2(c1 * coeff(j, k) - s1 * coeff(k, k), c1 * coeff(j, j) - s1 * coeff(k, j));
+  }
+  else
+  {
+    res[0] = numext::atan2(coeff(j, k), coeff(k, k));
+    Scalar c2 = numext::hypot(coeff(i, i), coeff(i, j));
+    if ((odd && res[0] < Scalar(0)) || ((!odd) && res[0] > Scalar(0)))
+    {
+      if (res[0] > Scalar(0))
+      {
+        res[0] -= Scalar(EIGEN_PI);
+      }
+      else
+      {
+        res[0] += Scalar(EIGEN_PI);
+      }
+      res[1] = numext::atan2(-coeff(i, k), -c2);
+    }
+    else
+    {
+      res[1] = numext::atan2(-coeff(i, k), c2);
+    }
+    Scalar s1 = numext::sin(res[0]);
+    Scalar c1 = numext::cos(res[0]);
+    res[2] = numext::atan2(s1 * coeff(k, i) - c1 * coeff(j, i), c1 * coeff(j, j) - s1 * coeff(k, j));
+  }
+  if (!odd)
+  {
+    res = -res;
+  }
+
   return res;
 }
 
diff --git a/Eigen/src/SVD/SVDBase.h b/Eigen/src/SVD/SVDBase.h
index f01c7a9..10a6d30 100644
--- a/Eigen/src/SVD/SVDBase.h
+++ b/Eigen/src/SVD/SVDBase.h
@@ -356,7 +356,10 @@
    * Default constructor of SVDBase
    */
   SVDBase()
-      : m_info(Success),
+      : m_matrixU(MatrixUType()),
+        m_matrixV(MatrixVType()),
+        m_singularValues(SingularValuesType()),
+        m_info(Success),
         m_isInitialized(false),
         m_isAllocated(false),
         m_usePrescribedThreshold(false),
diff --git a/test/geo_eulerangles.cpp b/test/geo_eulerangles.cpp
index bea2419..2751675 100644
--- a/test/geo_eulerangles.cpp
+++ b/test/geo_eulerangles.cpp
@@ -2,11 +2,15 @@
 // for linear algebra.
 //
 // Copyright (C) 2008-2012 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2023 Juraj Oršulić, University of Zagreb <juraj.orsulic@fer.hr>
 //
 // This Source Code Form is subject to the terms of the Mozilla
 // Public License v. 2.0. If a copy of the MPL was not distributed
 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 
+// Silence warnings about using the deprecated non-canonical .eulerAngles(), which are still being tested.
+#define EIGEN_NO_DEPRECATED_WARNING
+
 #include "main.h"
 #include <Eigen/Geometry>
 #include <Eigen/LU>
@@ -14,53 +18,89 @@
 
