| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2016 Rasmus Munk Larsen (rmlarsen@google.com) |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_CONDITIONESTIMATOR_H |
| #define EIGEN_CONDITIONESTIMATOR_H |
| |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| template <typename Vector, typename RealVector, bool IsComplex> |
| struct rcond_compute_sign { |
| static inline Vector run(const Vector& v) { |
| const RealVector v_abs = v.cwiseAbs(); |
| return (v_abs.array() == static_cast<typename Vector::RealScalar>(0)) |
| .select(Vector::Ones(v.size()), v.cwiseQuotient(v_abs)); |
| } |
| }; |
| |
| // Partial specialization to avoid elementwise division for real vectors. |
| template <typename Vector> |
| struct rcond_compute_sign<Vector, Vector, false> { |
| static inline Vector run(const Vector& v) { |
| return (v.array() < static_cast<typename Vector::RealScalar>(0)) |
| .select(-Vector::Ones(v.size()), Vector::Ones(v.size())); |
| } |
| }; |
| |
| /** |
| * \returns an estimate of ||inv(matrix)||_1 given a decomposition of |
| * \a matrix that implements .solve() and .adjoint().solve() methods. |
| * |
| * This function implements Algorithms 4.1 and 5.1 from |
| * http://www.maths.manchester.ac.uk/~higham/narep/narep135.pdf |
| * which also forms the basis for the condition number estimators in |
| * LAPACK. Since at most 10 calls to the solve method of dec are |
| * performed, the total cost is O(dims^2), as opposed to O(dims^3) |
| * needed to compute the inverse matrix explicitly. |
| * |
| * The most common usage is in estimating the condition number |
| * ||matrix||_1 * ||inv(matrix)||_1. The first term ||matrix||_1 can be |
| * computed directly in O(n^2) operations. |
| * |
| * Supports the following decompositions: FullPivLU, PartialPivLU, LDLT, and |
| * LLT. |
| * |
| * \sa FullPivLU, PartialPivLU, LDLT, LLT. |
| */ |
| template <typename Decomposition> |
| typename Decomposition::RealScalar rcond_invmatrix_L1_norm_estimate(const Decomposition& dec) |
| { |
| typedef typename Decomposition::MatrixType MatrixType; |
| typedef typename Decomposition::Scalar Scalar; |
| typedef typename Decomposition::RealScalar RealScalar; |
| typedef typename internal::plain_col_type<MatrixType>::type Vector; |
| typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVector; |
| const bool is_complex = (NumTraits<Scalar>::IsComplex != 0); |
| |
| eigen_assert(dec.rows() == dec.cols()); |
| const Index n = dec.rows(); |
| if (n == 0) |
| return 0; |
| |
| // Disable Index to float conversion warning |
| #ifdef __INTEL_COMPILER |
| #pragma warning push |
| #pragma warning ( disable : 2259 ) |
| #endif |
| Vector v = dec.solve(Vector::Ones(n) / Scalar(n)); |
| #ifdef __INTEL_COMPILER |
| #pragma warning pop |
| #endif |
| |
| // lower_bound is a lower bound on |
| // ||inv(matrix)||_1 = sup_v ||inv(matrix) v||_1 / ||v||_1 |
| // and is the objective maximized by the ("super-") gradient ascent |
| // algorithm below. |
| RealScalar lower_bound = v.template lpNorm<1>(); |
| if (n == 1) |
| return lower_bound; |
| |
| // Gradient ascent algorithm follows: We know that the optimum is achieved at |
| // one of the simplices v = e_i, so in each iteration we follow a |
| // super-gradient to move towards the optimal one. |
| RealScalar old_lower_bound = lower_bound; |
| Vector sign_vector(n); |
| Vector old_sign_vector; |
| Index v_max_abs_index = -1; |
| Index old_v_max_abs_index = v_max_abs_index; |
| for (int k = 0; k < 4; ++k) |
