blob: 42e92c20b4951224e0faac27450cece6c91f4fc2 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_PRODUCTEVALUATORS_H
#define EIGEN_PRODUCTEVALUATORS_H
#include "./InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
/** \internal
* Evaluator of a product expression.
* Since products require special treatments to handle all possible cases,
* we simply defer the evaluation logic to a product_evaluator class
* which offers more partial specialization possibilities.
*
* \sa class product_evaluator
*/
template<typename Lhs, typename Rhs, int Options>
struct evaluator<Product<Lhs, Rhs, Options> >
: public product_evaluator<Product<Lhs, Rhs, Options> >
{
typedef Product<Lhs, Rhs, Options> XprType;
typedef product_evaluator<XprType> Base;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) : Base(xpr) {}
};
// Catch "scalar * ( A * B )" and transform it to "(A*scalar) * B"
// TODO we should apply that rule only if that's really helpful
template<typename Lhs, typename Rhs, typename Scalar1, typename Scalar2, typename Plain1>
struct evaluator_assume_aliasing<CwiseBinaryOp<internal::scalar_product_op<Scalar1,Scalar2>,
const CwiseNullaryOp<internal::scalar_constant_op<Scalar1>, Plain1>,
const Product<Lhs, Rhs, DefaultProduct> > >
{
static const bool value = true;
};
template<typename Lhs, typename Rhs, typename Scalar1, typename Scalar2, typename Plain1>
struct evaluator<CwiseBinaryOp<internal::scalar_product_op<Scalar1,Scalar2>,
const CwiseNullaryOp<internal::scalar_constant_op<Scalar1>, Plain1>,
const Product<Lhs, Rhs, DefaultProduct> > >
: public evaluator<Product<EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar1,Lhs,product), Rhs, DefaultProduct> >
{
typedef CwiseBinaryOp<internal::scalar_product_op<Scalar1,Scalar2>,
const CwiseNullaryOp<internal::scalar_constant_op<Scalar1>, Plain1>,
const Product<Lhs, Rhs, DefaultProduct> > XprType;
typedef evaluator<Product<EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar1,Lhs,product), Rhs, DefaultProduct> > Base;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr)
: Base(xpr.lhs().functor().m_other * xpr.rhs().lhs() * xpr.rhs().rhs())
{}
};
template<typename Lhs, typename Rhs, int DiagIndex>
struct evaluator<Diagonal<const Product<Lhs, Rhs, DefaultProduct>, DiagIndex> >
: public evaluator<Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex> >
{
typedef Diagonal<const Product<Lhs, Rhs, DefaultProduct>, DiagIndex> XprType;
typedef evaluator<Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex> > Base;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr)
: Base(Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex>(
Product<Lhs, Rhs, LazyProduct>(xpr.nestedExpression().lhs(), xpr.nestedExpression().rhs()),
xpr.index() ))
{}
};
// Helper class to perform a matrix product with the destination at hand.
// Depending on the sizes of the factors, there are different evaluation strategies
// as controlled by internal::product_type.
template< typename Lhs, typename Rhs,
typename LhsShape = typename evaluator_traits<Lhs>::Shape,
typename RhsShape = typename evaluator_traits<Rhs>::Shape,
int ProductType = internal::product_type<Lhs,Rhs>::value>
struct generic_product_impl;
template<typename Lhs, typename Rhs>
struct evaluator_assume_aliasing<Product<Lhs, Rhs, DefaultProduct> > {
static const bool value = true;
};
// This is the default evaluator implementation for products:
// It creates a temporary and call generic_product_impl
template<typename Lhs, typename Rhs, int Options, int ProductTag, typename LhsShape, typename RhsShape>
struct product_evaluator<Product<Lhs, Rhs, Options>, ProductTag, LhsShape, RhsShape>
: public evaluator<typename Product<Lhs, Rhs, Options>::PlainObject>
{
typedef Product<Lhs, Rhs, Options> XprType;
typedef typename XprType::PlainObject PlainObject;
typedef evaluator<PlainObject> Base;
enum {
Flags = Base::Flags | EvalBeforeNestingBit
};
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
explicit product_evaluator(const XprType& xpr)
: m_result(xpr.rows(), xpr.cols())
{
::new (static_cast<Base*>(this)) Base(m_result);
// FIXME shall we handle nested_eval here?,
// if so, then we must take care at removing the call to nested_eval in the specializations (e.g., in permutation_matrix_product, transposition_matrix_product, etc.)
// typedef typename internal::nested_eval<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
// typedef typename internal::nested_eval<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
// typedef typename internal::remove_all<LhsNested>::type LhsNestedCleaned;
// typedef typename internal::remove_all<RhsNested>::type RhsNestedCleaned;
//
// const LhsNested lhs(xpr.lhs());
// const RhsNested rhs(xpr.rhs());
//
// generic_product_impl<LhsNestedCleaned, RhsNestedCleaned>::evalTo(m_result, lhs, rhs);
generic_product_impl<Lhs, Rhs, LhsShape, RhsShape, ProductTag>::evalTo(m_result, xpr.lhs(), xpr.rhs());
}
protected:
PlainObject m_result;
};
// The following three shortcuts are enabled only if the scalar types match exactly.
// TODO: we could enable them for different scalar types when the product is not vectorized.
