| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2014 Benoit Steiner (benoit.steiner.goog@gmail.com) |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_PACKET_MATH_AVX_H |
| #define EIGEN_PACKET_MATH_AVX_H |
| |
| #include "../../InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| #ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD |
| #define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8 |
| #endif |
| |
| #if !defined(EIGEN_VECTORIZE_AVX512) && !defined(EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS) |
| #define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 16 |
| #endif |
| |
| #ifdef EIGEN_VECTORIZE_FMA |
| #ifndef EIGEN_HAS_SINGLE_INSTRUCTION_MADD |
| #define EIGEN_HAS_SINGLE_INSTRUCTION_MADD |
| #endif |
| #endif |
| |
| typedef __m256 Packet8f; |
| typedef __m256i Packet8i; |
| typedef __m256d Packet4d; |
| typedef eigen_packet_wrapper<__m128i, 2> Packet8h; |
| typedef eigen_packet_wrapper<__m128i, 3> Packet8bf; |
| |
| template<> struct is_arithmetic<__m256> { enum { value = true }; }; |
| template<> struct is_arithmetic<__m256i> { enum { value = true }; }; |
| template<> struct is_arithmetic<__m256d> { enum { value = true }; }; |
| template<> struct is_arithmetic<Packet8h> { enum { value = true }; }; |
| template<> struct is_arithmetic<Packet8bf> { enum { value = true }; }; |
| |
| #define _EIGEN_DECLARE_CONST_Packet8f(NAME,X) \ |
| const Packet8f p8f_##NAME = pset1<Packet8f>(X) |
| |
| #define _EIGEN_DECLARE_CONST_Packet4d(NAME,X) \ |
| const Packet4d p4d_##NAME = pset1<Packet4d>(X) |
| |
| #define _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(NAME,X) \ |
| const Packet8f p8f_##NAME = _mm256_castsi256_ps(pset1<Packet8i>(X)) |
| |
| #define _EIGEN_DECLARE_CONST_Packet8i(NAME,X) \ |
| const Packet8i p8i_##NAME = pset1<Packet8i>(X) |
| |
| // Use the packet_traits defined in AVX512/PacketMath.h instead if we're going |
| // to leverage AVX512 instructions. |
| #ifndef EIGEN_VECTORIZE_AVX512 |
| template<> struct packet_traits<float> : default_packet_traits |
| { |
| typedef Packet8f type; |
| typedef Packet4f half; |
| enum { |
| Vectorizable = 1, |
| AlignedOnScalar = 1, |
| size = 8, |
| HasHalfPacket = 1, |
| |
| HasCmp = 1, |
| HasDiv = 1, |
| HasSin = EIGEN_FAST_MATH, |
| HasCos = EIGEN_FAST_MATH, |
| HasLog = 1, |
| HasLog1p = 1, |
| HasExpm1 = 1, |
| HasExp = 1, |
| HasNdtri = 1, |
| HasBessel = 1, |
| HasSqrt = 1, |
| HasRsqrt = 1, |
| HasTanh = EIGEN_FAST_MATH, |
| HasErf = EIGEN_FAST_MATH, |
| HasBlend = 1, |
| HasRound = 1, |
| HasFloor = 1, |
| HasCeil = 1, |
| HasRint = 1 |
| }; |
| }; |
| template<> struct packet_traits<double> : default_packet_traits |
| { |
| typedef Packet4d type; |
| typedef Packet2d half; |
| enum { |
| Vectorizable = 1, |
| AlignedOnScalar = 1, |
| size=4, |
| HasHalfPacket = 1, |
| |
| HasCmp = 1, |
| HasDiv = 1, |
| HasLog = 1, |
| HasExp = 1, |
| HasSqrt = 1, |
| HasRsqrt = 1, |
| HasBlend = 1, |
| HasRound = 1, |
| HasFloor = 1, |
| HasCeil = 1, |
| HasRint = 1 |
| }; |
| }; |
| |
| template <> |
| struct packet_traits<Eigen::half> : default_packet_traits { |
| typedef Packet8h type; |
| // There is no half-size packet for Packet8h. |
| typedef Packet8h half; |
| enum { |
| Vectorizable = 1, |
| AlignedOnScalar = 1, |
| size = 8, |
| HasHalfPacket = 0, |
| |
| HasCmp = 1, |
| HasAdd = 1, |
| HasSub = 1, |
| HasMul = 1, |
| HasDiv = 1, |
| HasSin = EIGEN_FAST_MATH, |
| HasCos = EIGEN_FAST_MATH, |
| HasNegate = 1, |
| HasAbs = 1, |
| HasAbs2 = 0, |
| HasMin = 1, |
| HasMax = 1, |
| HasConj = 1, |
| HasSetLinear = 0, |
| HasLog = 1, |
| HasLog1p = 1, |
| HasExpm1 = 1, |
| HasExp = 1, |
| HasSqrt = 1, |
| HasRsqrt = 1, |
| HasTanh = EIGEN_FAST_MATH, |
| HasErf = EIGEN_FAST_MATH, |
| HasBlend = 0, |
| HasRound = 1, |
| HasFloor = 1, |
| HasCeil = 1, |
| HasRint = 1, |
| HasBessel = 1, |
| HasNdtri = 1 |
| }; |
| }; |
| |
| template <> |
| struct packet_traits<bfloat16> : default_packet_traits { |
| typedef Packet8bf type; |
| // There is no half-size packet for current Packet8bf. |
| // TODO: support as SSE path. |
| typedef Packet8bf half; |
| enum { |