 
 template<typename Scalar>
-void verify_euler(const Matrix<Scalar,3,1>& ea, int i, int j, int k)
+void verify_euler(const Matrix<Scalar, 3, 1>& ea, int i, int j, int k)
 {
-  typedef Matrix<Scalar,3,3> Matrix3;
-  typedef Matrix<Scalar,3,1> Vector3;
+  typedef Matrix<Scalar, 3, 3> Matrix3;
+  typedef Matrix<Scalar, 3, 1> Vector3;
   typedef AngleAxis<Scalar> AngleAxisx;
-  using std::abs;
-  Matrix3 m(AngleAxisx(ea[0], Vector3::Unit(i)) * AngleAxisx(ea[1], Vector3::Unit(j)) * AngleAxisx(ea[2], Vector3::Unit(k)));
-  Vector3 eabis = m.eulerAngles(i, j, k);
-  Matrix3 mbis(AngleAxisx(eabis[0], Vector3::Unit(i)) * AngleAxisx(eabis[1], Vector3::Unit(j)) * AngleAxisx(eabis[2], Vector3::Unit(k))); 
-  VERIFY_IS_APPROX(m,  mbis); 
-  /* If I==K, and ea[1]==0, then there no unique solution. */ 
-  /* The remark apply in the case where I!=K, and |ea[1]| is close to pi/2. */ 
-  if((i!=k || !numext::is_exactly_zero(ea[1])) && (i == k || !internal::isApprox(abs(ea[1]), Scalar(EIGEN_PI / 2), test_precision<Scalar>())) )
-    VERIFY((ea-eabis).norm() <= test_precision<Scalar>());
-  
-  // approx_or_less_than does not work for 0
-  VERIFY(0 < eabis[0] || test_isMuchSmallerThan(eabis[0], Scalar(1)));
-  VERIFY_IS_APPROX_OR_LESS_THAN(eabis[0], Scalar(EIGEN_PI));
-  VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[1]);
-  VERIFY_IS_APPROX_OR_LESS_THAN(eabis[1], Scalar(EIGEN_PI));
-  VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[2]);
-  VERIFY_IS_APPROX_OR_LESS_THAN(eabis[2], Scalar(EIGEN_PI));
+  const Matrix3 m(AngleAxisx(ea[0], Vector3::Unit(i)) * AngleAxisx(ea[1], Vector3::Unit(j)) * AngleAxisx(ea[2], Vector3::Unit(k)));
+
+  // Test non-canonical eulerAngles
+  {
+    Vector3 eabis = m.eulerAngles(i, j, k);
+    Matrix3 mbis(AngleAxisx(eabis[0], Vector3::Unit(i)) * AngleAxisx(eabis[1], Vector3::Unit(j)) * AngleAxisx(eabis[2], Vector3::Unit(k)));
+    VERIFY_IS_APPROX(m,  mbis);
+
+    // approx_or_less_than does not work for 0
+    VERIFY(0 < eabis[0] || test_isMuchSmallerThan(eabis[0], Scalar(1)));
+    VERIFY_IS_APPROX_OR_LESS_THAN(eabis[0], Scalar(EIGEN_PI));
+    VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[1]);
+    VERIFY_IS_APPROX_OR_LESS_THAN(eabis[1], Scalar(EIGEN_PI));
+    VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[2]);
+    VERIFY_IS_APPROX_OR_LESS_THAN(eabis[2], Scalar(EIGEN_PI));
+  }
+
+  // Test canonicalEulerAngles
+  {
+    Vector3 eabis = m.canonicalEulerAngles(i, j, k);
+    Matrix3 mbis(AngleAxisx(eabis[0], Vector3::Unit(i)) * AngleAxisx(eabis[1], Vector3::Unit(j)) * AngleAxisx(eabis[2], Vector3::Unit(k)));
+    VERIFY_IS_APPROX(m,  mbis);
+
+    VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[0]);
+    VERIFY_IS_APPROX_OR_LESS_THAN(eabis[0], Scalar(EIGEN_PI));
+    if (i != k)
+    {
+      // Tait-Bryan sequence
+      VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI / 2), eabis[1]);
+      VERIFY_IS_APPROX_OR_LESS_THAN(eabis[1], Scalar(EIGEN_PI / 2));
+    }
+    else
+    {
+      // Proper Euler sequence
+      // approx_or_less_than does not work for 0
+      VERIFY(0 < eabis[1] || test_isMuchSmallerThan(eabis[1], Scalar(1)));
+      VERIFY_IS_APPROX_OR_LESS_THAN(eabis[1], Scalar(EIGEN_PI));
+    }
+    VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[2]);
+    VERIFY_IS_APPROX_OR_LESS_THAN(eabis[2], Scalar(EIGEN_PI));
+  }
 }
 
-template<typename Scalar> void check_all_var(const Matrix<Scalar,3,1>& ea)
+template<typename Scalar> void check_all_var(const Matrix<Scalar, 3, 1>& ea)
 {
-  verify_euler(ea, 0,1,2);
-  verify_euler(ea, 0,1,0);
-  verify_euler(ea, 0,2,1);
-  verify_euler(ea, 0,2,0);
+  auto verify_permutation = [](const Matrix<Scalar, 3, 1>& eap)
+  {
+    verify_euler(eap, 0, 1, 2);
+    verify_euler(eap, 0, 1, 0);
+    verify_euler(eap, 0, 2, 1);
+    verify_euler(eap, 0, 2, 0);
 
-  verify_euler(ea, 1,2,0);
-  verify_euler(ea, 1,2,1);
-  verify_euler(ea, 1,0,2);
-  verify_euler(ea, 1,0,1);
+    verify_euler(eap, 1, 2, 0);
+    verify_euler(eap, 1, 2, 1);
+    verify_euler(eap, 1, 0, 2);
+    verify_euler(eap, 1, 0, 1);
 
-  verify_euler(ea, 2,0,1);
-  verify_euler(ea, 2,0,2);
-  verify_euler(ea, 2,1,0);
-  verify_euler(ea, 2,1,2);
+    verify_euler(eap, 2, 0, 1);
+    verify_euler(eap, 2, 0, 2);
+    verify_euler(eap, 2, 1, 0);
+    verify_euler(eap, 2, 1, 2);
+  };
+
+  int i, j, k;
+  for (i = 0; i < 3; i++)
+    for (j = 0; j < 3; j++)
+      for (k = 0; k < 3; k++)
+      {
+        Matrix<Scalar,3,1> eap(ea(i), ea(j), ea(k));
+        verify_permutation(eap);
+      }
 }
 
 template<typename Scalar> void eulerangles()
 {
-  typedef Matrix<Scalar,3,3> Matrix3;
-  typedef Matrix<Scalar,3,1> Vector3;
-  typedef Array<Scalar,3,1> Array3;
+  typedef Matrix<Scalar, 3, 3> Matrix3;
+  typedef Matrix<Scalar, 3, 1> Vector3;
+  typedef Array<Scalar, 3, 1> Array3;
   typedef Quaternion<Scalar> Quaternionx;
   typedef AngleAxis<Scalar> AngleAxisx;
 