// Dense = Product
template< typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar>
struct Assignment<DstXprType, Product<Lhs,Rhs,Options>, internal::assign_op<Scalar,Scalar>, Dense2Dense,
typename enable_if<(Options==DefaultProduct || Options==AliasFreeProduct)>::type>
{
typedef Product<Lhs,Rhs,Options> SrcXprType;
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,Scalar> &)
{
Index dstRows = src.rows();
Index dstCols = src.cols();
if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
dst.resize(dstRows, dstCols);
// FIXME shall we handle nested_eval here?
generic_product_impl<Lhs, Rhs>::evalTo(dst, src.lhs(), src.rhs());
}
};
// Dense += Product
template< typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar>
struct Assignment<DstXprType, Product<Lhs,Rhs,Options>, internal::add_assign_op<Scalar,Scalar>, Dense2Dense,
typename enable_if<(Options==DefaultProduct || Options==AliasFreeProduct)>::type>
{
typedef Product<Lhs,Rhs,Options> SrcXprType;
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op<Scalar,Scalar> &)
{
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
// FIXME shall we handle nested_eval here?
generic_product_impl<Lhs, Rhs>::addTo(dst, src.lhs(), src.rhs());
}
};
// Dense -= Product
template< typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar>
struct Assignment<DstXprType, Product<Lhs,Rhs,Options>, internal::sub_assign_op<Scalar,Scalar>, Dense2Dense,
typename enable_if<(Options==DefaultProduct || Options==AliasFreeProduct)>::type>
{
typedef Product<Lhs,Rhs,Options> SrcXprType;
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op<Scalar,Scalar> &)
{
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
// FIXME shall we handle nested_eval here?
generic_product_impl<Lhs, Rhs>::subTo(dst, src.lhs(), src.rhs());
}
};
// Dense ?= scalar * Product
// TODO we should apply that rule if that's really helpful
// for instance, this is not good for inner products
template< typename DstXprType, typename Lhs, typename Rhs, typename AssignFunc, typename Scalar, typename ScalarBis, typename Plain>
struct Assignment<DstXprType, CwiseBinaryOp<internal::scalar_product_op<ScalarBis,Scalar>, const CwiseNullaryOp<internal::scalar_constant_op<ScalarBis>,Plain>,
const Product<Lhs,Rhs,DefaultProduct> >, AssignFunc, Dense2Dense>
{
typedef CwiseBinaryOp<internal::scalar_product_op<ScalarBis,Scalar>,
const CwiseNullaryOp<internal::scalar_constant_op<ScalarBis>,Plain>,
const Product<Lhs,Rhs,DefaultProduct> > SrcXprType;
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void run(DstXprType &dst, const SrcXprType &src, const AssignFunc& func)
{
call_assignment_no_alias(dst, (src.lhs().functor().m_other * src.rhs().lhs())*src.rhs().rhs(), func);
}
};
//----------------------------------------
// Catch "Dense ?= xpr + Product<>" expression to save one temporary
// FIXME we could probably enable these rules for any product, i.e., not only Dense and DefaultProduct
template<typename OtherXpr, typename Lhs, typename Rhs>
struct evaluator_assume_aliasing<CwiseBinaryOp<internal::scalar_sum_op<typename OtherXpr::Scalar,typename Product<Lhs,Rhs,DefaultProduct>::Scalar>, const OtherXpr,
const Product<Lhs,Rhs,DefaultProduct> >, DenseShape > {
static const bool value = true;
};
template<typename OtherXpr, typename Lhs, typename Rhs>
struct evaluator_assume_aliasing<CwiseBinaryOp<internal::scalar_difference_op<typename OtherXpr::Scalar,typename Product<Lhs,Rhs,DefaultProduct>::Scalar>, const OtherXpr,
const Product<Lhs,Rhs,DefaultProduct> >, DenseShape > {
static const bool value = true;
};
template<typename DstXprType, typename OtherXpr, typename ProductType, typename Func1, typename Func2>
struct assignment_from_xpr_op_product
{
template<typename SrcXprType, typename InitialFunc>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void run(DstXprType &dst, const SrcXprType &src, const InitialFunc& /*func*/)
{
call_assignment_no_alias(dst, src.lhs(), Func1());
call_assignment_no_alias(dst, src.rhs(), Func2());
}
};
#define EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(ASSIGN_OP,BINOP,ASSIGN_OP2) \
template< typename DstXprType, typename OtherXpr, typename Lhs, typename Rhs, typename DstScalar, typename SrcScalar, typename OtherScalar,typename ProdScalar> \
struct Assignment<DstXprType, CwiseBinaryOp<internal::BINOP<OtherScalar,ProdScalar>, const OtherXpr, \
const Product<Lhs,Rhs,DefaultProduct> >, internal::ASSIGN_OP<DstScalar,SrcScalar>, Dense2Dense> \
: assignment_from_xpr_op_product<DstXprType, OtherXpr, Product<Lhs,Rhs,DefaultProduct>, internal::ASSIGN_OP<DstScalar,OtherScalar>, internal::ASSIGN_OP2<DstScalar,ProdScalar> > \
{}
EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(assign_op, scalar_sum_op,add_assign_op);
EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(add_assign_op,scalar_sum_op,add_assign_op);
EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(sub_assign_op,scalar_sum_op,sub_assign_op);
EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(assign_op, scalar_difference_op,sub_assign_op);
EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(add_assign_op,scalar_difference_op,sub_assign_op);
EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(sub_assign_op,scalar_difference_op,add_assign_op);
//----------------------------------------
template<typename Lhs, typename Rhs>
struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,InnerProduct>
{
template<typename Dst>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{
dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum();
}
template<typename Dst>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{
dst.coeffRef(0,0) += (lhs.transpose().cwiseProduct(rhs)).sum();
}
template<typename Dst>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{ dst.coeffRef(0,0) -= (lhs.transpose().cwiseProduct(rhs)).sum(); }
};
/***********************************************************************
* Implementation of outer dense * dense vector product
***********************************************************************/
// Column major result
template<typename Dst, typename Lhs, typename Rhs, typename Func>
void EIGEN_DEVICE_FUNC outer_product_selector_run(Dst& dst, const Lhs &lhs, const Rhs &rhs, const Func& func, const false_type&)