| Vectorizable = 1, |
| AlignedOnScalar = 1, |
| size = 8, |
| HasHalfPacket = 0, |
| |
| HasCmp = 1, |
| HasAdd = 1, |
| HasSub = 1, |
| HasMul = 1, |
| HasDiv = 1, |
| HasSin = EIGEN_FAST_MATH, |
| HasCos = EIGEN_FAST_MATH, |
| HasNegate = 1, |
| HasAbs = 1, |
| HasAbs2 = 0, |
| HasMin = 1, |
| HasMax = 1, |
| HasConj = 1, |
| HasSetLinear = 0, |
| HasLog = 1, |
| HasLog1p = 1, |
| HasExpm1 = 1, |
| HasExp = 1, |
| HasSqrt = 1, |
| HasRsqrt = 1, |
| HasTanh = EIGEN_FAST_MATH, |
| HasErf = EIGEN_FAST_MATH, |
| HasBlend = 0, |
| HasRound = 1, |
| HasFloor = 1, |
| HasCeil = 1, |
| HasRint = 1, |
| HasBessel = 1, |
| HasNdtri = 1 |
| }; |
| }; |
| |
| template<> struct packet_traits<int> : default_packet_traits |
| { |
| typedef Packet8i type; |
| typedef Packet4i half; |
| enum { |
| Vectorizable = 1, |
| AlignedOnScalar = 1, |
| size=8 |
| }; |
| }; |
| #endif |
| |
| template<> struct scalar_div_cost<float,true> { enum { value = 14 }; }; |
| template<> struct scalar_div_cost<double,true> { enum { value = 16 }; }; |
| |
| template<> struct unpacket_traits<Packet8f> { |
| typedef float type; |
| typedef Packet4f half; |
| typedef Packet8i integer_packet; |
| typedef uint8_t mask_t; |
| enum {size=8, alignment=Aligned32, vectorizable=true, masked_load_available=true, masked_store_available=true}; |
| }; |
| template<> struct unpacket_traits<Packet4d> { |
| typedef double type; |
| typedef Packet2d half; |
| enum {size=4, alignment=Aligned32, vectorizable=true, masked_load_available=false, masked_store_available=false}; |
| }; |
| template<> struct unpacket_traits<Packet8i> { |
| typedef int type; |
| typedef Packet4i half; |
| enum {size=8, alignment=Aligned32, vectorizable=true, masked_load_available=false, masked_store_available=false}; |
| }; |
| template<> struct unpacket_traits<Packet8bf> { |
| typedef bfloat16 type; |
| typedef Packet8bf half; |
| enum {size=8, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; |
| }; |
| |
| // Helper function for bit packing snippet of low precision comparison. |
| // It packs the flags from 16x16 to 8x16. |
| EIGEN_STRONG_INLINE __m128i Pack16To8(Packet8f rf) { |
| return _mm_packs_epi32(_mm256_extractf128_si256(_mm256_castps_si256(rf), 0), |
| _mm256_extractf128_si256(_mm256_castps_si256(rf), 1)); |
| } |
| |
| |
| template<> EIGEN_STRONG_INLINE Packet8f pset1<Packet8f>(const float& from) { return _mm256_set1_ps(from); } |
| template<> EIGEN_STRONG_INLINE Packet4d pset1<Packet4d>(const double& from) { return _mm256_set1_pd(from); } |
| template<> EIGEN_STRONG_INLINE Packet8i pset1<Packet8i>(const int& from) { return _mm256_set1_epi32(from); } |
| |
| template<> EIGEN_STRONG_INLINE Packet8f pset1frombits<Packet8f>(unsigned int from) { return _mm256_castsi256_ps(pset1<Packet8i>(from)); } |
| template<> EIGEN_STRONG_INLINE Packet4d pset1frombits<Packet4d>(uint64_t from) { return _mm256_castsi256_pd(_mm256_set1_epi64x(from)); } |
| |
| template<> EIGEN_STRONG_INLINE Packet8f pzero(const Packet8f& /*a*/) { return _mm256_setzero_ps(); } |
| template<> EIGEN_STRONG_INLINE Packet4d pzero(const Packet4d& /*a*/) { return _mm256_setzero_pd(); } |
| template<> EIGEN_STRONG_INLINE Packet8i pzero(const Packet8i& /*a*/) { return _mm256_setzero_si256(); } |
| |
| |
| template<> EIGEN_STRONG_INLINE Packet8f peven_mask(const Packet8f& /*a*/) { return _mm256_castsi256_ps(_mm256_set_epi32(0, -1, 0, -1, 0, -1, 0, -1)); } |
| template<> EIGEN_STRONG_INLINE Packet8i peven_mask(const Packet8i& /*a*/) { return _mm256_set_epi32(0, -1, 0, -1, 0, -1, 0, -1); } |
| template<> EIGEN_STRONG_INLINE Packet4d peven_mask(const Packet4d& /*a*/) { return _mm256_castsi256_pd(_mm256_set_epi32(0, 0, -1, -1, 0, 0, -1, -1)); } |
| |
| template<> EIGEN_STRONG_INLINE Packet8f pload1<Packet8f>(const float* from) { return _mm256_broadcast_ss(from); } |
| template<> EIGEN_STRONG_INLINE Packet4d pload1<Packet4d>(const double* from) { return _mm256_broadcast_sd(from); } |
| |
| template<> EIGEN_STRONG_INLINE Packet8f padd<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_add_ps(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet4d padd<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_add_pd(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet8i padd<Packet8i>(const Packet8i& a, const Packet8i& b) { |