@@ -69,43 +109,97 @@
   q1 = AngleAxisx(a, Vector3::Random().normalized());
   Matrix3 m;
   m = q1;
-  
-  Vector3 ea = m.eulerAngles(0,1,2);
+
+  Vector3 ea = m.eulerAngles(0, 1, 2);
   check_all_var(ea);
-  ea = m.eulerAngles(0,1,0);
+  ea = m.eulerAngles(0, 1, 0);
   check_all_var(ea);
-  
+
   // Check with purely random Quaternion:
   q1.coeffs() = Quaternionx::Coefficients::Random().normalized();
   m = q1;
-  ea = m.eulerAngles(0,1,2);
+  ea = m.eulerAngles(0, 1, 2);
   check_all_var(ea);
-  ea = m.eulerAngles(0,1,0);
+  ea = m.eulerAngles(0, 1, 0);
   check_all_var(ea);
-  
-  // Check with random angles in range [0:pi]x[-pi:pi]x[-pi:pi].
-  ea = (Array3::Random() + Array3(1,0,0))*Scalar(EIGEN_PI)*Array3(0.5,1,1);
+
+  // Check with random angles in range [-pi:pi]x[-pi:pi]x[-pi:pi].
+  ea = Array3::Random() * Scalar(EIGEN_PI);
   check_all_var(ea);
-  
-  ea[2] = ea[0] = internal::random<Scalar>(0,Scalar(EIGEN_PI));
+
+  auto test_with_some_zeros = [](const Vector3& eaz)
+  {
+    check_all_var(eaz);
+    Vector3 ea_glz = eaz;
+    ea_glz[0] = Scalar(0);
+    check_all_var(ea_glz);
+    ea_glz[0] = internal::random<Scalar>(-0.001, 0.001);
+    check_all_var(ea_glz);
+    ea_glz[2] = Scalar(0);
+    check_all_var(ea_glz);
+    ea_glz[2] = internal::random<Scalar>(-0.001, 0.001);
+    check_all_var(ea_glz);
+  };
+  // Check gimbal lock configurations and a bit noisy gimbal locks
+  Vector3 ea_gl = ea;
+  ea_gl[1] = EIGEN_PI/2;
+  test_with_some_zeros(ea_gl);
+  ea_gl[1] += internal::random<Scalar>(-0.001, 0.001);
+  test_with_some_zeros(ea_gl);
+  ea_gl[1] = -EIGEN_PI/2;
+  test_with_some_zeros(ea_gl);
+  ea_gl[1] += internal::random<Scalar>(-0.001, 0.001);
+  test_with_some_zeros(ea_gl);
+  ea_gl[1] = EIGEN_PI/2;
+  ea_gl[2] = ea_gl[0];
+  test_with_some_zeros(ea_gl);
+  ea_gl[1] += internal::random<Scalar>(-0.001, 0.001);
+  test_with_some_zeros(ea_gl);
+  ea_gl[1] = -EIGEN_PI/2;
+  test_with_some_zeros(ea_gl);
+  ea_gl[1] += internal::random<Scalar>(-0.001, 0.001);
+  test_with_some_zeros(ea_gl);
+
+  // Similar to above, but with pi instead of pi/2
+  Vector3 ea_pi = ea;
+  ea_pi[1] = EIGEN_PI;
+  test_with_some_zeros(ea_gl);
+  ea_pi[1] += internal::random<Scalar>(-0.001, 0.001);
+  test_with_some_zeros(ea_gl);
+  ea_pi[1] = -EIGEN_PI;
+  test_with_some_zeros(ea_gl);
+  ea_pi[1] += internal::random<Scalar>(-0.001, 0.001);
+  test_with_some_zeros(ea_gl);
+  ea_pi[1] = EIGEN_PI;
+  ea_pi[2] = ea_pi[0];
+  test_with_some_zeros(ea_gl);
+  ea_pi[1] += internal::random<Scalar>(-0.001, 0.001);
+  test_with_some_zeros(ea_gl);
+  ea_pi[1] = -EIGEN_PI;
+  test_with_some_zeros(ea_gl);
+  ea_pi[1] += internal::random<Scalar>(-0.001, 0.001);
+  test_with_some_zeros(ea_gl);
+
+  ea[2] = ea[0] = internal::random<Scalar>(0, Scalar(EIGEN_PI));
   check_all_var(ea);
-  
-  ea[0] = ea[1] = internal::random<Scalar>(0,Scalar(EIGEN_PI));
+
+  ea[0] = ea[1] = internal::random<Scalar>(0, Scalar(EIGEN_PI));
   check_all_var(ea);
-  
+
   ea[1] = 0;
   check_all_var(ea);
-  
+
   ea.head(2).setZero();
   check_all_var(ea);
-  
+
   ea.setZero();
   check_all_var(ea);
 }
 
 EIGEN_DECLARE_TEST(geo_eulerangles)
 {
-  for(int i = 0; i < g_repeat; i++) {
+  for(int i = 0; i < g_repeat; i++)
+  {
     CALL_SUBTEST_1( eulerangles<float>() );
     CALL_SUBTEST_2( eulerangles<double>() );
   }