{
evaluator<Rhs> rhsEval(rhs);
ei_declare_local_nested_eval(Lhs,lhs,Rhs::SizeAtCompileTime,actual_lhs);
// FIXME if cols is large enough, then it might be useful to make sure that lhs is sequentially stored
// FIXME not very good if rhs is real and lhs complex while alpha is real too
const Index cols = dst.cols();
for (Index j=0; j<cols; ++j)
func(dst.col(j), rhsEval.coeff(Index(0),j) * actual_lhs);
}
// Row major result
template<typename Dst, typename Lhs, typename Rhs, typename Func>
void EIGEN_DEVICE_FUNC outer_product_selector_run(Dst& dst, const Lhs &lhs, const Rhs &rhs, const Func& func, const true_type&)
{
evaluator<Lhs> lhsEval(lhs);
ei_declare_local_nested_eval(Rhs,rhs,Lhs::SizeAtCompileTime,actual_rhs);
// FIXME if rows is large enough, then it might be useful to make sure that rhs is sequentially stored
// FIXME not very good if lhs is real and rhs complex while alpha is real too
const Index rows = dst.rows();
for (Index i=0; i<rows; ++i)
func(dst.row(i), lhsEval.coeff(i,Index(0)) * actual_rhs);
}
template<typename Lhs, typename Rhs>
struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,OuterProduct>
{
template<typename T> struct is_row_major : internal::conditional<(int(T::Flags)&RowMajorBit), internal::true_type, internal::false_type>::type {};
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
// TODO it would be nice to be able to exploit our *_assign_op functors for that purpose
struct set { template<typename Dst, typename Src> EIGEN_DEVICE_FUNC void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() = src; } };
struct add { template<typename Dst, typename Src> EIGEN_DEVICE_FUNC void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() += src; } };
struct sub { template<typename Dst, typename Src> EIGEN_DEVICE_FUNC void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() -= src; } };
struct adds {
Scalar m_scale;
explicit adds(const Scalar& s) : m_scale(s) {}
template<typename Dst, typename Src> void EIGEN_DEVICE_FUNC operator()(const Dst& dst, const Src& src) const {
dst.const_cast_derived() += m_scale * src;
}
};
template<typename Dst>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{
internal::outer_product_selector_run(dst, lhs, rhs, set(), is_row_major<Dst>());
}
template<typename Dst>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{
internal::outer_product_selector_run(dst, lhs, rhs, add(), is_row_major<Dst>());
}
template<typename Dst>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{
internal::outer_product_selector_run(dst, lhs, rhs, sub(), is_row_major<Dst>());
}
template<typename Dst>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
{
internal::outer_product_selector_run(dst, lhs, rhs, adds(alpha), is_row_major<Dst>());
}
};
// This base class provides default implementations for evalTo, addTo, subTo, in terms of scaleAndAddTo
template<typename Lhs, typename Rhs, typename Derived>
struct generic_product_impl_base
{
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
template<typename Dst>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{ dst.setZero(); scaleAndAddTo(dst, lhs, rhs, Scalar(1)); }
template<typename Dst>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{ scaleAndAddTo(dst,lhs, rhs, Scalar(1)); }
template<typename Dst>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{ scaleAndAddTo(dst, lhs, rhs, Scalar(-1)); }
template<typename Dst>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
{ Derived::scaleAndAddTo(dst,lhs,rhs,alpha); }
};
template<typename Lhs, typename Rhs>
struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemvProduct>
: generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemvProduct> >
{
typedef typename nested_eval<Lhs,1>::type LhsNested;
typedef typename nested_eval<Rhs,1>::type RhsNested;
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
enum { Side = Lhs::IsVectorAtCompileTime ? OnTheLeft : OnTheRight };
typedef typename internal::remove_all<typename internal::conditional<int(Side)==OnTheRight,LhsNested,RhsNested>::type>::type MatrixType;
template<typename Dest>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
{
// Fallback to inner product if both the lhs and rhs is a runtime vector.
if (lhs.rows() == 1 && rhs.cols() == 1) {
dst.coeffRef(0,0) += alpha * lhs.row(0).conjugate().dot(rhs.col(0));
return;
}
LhsNested actual_lhs(lhs);
RhsNested actual_rhs(rhs);
internal::gemv_dense_selector<Side,
(int(MatrixType::Flags)&RowMajorBit) ? RowMajor : ColMajor,
bool(internal::blas_traits<MatrixType>::HasUsableDirectAccess)
>::run(actual_lhs, actual_rhs, dst, alpha);
}
};
template<typename Lhs, typename Rhs>
struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,CoeffBasedProductMode>
{
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
template<typename Dst>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{
// Same as: dst.noalias() = lhs.lazyProduct(rhs);
// but easier on the compiler side
call_assignment_no_alias(dst, lhs.lazyProduct(rhs), internal::assign_op<typename Dst::Scalar,Scalar>());
}
template<typename Dst>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{
// dst.noalias() += lhs.lazyProduct(rhs);
call_assignment_no_alias(dst, lhs.lazyProduct(rhs), internal::add_assign_op<typename Dst::Scalar,Scalar>());
}
template<typename Dst>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{
// dst.noalias() -= lhs.lazyProduct(rhs);
call_assignment_no_alias(dst, lhs.lazyProduct(rhs), internal::sub_assign_op<typename Dst::Scalar,Scalar>());
}
// This is a special evaluation path called from generic_product_impl<...,GemmProduct> in file GeneralMatrixMatrix.h
// This variant tries to extract scalar multiples from both the LHS and RHS and factor them out. For instance:
// dst {,+,-}= (s1*A)*(B*s2)
// will be rewritten as:
// dst {,+,-}= (s1*s2) * (A.lazyProduct(B))
// There are at least four benefits of doing so:
// 1 - huge performance gain for heap-allocated matrix types as it save costly allocations.
// 2 - it is faster than simply by-passing the heap allocation through stack allocation.
// 3 - it makes this fallback consistent with the heavy GEMM routine.
// 4 - it fully by-passes huge stack allocation attempts when multiplying huge fixed-size matrices.