| #ifdef EIGEN_VECTORIZE_AVX2 |
| return _mm256_add_epi32(a,b); |
| #else |
| __m128i lo = _mm_add_epi32(_mm256_extractf128_si256(a, 0), _mm256_extractf128_si256(b, 0)); |
| __m128i hi = _mm_add_epi32(_mm256_extractf128_si256(a, 1), _mm256_extractf128_si256(b, 1)); |
| return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1); |
| #endif |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8f plset<Packet8f>(const float& a) { return padd(pset1<Packet8f>(a), _mm256_set_ps(7.0,6.0,5.0,4.0,3.0,2.0,1.0,0.0)); } |
| template<> EIGEN_STRONG_INLINE Packet4d plset<Packet4d>(const double& a) { return padd(pset1<Packet4d>(a), _mm256_set_pd(3.0,2.0,1.0,0.0)); } |
| template<> EIGEN_STRONG_INLINE Packet8i plset<Packet8i>(const int& a) { return padd(pset1<Packet8i>(a), _mm256_set_epi32(7,6,5,4,3,2,1,0)); } |
| |
| template<> EIGEN_STRONG_INLINE Packet8f psub<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_sub_ps(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet4d psub<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_sub_pd(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet8i psub<Packet8i>(const Packet8i& a, const Packet8i& b) { |
| #ifdef EIGEN_VECTORIZE_AVX2 |
| return _mm256_sub_epi32(a,b); |
| #else |
| __m128i lo = _mm_sub_epi32(_mm256_extractf128_si256(a, 0), _mm256_extractf128_si256(b, 0)); |
| __m128i hi = _mm_sub_epi32(_mm256_extractf128_si256(a, 1), _mm256_extractf128_si256(b, 1)); |
| return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1); |
| #endif |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8f pnegate(const Packet8f& a) |
| { |
| return _mm256_sub_ps(_mm256_set1_ps(0.0),a); |
| } |
| template<> EIGEN_STRONG_INLINE Packet4d pnegate(const Packet4d& a) |
| { |
| return _mm256_sub_pd(_mm256_set1_pd(0.0),a); |
| } |
| template<> EIGEN_STRONG_INLINE Packet8i pnegate(const Packet8i& a) |
| { |
| return psub(pzero(a), a); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8f pconj(const Packet8f& a) { return a; } |
| template<> EIGEN_STRONG_INLINE Packet4d pconj(const Packet4d& a) { return a; } |
| template<> EIGEN_STRONG_INLINE Packet8i pconj(const Packet8i& a) { return a; } |
| |
| template<> EIGEN_STRONG_INLINE Packet8f pmul<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_mul_ps(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet4d pmul<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_mul_pd(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet8i pmul<Packet8i>(const Packet8i& a, const Packet8i& b) { |
| #ifdef EIGEN_VECTORIZE_AVX2 |
| return _mm256_mullo_epi32(a,b); |
| #else |
| const __m128i lo = _mm_mullo_epi32(_mm256_extractf128_si256(a, 0), _mm256_extractf128_si256(b, 0)); |
| const __m128i hi = _mm_mullo_epi32(_mm256_extractf128_si256(a, 1), _mm256_extractf128_si256(b, 1)); |
| return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1); |
| #endif |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8f pdiv<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_div_ps(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet4d pdiv<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_div_pd(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet8i pdiv<Packet8i>(const Packet8i& /*a*/, const Packet8i& /*b*/) |
| { eigen_assert(false && "packet integer division are not supported by AVX"); |
| return pset1<Packet8i>(0); |
| } |
| |
| #ifdef EIGEN_VECTORIZE_FMA |
| template<> EIGEN_STRONG_INLINE Packet8f pmadd(const Packet8f& a, const Packet8f& b, const Packet8f& c) { |
| #if ( (EIGEN_COMP_GNUC_STRICT && EIGEN_COMP_GNUC<80) || (EIGEN_COMP_CLANG) ) |
| // Clang stupidly generates a vfmadd213ps instruction plus some vmovaps on registers, |
| // and even register spilling with clang>=6.0 (bug 1637). |
| // Gcc stupidly generates a vfmadd132ps instruction. |
| // So let's enforce it to generate a vfmadd231ps instruction since the most common use |
| // case is to accumulate the result of the product. |
| Packet8f res = c; |