| { |
| sign_vector = internal::rcond_compute_sign<Vector, RealVector, is_complex>::run(v); |
| if (k > 0 && !is_complex && sign_vector == old_sign_vector) { |
| // Break if the solution stagnated. |
| break; |
| } |
| // v_max_abs_index = argmax |real( inv(matrix)^T * sign_vector )| |
| v = dec.adjoint().solve(sign_vector); |
| v.real().cwiseAbs().maxCoeff(&v_max_abs_index); |
| if (v_max_abs_index == old_v_max_abs_index) { |
| // Break if the solution stagnated. |
| break; |
| } |
| // Move to the new simplex e_j, where j = v_max_abs_index. |
| v = dec.solve(Vector::Unit(n, v_max_abs_index)); // v = inv(matrix) * e_j. |
| lower_bound = v.template lpNorm<1>(); |
| if (lower_bound <= old_lower_bound) { |
| // Break if the gradient step did not increase the lower_bound. |
| break; |
| } |
| if (!is_complex) { |
| old_sign_vector = sign_vector; |
| } |
| old_v_max_abs_index = v_max_abs_index; |
| old_lower_bound = lower_bound; |
| } |
| // The following calculates an independent estimate of ||matrix||_1 by |
| // multiplying matrix by a vector with entries of slowly increasing |
| // magnitude and alternating sign: |
| // v_i = (-1)^{i} (1 + (i / (dim-1))), i = 0,...,dim-1. |
| // This improvement to Hager's algorithm above is due to Higham. It was |
| // added to make the algorithm more robust in certain corner cases where |
| // large elements in the matrix might otherwise escape detection due to |
| // exact cancellation (especially when op and op_adjoint correspond to a |
| // sequence of backsubstitutions and permutations), which could cause |
| // Hager's algorithm to vastly underestimate ||matrix||_1. |
| Scalar alternating_sign(RealScalar(1)); |
| for (Index i = 0; i < n; ++i) { |
| // The static_cast is needed when Scalar is a complex and RealScalar implements expression templates |
| v[i] = alternating_sign * static_cast<RealScalar>(RealScalar(1) + (RealScalar(i) / (RealScalar(n - 1)))); |
| alternating_sign = -alternating_sign; |
| } |
| v = dec.solve(v); |
| const RealScalar alternate_lower_bound = (2 * v.template lpNorm<1>()) / (3 * RealScalar(n)); |
| return numext::maxi(lower_bound, alternate_lower_bound); |
| } |
| |
| /** \brief Reciprocal condition number estimator. |
| * |
| * Computing a decomposition of a dense matrix takes O(n^3) operations, while |
| * this method estimates the condition number quickly and reliably in O(n^2) |
| * operations. |
| * |
| * \returns an estimate of the reciprocal condition number |
| * (1 / (||matrix||_1 * ||inv(matrix)||_1)) of matrix, given ||matrix||_1 and |
| * its decomposition. Supports the following decompositions: FullPivLU, |
| * PartialPivLU, LDLT, and LLT. |
| * |
| * \sa FullPivLU, PartialPivLU, LDLT, LLT. |
| */ |
| template <typename Decomposition> |
| typename Decomposition::RealScalar |
| rcond_estimate_helper(typename Decomposition::RealScalar matrix_norm, const Decomposition& dec) |
| { |
| typedef typename Decomposition::RealScalar RealScalar; |
| eigen_assert(dec.rows() == dec.cols()); |
| if (dec.rows() == 0) return NumTraits<RealScalar>::infinity(); |
| if (matrix_norm == RealScalar(0)) return RealScalar(0); |
| if (dec.rows() == 1) return RealScalar(1); |
| const RealScalar inverse_matrix_norm = rcond_invmatrix_L1_norm_estimate(dec); |
| return (inverse_matrix_norm == RealScalar(0) ? RealScalar(0) |
| : (RealScalar(1) / inverse_matrix_norm) / matrix_norm); |
| } |
| |
| } // namespace internal |
| |
| } // namespace Eigen |
| |
| #endif |