// (see https://stackoverflow.com/questions/54738495)
// For small fixed sizes matrices, however, the gains are less obvious, it is sometimes x2 faster, but sometimes x3 slower,
// and the behavior depends also a lot on the compiler... This is why this re-writing strategy is currently
// enabled only when falling back from the main GEMM.
template<typename Dst, typename Func>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void eval_dynamic(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Func &func)
{
enum {
HasScalarFactor = blas_traits<Lhs>::HasScalarFactor || blas_traits<Rhs>::HasScalarFactor,
ConjLhs = blas_traits<Lhs>::NeedToConjugate,
ConjRhs = blas_traits<Rhs>::NeedToConjugate
};
// FIXME: in c++11 this should be auto, and extractScalarFactor should also return auto
// this is important for real*complex_mat
Scalar actualAlpha = combine_scalar_factors<Scalar>(lhs, rhs);
eval_dynamic_impl(dst,
blas_traits<Lhs>::extract(lhs).template conjugateIf<ConjLhs>(),
blas_traits<Rhs>::extract(rhs).template conjugateIf<ConjRhs>(),
func,
actualAlpha,
typename conditional<HasScalarFactor,true_type,false_type>::type());
}
protected:
template<typename Dst, typename LhsT, typename RhsT, typename Func, typename Scalar>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void eval_dynamic_impl(Dst& dst, const LhsT& lhs, const RhsT& rhs, const Func &func, const Scalar& s /* == 1 */, false_type)
{
EIGEN_UNUSED_VARIABLE(s);
eigen_internal_assert(s==Scalar(1));
call_restricted_packet_assignment_no_alias(dst, lhs.lazyProduct(rhs), func);
}
template<typename Dst, typename LhsT, typename RhsT, typename Func, typename Scalar>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void eval_dynamic_impl(Dst& dst, const LhsT& lhs, const RhsT& rhs, const Func &func, const Scalar& s, true_type)
{
call_restricted_packet_assignment_no_alias(dst, s * lhs.lazyProduct(rhs), func);
}
};
// This specialization enforces the use of a coefficient-based evaluation strategy
template<typename Lhs, typename Rhs>
struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,LazyCoeffBasedProductMode>
: generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,CoeffBasedProductMode> {};
// Case 2: Evaluate coeff by coeff
//
// This is mostly taken from CoeffBasedProduct.h
// The main difference is that we add an extra argument to the etor_product_*_impl::run() function
// for the inner dimension of the product, because evaluator object do not know their size.
template<int Traversal, int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
struct etor_product_coeff_impl;
template<int StorageOrder, int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl;
template<typename Lhs, typename Rhs, int ProductTag>
struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, DenseShape, DenseShape>
: evaluator_base<Product<Lhs, Rhs, LazyProduct> >
{
typedef Product<Lhs, Rhs, LazyProduct> XprType;
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
explicit product_evaluator(const XprType& xpr)
: m_lhs(xpr.lhs()),
m_rhs(xpr.rhs()),
m_lhsImpl(m_lhs), // FIXME the creation of the evaluator objects should result in a no-op, but check that!
m_rhsImpl(m_rhs), // Moreover, they are only useful for the packet path, so we could completely disable them when not needed,
// or perhaps declare them on the fly on the packet method... We have experiment to check what's best.
m_innerDim(xpr.lhs().cols())
{
EIGEN_INTERNAL_CHECK_COST_VALUE(NumTraits<Scalar>::MulCost);
EIGEN_INTERNAL_CHECK_COST_VALUE(NumTraits<Scalar>::AddCost);
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
#if 0
std::cerr << "LhsOuterStrideBytes= " << LhsOuterStrideBytes << "\n";
std::cerr << "RhsOuterStrideBytes= " << RhsOuterStrideBytes << "\n";
std::cerr << "LhsAlignment= " << LhsAlignment << "\n";
std::cerr << "RhsAlignment= " << RhsAlignment << "\n";
std::cerr << "CanVectorizeLhs= " << CanVectorizeLhs << "\n";
std::cerr << "CanVectorizeRhs= " << CanVectorizeRhs << "\n";
std::cerr << "CanVectorizeInner= " << CanVectorizeInner << "\n";
std::cerr << "EvalToRowMajor= " << EvalToRowMajor << "\n";
std::cerr << "Alignment= " << Alignment << "\n";
std::cerr << "Flags= " << Flags << "\n";
#endif
}
// Everything below here is taken from CoeffBasedProduct.h
typedef typename internal::nested_eval<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
typedef typename internal::nested_eval<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
typedef typename internal::remove_all<LhsNested>::type LhsNestedCleaned;
typedef typename internal::remove_all<RhsNested>::type RhsNestedCleaned;
typedef evaluator<LhsNestedCleaned> LhsEtorType;
typedef evaluator<RhsNestedCleaned> RhsEtorType;
enum {
RowsAtCompileTime = LhsNestedCleaned::RowsAtCompileTime,
ColsAtCompileTime = RhsNestedCleaned::ColsAtCompileTime,
InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(LhsNestedCleaned::ColsAtCompileTime, RhsNestedCleaned::RowsAtCompileTime),
MaxRowsAtCompileTime = LhsNestedCleaned::MaxRowsAtCompileTime,
MaxColsAtCompileTime = RhsNestedCleaned::MaxColsAtCompileTime
};
typedef typename find_best_packet<Scalar,RowsAtCompileTime>::type LhsVecPacketType;
typedef typename find_best_packet<Scalar,ColsAtCompileTime>::type RhsVecPacketType;
enum {
LhsCoeffReadCost = LhsEtorType::CoeffReadCost,
RhsCoeffReadCost = RhsEtorType::CoeffReadCost,
CoeffReadCost = InnerSize==0 ? NumTraits<Scalar>::ReadCost
: InnerSize == Dynamic ? HugeCost
: InnerSize * (NumTraits<Scalar>::MulCost + int(LhsCoeffReadCost) + int(RhsCoeffReadCost))
+ (InnerSize - 1) * NumTraits<Scalar>::AddCost,
Unroll = CoeffReadCost <= EIGEN_UNROLLING_LIMIT,
LhsFlags = LhsEtorType::Flags,
RhsFlags = RhsEtorType::Flags,
LhsRowMajor = LhsFlags & RowMajorBit,
RhsRowMajor = RhsFlags & RowMajorBit,
LhsVecPacketSize = unpacket_traits<LhsVecPacketType>::size,
RhsVecPacketSize = unpacket_traits<RhsVecPacketType>::size,
// Here, we don't care about alignment larger than the usable packet size.