| __asm__("vfmadd231ps %[a], %[b], %[c]" : [c] "+x" (res) : [a] "x" (a), [b] "x" (b)); |
| return res; |
| #else |
| return _mm256_fmadd_ps(a,b,c); |
| #endif |
| } |
| template<> EIGEN_STRONG_INLINE Packet4d pmadd(const Packet4d& a, const Packet4d& b, const Packet4d& c) { |
| #if ( (EIGEN_COMP_GNUC_STRICT && EIGEN_COMP_GNUC<80) || (EIGEN_COMP_CLANG) ) |
| // see above |
| Packet4d res = c; |
| __asm__("vfmadd231pd %[a], %[b], %[c]" : [c] "+x" (res) : [a] "x" (a), [b] "x" (b)); |
| return res; |
| #else |
| return _mm256_fmadd_pd(a,b,c); |
| #endif |
| } |
| #endif |
| |
| template<> EIGEN_STRONG_INLINE Packet8f pcmp_le(const Packet8f& a, const Packet8f& b) { return _mm256_cmp_ps(a,b,_CMP_LE_OQ); } |
| template<> EIGEN_STRONG_INLINE Packet8f pcmp_lt(const Packet8f& a, const Packet8f& b) { return _mm256_cmp_ps(a,b,_CMP_LT_OQ); } |
| template<> EIGEN_STRONG_INLINE Packet8f pcmp_lt_or_nan(const Packet8f& a, const Packet8f& b) { return _mm256_cmp_ps(a, b, _CMP_NGE_UQ); } |
| template<> EIGEN_STRONG_INLINE Packet8f pcmp_eq(const Packet8f& a, const Packet8f& b) { return _mm256_cmp_ps(a,b,_CMP_EQ_OQ); } |
| |
| template<> EIGEN_STRONG_INLINE Packet4d pcmp_le(const Packet4d& a, const Packet4d& b) { return _mm256_cmp_pd(a,b,_CMP_LE_OQ); } |
| template<> EIGEN_STRONG_INLINE Packet4d pcmp_lt(const Packet4d& a, const Packet4d& b) { return _mm256_cmp_pd(a,b,_CMP_LT_OQ); } |
| template<> EIGEN_STRONG_INLINE Packet4d pcmp_lt_or_nan(const Packet4d& a, const Packet4d& b) { return _mm256_cmp_pd(a, b, _CMP_NGE_UQ); } |
| template<> EIGEN_STRONG_INLINE Packet4d pcmp_eq(const Packet4d& a, const Packet4d& b) { return _mm256_cmp_pd(a,b,_CMP_EQ_OQ); } |
| |
| template<> EIGEN_STRONG_INLINE Packet8i pcmp_le(const Packet8i& a, const Packet8i& b) { |
| #ifdef EIGEN_VECTORIZE_AVX2 |
| return _mm256_xor_si256(_mm256_cmpgt_epi32(a,b), _mm256_set1_epi32(-1)); |
| #else |
| __m128i lo = _mm_cmpgt_epi32(_mm256_extractf128_si256(a, 0), _mm256_extractf128_si256(b, 0)); |
| lo = _mm_xor_si128(lo, _mm_set1_epi32(-1)); |
| __m128i hi = _mm_cmpgt_epi32(_mm256_extractf128_si256(a, 1), _mm256_extractf128_si256(b, 1)); |
| hi = _mm_xor_si128(hi, _mm_set1_epi32(-1)); |
| return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1); |
| #endif |
| } |
| template<> EIGEN_STRONG_INLINE Packet8i pcmp_lt(const Packet8i& a, const Packet8i& b) { |
| #ifdef EIGEN_VECTORIZE_AVX2 |
| return _mm256_cmpgt_epi32(b,a); |
| #else |
| __m128i lo = _mm_cmpgt_epi32(_mm256_extractf128_si256(b, 0), _mm256_extractf128_si256(a, 0)); |
| __m128i hi = _mm_cmpgt_epi32(_mm256_extractf128_si256(b, 1), _mm256_extractf128_si256(a, 1)); |
| return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1); |
| #endif |
| } |
| template<> EIGEN_STRONG_INLINE Packet8i pcmp_eq(const Packet8i& a, const Packet8i& b) { |
| #ifdef EIGEN_VECTORIZE_AVX2 |
| return _mm256_cmpeq_epi32(a,b); |
| #else |
| __m128i lo = _mm_cmpeq_epi32(_mm256_extractf128_si256(a, 0), _mm256_extractf128_si256(b, 0)); |
| __m128i hi = _mm_cmpeq_epi32(_mm256_extractf128_si256(a, 1), _mm256_extractf128_si256(b, 1)); |
| return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1); |
| #endif |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8f pmin<Packet8f>(const Packet8f& a, const Packet8f& b) { |
| #if EIGEN_COMP_GNUC && EIGEN_COMP_GNUC < 63 |
| // There appears to be a bug in GCC, by which the optimizer may flip |
| // the argument order in calls to _mm_min_ps/_mm_max_ps, so we have to |
| // resort to inline ASM here. This is supposed to be fixed in gcc6.3, |
| // see also: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=72867 |
| Packet8f res; |
| asm("vminps %[a], %[b], %[res]" : [res] "=x" (res) : [a] "x" (a), [b] "x" (b)); |
| return res; |
| #else |
| // Arguments are swapped to match NaN propagation behavior of std::min. |
| return _mm256_min_ps(b,a); |
| #endif |
| } |
| template<> EIGEN_STRONG_INLINE Packet4d pmin<Packet4d>(const Packet4d& a, const Packet4d& b) { |
| #if EIGEN_COMP_GNUC && EIGEN_COMP_GNUC < 63 |
| // See pmin above |
| Packet4d res; |
| asm("vminpd %[a], %[b], %[res]" : [res] "=x" (res) : [a] "x" (a), [b] "x" (b)); |