LhsAlignment = EIGEN_PLAIN_ENUM_MIN(LhsEtorType::Alignment,LhsVecPacketSize*int(sizeof(typename LhsNestedCleaned::Scalar))),
RhsAlignment = EIGEN_PLAIN_ENUM_MIN(RhsEtorType::Alignment,RhsVecPacketSize*int(sizeof(typename RhsNestedCleaned::Scalar))),
SameType = is_same<typename LhsNestedCleaned::Scalar,typename RhsNestedCleaned::Scalar>::value,
CanVectorizeRhs = bool(RhsRowMajor) && (RhsFlags & PacketAccessBit) && (ColsAtCompileTime!=1),
CanVectorizeLhs = (!LhsRowMajor) && (LhsFlags & PacketAccessBit) && (RowsAtCompileTime!=1),
EvalToRowMajor = (MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1
: (MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0
: (bool(RhsRowMajor) && !CanVectorizeLhs),
Flags = ((int(LhsFlags) | int(RhsFlags)) & HereditaryBits & ~RowMajorBit)
| (EvalToRowMajor ? RowMajorBit : 0)
// TODO enable vectorization for mixed types
| (SameType && (CanVectorizeLhs || CanVectorizeRhs) ? PacketAccessBit : 0)
| (XprType::IsVectorAtCompileTime ? LinearAccessBit : 0),
LhsOuterStrideBytes = int(LhsNestedCleaned::OuterStrideAtCompileTime) * int(sizeof(typename LhsNestedCleaned::Scalar)),
RhsOuterStrideBytes = int(RhsNestedCleaned::OuterStrideAtCompileTime) * int(sizeof(typename RhsNestedCleaned::Scalar)),
Alignment = bool(CanVectorizeLhs) ? (LhsOuterStrideBytes<=0 || (int(LhsOuterStrideBytes) % EIGEN_PLAIN_ENUM_MAX(1,LhsAlignment))!=0 ? 0 : LhsAlignment)
: bool(CanVectorizeRhs) ? (RhsOuterStrideBytes<=0 || (int(RhsOuterStrideBytes) % EIGEN_PLAIN_ENUM_MAX(1,RhsAlignment))!=0 ? 0 : RhsAlignment)
: 0,
/* CanVectorizeInner deserves special explanation. It does not affect the product flags. It is not used outside
* of Product. If the Product itself is not a packet-access expression, there is still a chance that the inner
* loop of the product might be vectorized. This is the meaning of CanVectorizeInner. Since it doesn't affect
* the Flags, it is safe to make this value depend on ActualPacketAccessBit, that doesn't affect the ABI.
*/
CanVectorizeInner = SameType
&& LhsRowMajor
&& (!RhsRowMajor)
&& (int(LhsFlags) & int(RhsFlags) & ActualPacketAccessBit)
&& (int(InnerSize) % packet_traits<Scalar>::size == 0)
};
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CoeffReturnType coeff(Index row, Index col) const
{
return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum();
}
/* Allow index-based non-packet access. It is impossible though to allow index-based packed access,
* which is why we don't set the LinearAccessBit.
* TODO: this seems possible when the result is a vector
*/
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const CoeffReturnType coeff(Index index) const
{
const Index row = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? 0 : index;
const Index col = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? index : 0;
return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum();
}
template<int LoadMode, typename PacketType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const PacketType packet(Index row, Index col) const
{
PacketType res;
typedef etor_product_packet_impl<bool(int(Flags)&RowMajorBit) ? RowMajor : ColMajor,
Unroll ? int(InnerSize) : Dynamic,
LhsEtorType, RhsEtorType, PacketType, LoadMode> PacketImpl;
PacketImpl::run(row, col, m_lhsImpl, m_rhsImpl, m_innerDim, res);
return res;
}
template<int LoadMode, typename PacketType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const PacketType packet(Index index) const
{
const Index row = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? 0 : index;
const Index col = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? index : 0;
return packet<LoadMode,PacketType>(row,col);
}
protected:
typename internal::add_const_on_value_type<LhsNested>::type m_lhs;
typename internal::add_const_on_value_type<RhsNested>::type m_rhs;
LhsEtorType m_lhsImpl;
RhsEtorType m_rhsImpl;
// TODO: Get rid of m_innerDim if known at compile time
Index m_innerDim;
};
template<typename Lhs, typename Rhs>
struct product_evaluator<Product<Lhs, Rhs, DefaultProduct>, LazyCoeffBasedProductMode, DenseShape, DenseShape>
: product_evaluator<Product<Lhs, Rhs, LazyProduct>, CoeffBasedProductMode, DenseShape, DenseShape>
{
typedef Product<Lhs, Rhs, DefaultProduct> XprType;
typedef Product<Lhs, Rhs, LazyProduct> BaseProduct;
typedef product_evaluator<BaseProduct, CoeffBasedProductMode, DenseShape, DenseShape> Base;
enum {
Flags = Base::Flags | EvalBeforeNestingBit
};
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
explicit product_evaluator(const XprType& xpr)
: Base(BaseProduct(xpr.lhs(),xpr.rhs()))
{}
};
/****************************************
*** Coeff based product, Packet path ***
****************************************/
template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<RowMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
{
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet &res)
{
etor_product_packet_impl<RowMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, innerDim, res);
res = pmadd(pset1<Packet>(lhs.coeff(row, Index(UnrollingIndex-1))), rhs.template packet<LoadMode,Packet>(Index(UnrollingIndex-1), col), res);
}
};
template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<ColMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
{
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet &res)
{
etor_product_packet_impl<ColMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, innerDim, res);
res = pmadd(lhs.template packet<LoadMode,Packet>(row, Index(UnrollingIndex-1)), pset1<Packet>(rhs.coeff(Index(UnrollingIndex-1), col)), res);
}
};
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<RowMajor, 1, Lhs, Rhs, Packet, LoadMode>
{
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, Packet &res)
{
res = pmul(pset1<Packet>(lhs.coeff(row, Index(0))),rhs.template packet<LoadMode,Packet>(Index(0), col));
}
};
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<ColMajor, 1, Lhs, Rhs, Packet, LoadMode>
{
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, Packet &res)
{
res = pmul(lhs.template packet<LoadMode,Packet>(row, Index(0)), pset1<Packet>(rhs.coeff(Index(0), col)));
}
};
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<RowMajor, 0, Lhs, Rhs, Packet, LoadMode>
{
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(Index /*row*/, Index /*col*/, const Lhs& /*lhs*/, const Rhs& /*rhs*/, Index /*innerDim*/, Packet &res)
{
res = pset1<Packet>(typename unpacket_traits<Packet>::type(0));
}
};
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<ColMajor, 0, Lhs, Rhs, Packet, LoadMode>
{
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(Index /*row*/, Index /*col*/, const Lhs& /*lhs*/, const Rhs& /*rhs*/, Index /*innerDim*/, Packet &res)
{
res = pset1<Packet>(typename unpacket_traits<Packet>::type(0));
}
};
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<RowMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
{
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet& res)
{
res = pset1<Packet>(typename unpacket_traits<Packet>::type(0));
for(Index i = 0; i < innerDim; ++i)
res = pmadd(pset1<Packet>(lhs.coeff(row, i)), rhs.template packet<LoadMode,Packet>(i, col), res);
}
};
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<ColMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
{
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet& res)
{
res = pset1<Packet>(typename unpacket_traits<Packet>::type(0));
for(Index i = 0; i < innerDim; ++i)
res = pmadd(lhs.template packet<LoadMode,Packet>(row, i), pset1<Packet>(rhs.coeff(i, col)), res);
}
};
/***************************************************************************
* Triangular products
***************************************************************************/
template<int Mode, bool LhsIsTriangular,
typename Lhs, bool LhsIsVector,
typename Rhs, bool RhsIsVector>
struct triangular_product_impl;
template<typename Lhs, typename Rhs, int ProductTag>
struct generic_product_impl<Lhs,Rhs,TriangularShape,DenseShape,ProductTag>
: generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,TriangularShape,DenseShape,ProductTag> >
{
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
template<typename Dest>
static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
{
triangular_product_impl<Lhs::Mode,true,typename Lhs::MatrixType,false,Rhs, Rhs::ColsAtCompileTime==1>
::run(dst, lhs.nestedExpression(), rhs, alpha);
}
};
template<typename Lhs, typename Rhs, int ProductTag>
struct generic_product_impl<Lhs,Rhs,DenseShape,TriangularShape,ProductTag>
: generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,TriangularShape,ProductTag> >
{
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
template<typename Dest>
static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
{
triangular_product_impl<Rhs::Mode,false,Lhs,Lhs::RowsAtCompileTime==1, typename Rhs::MatrixType, false>::run(dst, lhs, rhs.nestedExpression(), alpha);
}
};
/***************************************************************************
* SelfAdjoint products
***************************************************************************/
template <typename Lhs, int LhsMode, bool LhsIsVector,
typename Rhs, int RhsMode, bool RhsIsVector>
struct selfadjoint_product_impl;
template<typename Lhs, typename Rhs, int ProductTag>
struct generic_product_impl<Lhs,Rhs,SelfAdjointShape,DenseShape,ProductTag>
: generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,SelfAdjointShape,DenseShape,ProductTag> >
{
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
template<typename Dest>
static EIGEN_DEVICE_FUNC
void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
{
selfadjoint_product_impl<typename Lhs::MatrixType,Lhs::Mode,false,Rhs,0,Rhs::IsVectorAtCompileTime>::run(dst, lhs.nestedExpression(), rhs, alpha);
}
};
template<typename Lhs, typename Rhs, int ProductTag>
struct generic_product_impl<Lhs,Rhs,DenseShape,SelfAdjointShape,ProductTag>
: generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,SelfAdjointShape,ProductTag> >
{
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
template<typename Dest>
static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
{
selfadjoint_product_impl<Lhs,0,Lhs::IsVectorAtCompileTime,typename Rhs::MatrixType,Rhs::Mode,false>::run(dst, lhs, rhs.nestedExpression(), alpha);
}
};
/***************************************************************************
* Diagonal products
***************************************************************************/
template<typename MatrixType, typename DiagonalType, typename Derived, int ProductOrder>
struct diagonal_product_evaluator_base
: evaluator_base<Derived>
{
typedef typename ScalarBinaryOpTraits<typename MatrixType::Scalar, typename DiagonalType::Scalar>::ReturnType Scalar;
public:
enum {
CoeffReadCost = int(NumTraits<Scalar>::MulCost) + int(evaluator<MatrixType>::CoeffReadCost) + int(evaluator<DiagonalType>::CoeffReadCost),
MatrixFlags = evaluator<MatrixType>::Flags,
DiagFlags = evaluator<DiagonalType>::Flags,
StorageOrder_ = (Derived::MaxRowsAtCompileTime==1 && Derived::MaxColsAtCompileTime!=1) ? RowMajor
: (Derived::MaxColsAtCompileTime==1 && Derived::MaxRowsAtCompileTime!=1) ? ColMajor
: MatrixFlags & RowMajorBit ? RowMajor : ColMajor,
_SameStorageOrder = StorageOrder_ == (MatrixFlags & RowMajorBit ? RowMajor : ColMajor),
_ScalarAccessOnDiag = !((int(StorageOrder_) == ColMajor && int(ProductOrder) == OnTheLeft)
||(int(StorageOrder_) == RowMajor && int(ProductOrder) == OnTheRight)),