| return res; |
| #else |
| // Arguments are swapped to match NaN propagation behavior of std::min. |
| return _mm256_min_pd(b,a); |
| #endif |
| } |
| template<> EIGEN_STRONG_INLINE Packet8i pmin<Packet8i>(const Packet8i& a, const Packet8i& b) { |
| #ifdef EIGEN_VECTORIZE_AVX2 |
| return _mm256_min_epi32(a, b); |
| #else |
| __m128i lo = _mm_min_epi32(_mm256_extractf128_si256(a, 0), _mm256_extractf128_si256(b, 0)); |
| __m128i hi = _mm_min_epi32(_mm256_extractf128_si256(a, 1), _mm256_extractf128_si256(b, 1)); |
| return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1); |
| #endif |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8f pmax<Packet8f>(const Packet8f& a, const Packet8f& b) { |
| #if EIGEN_COMP_GNUC && EIGEN_COMP_GNUC < 63 |
| // See pmin above |
| Packet8f res; |
| asm("vmaxps %[a], %[b], %[res]" : [res] "=x" (res) : [a] "x" (a), [b] "x" (b)); |
| return res; |
| #else |
| // Arguments are swapped to match NaN propagation behavior of std::max. |
| return _mm256_max_ps(b,a); |
| #endif |
| } |
| template<> EIGEN_STRONG_INLINE Packet4d pmax<Packet4d>(const Packet4d& a, const Packet4d& b) { |
| #if EIGEN_COMP_GNUC && EIGEN_COMP_GNUC < 63 |
| // See pmin above |
| Packet4d res; |
| asm("vmaxpd %[a], %[b], %[res]" : [res] "=x" (res) : [a] "x" (a), [b] "x" (b)); |
| return res; |
| #else |
| // Arguments are swapped to match NaN propagation behavior of std::max. |
| return _mm256_max_pd(b,a); |
| #endif |
| } |
| template<> EIGEN_STRONG_INLINE Packet8i pmax<Packet8i>(const Packet8i& a, const Packet8i& b) { |
| #ifdef EIGEN_VECTORIZE_AVX2 |
| return _mm256_max_epi32(a, b); |
| #else |
| __m128i lo = _mm_max_epi32(_mm256_extractf128_si256(a, 0), _mm256_extractf128_si256(b, 0)); |
| __m128i hi = _mm_max_epi32(_mm256_extractf128_si256(a, 1), _mm256_extractf128_si256(b, 1)); |
| return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1); |
| #endif |
| } |
| |
| // Add specializations for min/max with prescribed NaN progation. |
| template<> |
| EIGEN_STRONG_INLINE Packet8f pmin<PropagateNumbers, Packet8f>(const Packet8f& a, const Packet8f& b) { |
| return pminmax_propagate_numbers(a, b, pmin<Packet8f>); |
| } |
| template<> |
| EIGEN_STRONG_INLINE Packet4d pmin<PropagateNumbers, Packet4d>(const Packet4d& a, const Packet4d& b) { |
| return pminmax_propagate_numbers(a, b, pmin<Packet4d>); |
| } |
| template<> |
| EIGEN_STRONG_INLINE Packet8f pmax<PropagateNumbers, Packet8f>(const Packet8f& a, const Packet8f& b) { |
| return pminmax_propagate_numbers(a, b, pmax<Packet8f>); |
| } |
| template<> |
| EIGEN_STRONG_INLINE Packet4d pmax<PropagateNumbers, Packet4d>(const Packet4d& a, const Packet4d& b) { |
| return pminmax_propagate_numbers(a, b, pmax<Packet4d>); |
| } |
| template<> |
| EIGEN_STRONG_INLINE Packet8f pmin<PropagateNaN, Packet8f>(const Packet8f& a, const Packet8f& b) { |
| return pminmax_propagate_nan(a, b, pmin<Packet8f>); |
| } |
| template<> |
| EIGEN_STRONG_INLINE Packet4d pmin<PropagateNaN, Packet4d>(const Packet4d& a, const Packet4d& b) { |
| return pminmax_propagate_nan(a, b, pmin<Packet4d>); |
| } |
| template<> |
| EIGEN_STRONG_INLINE Packet8f pmax<PropagateNaN, Packet8f>(const Packet8f& a, const Packet8f& b) { |
| return pminmax_propagate_nan(a, b, pmax<Packet8f>); |
| } |
| template<> |
| EIGEN_STRONG_INLINE Packet4d pmax<PropagateNaN, Packet4d>(const Packet4d& a, const Packet4d& b) { |
| return pminmax_propagate_nan(a, b, pmax<Packet4d>); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8f print<Packet8f>(const Packet8f& a) { return _mm256_round_ps(a, _MM_FROUND_CUR_DIRECTION); } |
| template<> EIGEN_STRONG_INLINE Packet4d print<Packet4d>(const Packet4d& a) { return _mm256_round_pd(a, _MM_FROUND_CUR_DIRECTION); } |
| |
| template<> EIGEN_STRONG_INLINE Packet8f pceil<Packet8f>(const Packet8f& a) { return _mm256_ceil_ps(a); } |
| template<> EIGEN_STRONG_INLINE Packet4d pceil<Packet4d>(const Packet4d& a) { return _mm256_ceil_pd(a); } |
| |
| template<> EIGEN_STRONG_INLINE Packet8f pfloor<Packet8f>(const Packet8f& a) { return _mm256_floor_ps(a); } |
| template<> EIGEN_STRONG_INLINE Packet4d pfloor<Packet4d>(const Packet4d& a) { return _mm256_floor_pd(a); } |