_SameTypes = is_same<typename MatrixType::Scalar, typename DiagonalType::Scalar>::value,
// FIXME currently we need same types, but in the future the next rule should be the one
//_Vectorizable = bool(int(MatrixFlags)&PacketAccessBit) && ((!_PacketOnDiag) || (_SameTypes && bool(int(DiagFlags)&PacketAccessBit))),
_Vectorizable = bool(int(MatrixFlags)&PacketAccessBit)
&& _SameTypes
&& (_SameStorageOrder || (MatrixFlags&LinearAccessBit)==LinearAccessBit)
&& (_ScalarAccessOnDiag || (bool(int(DiagFlags)&PacketAccessBit))),
_LinearAccessMask = (MatrixType::RowsAtCompileTime==1 || MatrixType::ColsAtCompileTime==1) ? LinearAccessBit : 0,
Flags = ((HereditaryBits|_LinearAccessMask) & (unsigned int)(MatrixFlags)) | (_Vectorizable ? PacketAccessBit : 0),
Alignment = evaluator<MatrixType>::Alignment,
AsScalarProduct = (DiagonalType::SizeAtCompileTime==1)
|| (DiagonalType::SizeAtCompileTime==Dynamic && MatrixType::RowsAtCompileTime==1 && ProductOrder==OnTheLeft)
|| (DiagonalType::SizeAtCompileTime==Dynamic && MatrixType::ColsAtCompileTime==1 && ProductOrder==OnTheRight)
};
EIGEN_DEVICE_FUNC diagonal_product_evaluator_base(const MatrixType &mat, const DiagonalType &diag)
: m_diagImpl(diag), m_matImpl(mat)
{
EIGEN_INTERNAL_CHECK_COST_VALUE(NumTraits<Scalar>::MulCost);
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index idx) const
{
if(AsScalarProduct)
return m_diagImpl.coeff(0) * m_matImpl.coeff(idx);
else
return m_diagImpl.coeff(idx) * m_matImpl.coeff(idx);
}
protected:
template<int LoadMode,typename PacketType>
EIGEN_STRONG_INLINE PacketType packet_impl(Index row, Index col, Index id, internal::true_type) const
{
return internal::pmul(m_matImpl.template packet<LoadMode,PacketType>(row, col),
internal::pset1<PacketType>(m_diagImpl.coeff(id)));
}
template<int LoadMode,typename PacketType>
EIGEN_STRONG_INLINE PacketType packet_impl(Index row, Index col, Index id, internal::false_type) const
{
enum {
InnerSize = (MatrixType::Flags & RowMajorBit) ? MatrixType::ColsAtCompileTime : MatrixType::RowsAtCompileTime,
DiagonalPacketLoadMode = EIGEN_PLAIN_ENUM_MIN(LoadMode,((InnerSize%16) == 0) ? int(Aligned16) : int(evaluator<DiagonalType>::Alignment)) // FIXME hardcoded 16!!
};
return internal::pmul(m_matImpl.template packet<LoadMode,PacketType>(row, col),
m_diagImpl.template packet<DiagonalPacketLoadMode,PacketType>(id));
}
evaluator<DiagonalType> m_diagImpl;
evaluator<MatrixType> m_matImpl;
};
// diagonal * dense
template<typename Lhs, typename Rhs, int ProductKind, int ProductTag>
struct product_evaluator<Product<Lhs, Rhs, ProductKind>, ProductTag, DiagonalShape, DenseShape>
: diagonal_product_evaluator_base<Rhs, typename Lhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheLeft>
{
typedef diagonal_product_evaluator_base<Rhs, typename Lhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheLeft> Base;
using Base::m_diagImpl;
using Base::m_matImpl;
using Base::coeff;
typedef typename Base::Scalar Scalar;
typedef Product<Lhs, Rhs, ProductKind> XprType;
typedef typename XprType::PlainObject PlainObject;
typedef typename Lhs::DiagonalVectorType DiagonalType;
enum { StorageOrder = Base::StorageOrder_ };
EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
: Base(xpr.rhs(), xpr.lhs().diagonal())
{
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const
{
return m_diagImpl.coeff(row) * m_matImpl.coeff(row, col);
}
#ifndef EIGEN_GPUCC
template<int LoadMode,typename PacketType>
EIGEN_STRONG_INLINE PacketType packet(Index row, Index col) const
{
// FIXME: NVCC used to complain about the template keyword, but we have to check whether this is still the case.
// See also similar calls below.
return this->template packet_impl<LoadMode,PacketType>(row,col, row,
typename internal::conditional<int(StorageOrder)==RowMajor, internal::true_type, internal::false_type>::type());
}
template<int LoadMode,typename PacketType>
EIGEN_STRONG_INLINE PacketType packet(Index idx) const
{
return packet<LoadMode,PacketType>(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx);
}
#endif
};
// dense * diagonal
template<typename Lhs, typename Rhs, int ProductKind, int ProductTag>
struct product_evaluator<Product<Lhs, Rhs, ProductKind>, ProductTag, DenseShape, DiagonalShape>
: diagonal_product_evaluator_base<Lhs, typename Rhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheRight>
{
typedef diagonal_product_evaluator_base<Lhs, typename Rhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheRight> Base;
using Base::m_diagImpl;
using Base::m_matImpl;
using Base::coeff;
typedef typename Base::Scalar Scalar;
typedef Product<Lhs, Rhs, ProductKind> XprType;
typedef typename XprType::PlainObject PlainObject;
enum { StorageOrder = Base::StorageOrder_ };
EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
: Base(xpr.lhs(), xpr.rhs().diagonal())
{
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const
{
return m_matImpl.coeff(row, col) * m_diagImpl.coeff(col);
}
#ifndef EIGEN_GPUCC
template<int LoadMode,typename PacketType>
EIGEN_STRONG_INLINE PacketType packet(Index row, Index col) const
{
return this->template packet_impl<LoadMode,PacketType>(row,col, col,
typename internal::conditional<int(StorageOrder)==ColMajor, internal::true_type, internal::false_type>::type());
}
template<int LoadMode,typename PacketType>
EIGEN_STRONG_INLINE PacketType packet(Index idx) const
{
return packet<LoadMode,PacketType>(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx);
}
#endif
};
/***************************************************************************
* Products with permutation matrices
***************************************************************************/
/** \internal
* \class permutation_matrix_product
* Internal helper class implementing the product between a permutation matrix and a matrix.