| |
| |
| template<> EIGEN_STRONG_INLINE Packet8i ptrue<Packet8i>(const Packet8i& a) { |
| #ifdef EIGEN_VECTORIZE_AVX2 |
| // vpcmpeqd has lower latency than the more general vcmpps |
| return _mm256_cmpeq_epi32(a,a); |
| #else |
| const __m256 b = _mm256_castsi256_ps(a); |
| return _mm256_castps_si256(_mm256_cmp_ps(b,b,_CMP_TRUE_UQ)); |
| #endif |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8f ptrue<Packet8f>(const Packet8f& a) { |
| #ifdef EIGEN_VECTORIZE_AVX2 |
| // vpcmpeqd has lower latency than the more general vcmpps |
| const __m256i b = _mm256_castps_si256(a); |
| return _mm256_castsi256_ps(_mm256_cmpeq_epi32(b,b)); |
| #else |
| return _mm256_cmp_ps(a,a,_CMP_TRUE_UQ); |
| #endif |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet4d ptrue<Packet4d>(const Packet4d& a) { |
| #ifdef EIGEN_VECTORIZE_AVX2 |
| // vpcmpeqq has lower latency than the more general vcmppd |
| const __m256i b = _mm256_castpd_si256(a); |
| return _mm256_castsi256_pd(_mm256_cmpeq_epi64(b,b)); |
| #else |
| return _mm256_cmp_pd(a,a,_CMP_TRUE_UQ); |
| #endif |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8f pand<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_and_ps(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet4d pand<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_and_pd(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet8i pand<Packet8i>(const Packet8i& a, const Packet8i& b) { |
| #ifdef EIGEN_VECTORIZE_AVX2 |
| return _mm256_and_si256(a,b); |
| #else |
| return _mm256_castps_si256(_mm256_and_ps(_mm256_castsi256_ps(a),_mm256_castsi256_ps(b))); |
| #endif |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8f por<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_or_ps(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet4d por<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_or_pd(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet8i por<Packet8i>(const Packet8i& a, const Packet8i& b) { |
| #ifdef EIGEN_VECTORIZE_AVX2 |
| return _mm256_or_si256(a,b); |
| #else |
| return _mm256_castps_si256(_mm256_or_ps(_mm256_castsi256_ps(a),_mm256_castsi256_ps(b))); |
| #endif |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8f pxor<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_xor_ps(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet4d pxor<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_xor_pd(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet8i pxor<Packet8i>(const Packet8i& a, const Packet8i& b) { |
| #ifdef EIGEN_VECTORIZE_AVX2 |
| return _mm256_xor_si256(a,b); |
| #else |
| return _mm256_castps_si256(_mm256_xor_ps(_mm256_castsi256_ps(a),_mm256_castsi256_ps(b))); |
| #endif |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8f pandnot<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_andnot_ps(b,a); } |
| template<> EIGEN_STRONG_INLINE Packet4d pandnot<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_andnot_pd(b,a); } |
| template<> EIGEN_STRONG_INLINE Packet8i pandnot<Packet8i>(const Packet8i& a, const Packet8i& b) { |
| #ifdef EIGEN_VECTORIZE_AVX2 |
| return _mm256_andnot_si256(b,a); |
| #else |
| return _mm256_castps_si256(_mm256_andnot_ps(_mm256_castsi256_ps(b),_mm256_castsi256_ps(a))); |
| #endif |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8f pround<Packet8f>(const Packet8f& a) |
| { |
| const Packet8f mask = pset1frombits<Packet8f>(static_cast<numext::uint32_t>(0x80000000u)); |
| const Packet8f prev0dot5 = pset1frombits<Packet8f>(static_cast<numext::uint32_t>(0x3EFFFFFFu)); |
| return _mm256_round_ps(padd(por(pand(a, mask), prev0dot5), a), _MM_FROUND_TO_ZERO); |
| } |
| template<> EIGEN_STRONG_INLINE Packet4d pround<Packet4d>(const Packet4d& a) |
| { |
| const Packet4d mask = pset1frombits<Packet4d>(static_cast<numext::uint64_t>(0x8000000000000000ull)); |
| const Packet4d prev0dot5 = pset1frombits<Packet4d>(static_cast<numext::uint64_t>(0x3FDFFFFFFFFFFFFFull)); |
| return _mm256_round_pd(padd(por(pand(a, mask), prev0dot5), a), _MM_FROUND_TO_ZERO); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8f pselect<Packet8f>(const Packet8f& mask, const Packet8f& a, const Packet8f& b) |
| { return _mm256_blendv_ps(b,a,mask); } |
| template<> EIGEN_STRONG_INLINE Packet4d pselect<Packet4d>(const Packet4d& mask, const Packet4d& a, const Packet4d& b) |
| { return _mm256_blendv_pd(b,a,mask); } |
| |
| template<int N> EIGEN_STRONG_INLINE Packet8i parithmetic_shift_right(Packet8i a) { |
| #ifdef EIGEN_VECTORIZE_AVX2 |
| return _mm256_srai_epi32(a, N); |
| #else |
| __m128i lo = _mm_srai_epi32(_mm256_extractf128_si256(a, 0), N); |
| __m128i hi = _mm_srai_epi32(_mm256_extractf128_si256(a, 1), N); |
| return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1); |
| #endif |
| } |
| |
| template<int N> EIGEN_STRONG_INLINE Packet8i plogical_shift_right(Packet8i a) { |
| #ifdef EIGEN_VECTORIZE_AVX2 |
| return _mm256_srli_epi32(a, N); |
| #else |
| __m128i lo = _mm_srli_epi32(_mm256_extractf128_si256(a, 0), N); |
| __m128i hi = _mm_srli_epi32(_mm256_extractf128_si256(a, 1), N); |
| return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1); |
| #endif |
| } |
| |
| template<int N> EIGEN_STRONG_INLINE Packet8i plogical_shift_left(Packet8i a) { |
| #ifdef EIGEN_VECTORIZE_AVX2 |
| return _mm256_slli_epi32(a, N); |
| #else |
| __m128i lo = _mm_slli_epi32(_mm256_extractf128_si256(a, 0), N); |
| __m128i hi = _mm_slli_epi32(_mm256_extractf128_si256(a, 1), N); |
| return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1); |
| #endif |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8f pload<Packet8f>(const float* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm256_load_ps(from); } |
| template<> EIGEN_STRONG_INLINE Packet4d pload<Packet4d>(const double* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm256_load_pd(from); } |
| template<> EIGEN_STRONG_INLINE Packet8i pload<Packet8i>(const int* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm256_load_si256(reinterpret_cast<const __m256i*>(from)); } |
| |
| template<> EIGEN_STRONG_INLINE Packet8f ploadu<Packet8f>(const float* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm256_loadu_ps(from); } |
| template<> EIGEN_STRONG_INLINE Packet4d ploadu<Packet4d>(const double* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm256_loadu_pd(from); } |
| template<> EIGEN_STRONG_INLINE Packet8i ploadu<Packet8i>(const int* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm256_loadu_si256(reinterpret_cast<const __m256i*>(from)); } |
| |
| template<> EIGEN_STRONG_INLINE Packet8f ploadu<Packet8f>(const float* from, uint8_t umask) { |
| Packet8i mask = _mm256_set1_epi8(static_cast<char>(umask)); |
| const Packet8i bit_mask = _mm256_set_epi32(0xffffff7f, 0xffffffbf, 0xffffffdf, 0xffffffef, 0xfffffff7, 0xfffffffb, 0xfffffffd, 0xfffffffe); |
| mask = por<Packet8i>(mask, bit_mask); |
| mask = pcmp_eq<Packet8i>(mask, _mm256_set1_epi32(0xffffffff)); |
| EIGEN_DEBUG_UNALIGNED_LOAD return _mm256_maskload_ps(from, mask); |
| } |
| |
| // Loads 4 floats from memory a returns the packet {a0, a0 a1, a1, a2, a2, a3, a3} |
| template<> EIGEN_STRONG_INLINE Packet8f ploaddup<Packet8f>(const float* from) |
| { |
| // TODO try to find a way to avoid the need of a temporary register |
| // Packet8f tmp = _mm256_castps128_ps256(_mm_loadu_ps(from)); |
| // tmp = _mm256_insertf128_ps(tmp, _mm_movehl_ps(_mm256_castps256_ps128(tmp),_mm256_castps256_ps128(tmp)), 1); |
| // return _mm256_unpacklo_ps(tmp,tmp); |
| |
| // _mm256_insertf128_ps is very slow on Haswell, thus: |
| Packet8f tmp = _mm256_broadcast_ps((const __m128*)(const void*)from); |
| // mimic an "inplace" permutation of the lower 128bits using a blend |
| tmp = _mm256_blend_ps(tmp,_mm256_castps128_ps256(_mm_permute_ps( _mm256_castps256_ps128(tmp), _MM_SHUFFLE(1,0,1,0))), 15); |
| // then we can perform a consistent permutation on the global register to get everything in shape: |
| return _mm256_permute_ps(tmp, _MM_SHUFFLE(3,3,2,2)); |
| } |
| // Loads 2 doubles from memory a returns the packet {a0, a0, a1, a1} |
| template<> EIGEN_STRONG_INLINE Packet4d ploaddup<Packet4d>(const double* from) |
| { |
| Packet4d tmp = _mm256_broadcast_pd((const __m128d*)(const void*)from); |