* This class is specialized for DenseShape below and for SparseShape in SparseCore/SparsePermutation.h
*/
template<typename ExpressionType, int Side, bool Transposed, typename ExpressionShape>
struct permutation_matrix_product;
template<typename ExpressionType, int Side, bool Transposed>
struct permutation_matrix_product<ExpressionType, Side, Transposed, DenseShape>
{
typedef typename nested_eval<ExpressionType, 1>::type MatrixType;
typedef typename remove_all<MatrixType>::type MatrixTypeCleaned;
template<typename Dest, typename PermutationType>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(Dest& dst, const PermutationType& perm, const ExpressionType& xpr)
{
MatrixType mat(xpr);
const Index n = Side==OnTheLeft ? mat.rows() : mat.cols();
// FIXME we need an is_same for expression that is not sensitive to constness. For instance
// is_same_xpr<Block<const Matrix>, Block<Matrix> >::value should be true.
//if(is_same<MatrixTypeCleaned,Dest>::value && extract_data(dst) == extract_data(mat))
if(is_same_dense(dst, mat))
{
// apply the permutation inplace
Matrix<bool,PermutationType::RowsAtCompileTime,1,0,PermutationType::MaxRowsAtCompileTime> mask(perm.size());
mask.fill(false);
Index r = 0;
while(r < perm.size())
{
// search for the next seed
while(r<perm.size() && mask[r]) r++;
if(r>=perm.size())
break;
// we got one, let's follow it until we are back to the seed
Index k0 = r++;
Index kPrev = k0;
mask.coeffRef(k0) = true;
for(Index k=perm.indices().coeff(k0); k!=k0; k=perm.indices().coeff(k))
{
Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>(dst, k)
.swap(Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>
(dst,((Side==OnTheLeft) ^ Transposed) ? k0 : kPrev));
mask.coeffRef(k) = true;
kPrev = k;
}
}
}
else
{
for(Index i = 0; i < n; ++i)
{
Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>
(dst, ((Side==OnTheLeft) ^ Transposed) ? perm.indices().coeff(i) : i)
=
Block<const MatrixTypeCleaned,Side==OnTheLeft ? 1 : MatrixTypeCleaned::RowsAtCompileTime,Side==OnTheRight ? 1 : MatrixTypeCleaned::ColsAtCompileTime>
(mat, ((Side==OnTheRight) ^ Transposed) ? perm.indices().coeff(i) : i);
}
}
}
};
template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
struct generic_product_impl<Lhs, Rhs, PermutationShape, MatrixShape, ProductTag>
{
template<typename Dest>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
{
permutation_matrix_product<Rhs, OnTheLeft, false, MatrixShape>::run(dst, lhs, rhs);
}
};
template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
struct generic_product_impl<Lhs, Rhs, MatrixShape, PermutationShape, ProductTag>
{
template<typename Dest>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
{
permutation_matrix_product<Lhs, OnTheRight, false, MatrixShape>::run(dst, rhs, lhs);
}
};
template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
struct generic_product_impl<Inverse<Lhs>, Rhs, PermutationShape, MatrixShape, ProductTag>
{
template<typename Dest>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dest& dst, const Inverse<Lhs>& lhs, const Rhs& rhs)
{
permutation_matrix_product<Rhs, OnTheLeft, true, MatrixShape>::run(dst, lhs.nestedExpression(), rhs);
}
};
template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
struct generic_product_impl<Lhs, Inverse<Rhs>, MatrixShape, PermutationShape, ProductTag>
{
template<typename Dest>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dest& dst, const Lhs& lhs, const Inverse<Rhs>& rhs)
{
permutation_matrix_product<Lhs, OnTheRight, true, MatrixShape>::run(dst, rhs.nestedExpression(), lhs);
}
};
/***************************************************************************
* Products with transpositions matrices
***************************************************************************/
// FIXME could we unify Transpositions and Permutation into a single "shape"??
/** \internal
* \class transposition_matrix_product
* Internal helper class implementing the product between a permutation matrix and a matrix.
*/
template<typename ExpressionType, int Side, bool Transposed, typename ExpressionShape>
struct transposition_matrix_product
{
typedef typename nested_eval<ExpressionType, 1>::type MatrixType;
typedef typename remove_all<MatrixType>::type MatrixTypeCleaned;
template<typename Dest, typename TranspositionType>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(Dest& dst, const TranspositionType& tr, const ExpressionType& xpr)
{
MatrixType mat(xpr);
typedef typename TranspositionType::StorageIndex StorageIndex;
const Index size = tr.size();
StorageIndex j = 0;
if(!is_same_dense(dst,mat))
dst = mat;
for(Index k=(Transposed?size-1:0) ; Transposed?k>=0:k<size ; Transposed?--k:++k)
if(Index(j=tr.coeff(k))!=k)
{
if(Side==OnTheLeft) dst.row(k).swap(dst.row(j));
else if(Side==OnTheRight) dst.col(k).swap(dst.col(j));
}
}
};
template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
struct generic_product_impl<Lhs, Rhs, TranspositionsShape, MatrixShape, ProductTag>
{
template<typename Dest>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
{
transposition_matrix_product<Rhs, OnTheLeft, false, MatrixShape>::run(dst, lhs, rhs);
}
};
template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
struct generic_product_impl<Lhs, Rhs, MatrixShape, TranspositionsShape, ProductTag>
{
template<typename Dest>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
{
transposition_matrix_product<Lhs, OnTheRight, false, MatrixShape>::run(dst, rhs, lhs);
}
};
template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
struct generic_product_impl<Transpose<Lhs>, Rhs, TranspositionsShape, MatrixShape, ProductTag>
{
template<typename Dest>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dest& dst, const Transpose<Lhs>& lhs, const Rhs& rhs)
{
transposition_matrix_product<Rhs, OnTheLeft, true, MatrixShape>::run(dst, lhs.nestedExpression(), rhs);
}
};
template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
struct generic_product_impl<Lhs, Transpose<Rhs>, MatrixShape, TranspositionsShape, ProductTag>
{
template<typename Dest>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dest& dst, const Lhs& lhs, const Transpose<Rhs>& rhs)
{
transposition_matrix_product<Lhs, OnTheRight, true, MatrixShape>::run(dst, rhs.nestedExpression(), lhs);
}
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_PRODUCT_EVALUATORS_H