| return _mm256_permute_pd(tmp, 3<<2); |
| } |
| // Loads 4 integers from memory a returns the packet {a0, a0, a1, a1, a2, a2, a3, a3} |
| template<> EIGEN_STRONG_INLINE Packet8i ploaddup<Packet8i>(const int* from) |
| { |
| #ifdef EIGEN_VECTORIZE_AVX2 |
| const Packet8i a = _mm256_castsi128_si256(ploadu<Packet4i>(from)); |
| return _mm256_permutevar8x32_epi32(a, _mm256_setr_epi32(0, 0, 1, 1, 2, 2, 3, 3)); |
| #else |
| __m256 tmp = _mm256_broadcast_ps((const __m128*)(const void*)from); |
| // mimic an "inplace" permutation of the lower 128bits using a blend |
| tmp = _mm256_blend_ps(tmp,_mm256_castps128_ps256(_mm_permute_ps( _mm256_castps256_ps128(tmp), _MM_SHUFFLE(1,0,1,0))), 15); |
| // then we can perform a consistent permutation on the global register to get everything in shape: |
| return _mm256_castps_si256(_mm256_permute_ps(tmp, _MM_SHUFFLE(3,3,2,2))); |
| #endif |
| } |
| |
| // Loads 2 floats from memory a returns the packet {a0, a0 a0, a0, a1, a1, a1, a1} |
| template<> EIGEN_STRONG_INLINE Packet8f ploadquad<Packet8f>(const float* from) |
| { |
| Packet8f tmp = _mm256_castps128_ps256(_mm_broadcast_ss(from)); |
| return _mm256_insertf128_ps(tmp, _mm_broadcast_ss(from+1), 1); |
| } |
| template<> EIGEN_STRONG_INLINE Packet8i ploadquad<Packet8i>(const int* from) |
| { |
| return _mm256_insertf128_si256(_mm256_set1_epi32(*from), _mm_set1_epi32(*(from+1)), 1); |
| } |
| |
| template<> EIGEN_STRONG_INLINE void pstore<float>(float* to, const Packet8f& from) { EIGEN_DEBUG_ALIGNED_STORE _mm256_store_ps(to, from); } |
| template<> EIGEN_STRONG_INLINE void pstore<double>(double* to, const Packet4d& from) { EIGEN_DEBUG_ALIGNED_STORE _mm256_store_pd(to, from); } |
| template<> EIGEN_STRONG_INLINE void pstore<int>(int* to, const Packet8i& from) { EIGEN_DEBUG_ALIGNED_STORE _mm256_storeu_si256(reinterpret_cast<__m256i*>(to), from); } |
| |
| template<> EIGEN_STRONG_INLINE void pstoreu<float>(float* to, const Packet8f& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm256_storeu_ps(to, from); } |
| template<> EIGEN_STRONG_INLINE void pstoreu<double>(double* to, const Packet4d& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm256_storeu_pd(to, from); } |
| template<> EIGEN_STRONG_INLINE void pstoreu<int>(int* to, const Packet8i& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm256_storeu_si256(reinterpret_cast<__m256i*>(to), from); } |
| |
| template<> EIGEN_STRONG_INLINE void pstoreu<float>(float* to, const Packet8f& from, uint8_t umask) { |
| Packet8i mask = _mm256_set1_epi8(static_cast<char>(umask)); |
| const Packet8i bit_mask = _mm256_set_epi32(0xffffff7f, 0xffffffbf, 0xffffffdf, 0xffffffef, 0xfffffff7, 0xfffffffb, 0xfffffffd, 0xfffffffe); |
| mask = por<Packet8i>(mask, bit_mask); |
| mask = pcmp_eq<Packet8i>(mask, _mm256_set1_epi32(0xffffffff)); |
| EIGEN_DEBUG_UNALIGNED_STORE return _mm256_maskstore_ps(to, mask, from); |
| } |
| |
| // NOTE: leverage _mm256_i32gather_ps and _mm256_i32gather_pd if AVX2 instructions are available |
| // NOTE: for the record the following seems to be slower: return _mm256_i32gather_ps(from, _mm256_set1_epi32(stride), 4); |
| template<> EIGEN_DEVICE_FUNC inline Packet8f pgather<float, Packet8f>(const float* from, Index stride) |
| { |
| return _mm256_set_ps(from[7*stride], from[6*stride], from[5*stride], from[4*stride], |
| from[3*stride], from[2*stride], from[1*stride], from[0*stride]); |
| } |
| template<> EIGEN_DEVICE_FUNC inline Packet4d pgather<double, Packet4d>(const double* from, Index stride) |
| { |
| return _mm256_set_pd(from[3*stride], from[2*stride], from[1*stride], from[0*stride]); |
| } |
| template<> EIGEN_DEVICE_FUNC inline Packet8i pgather<int, Packet8i>(const int* from, Index stride) |
| { |
| return _mm256_set_epi32(from[7*stride], from[6*stride], from[5*stride], from[4*stride], |
| from[3*stride], from[2*stride], from[1*stride], from[0*stride]); |
| } |
| |
| template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet8f>(float* to, const Packet8f& from, Index stride) |
| { |
| __m128 low = _mm256_extractf128_ps(from, 0); |
| to[stride*0] = _mm_cvtss_f32(low); |
| to[stride*1] = _mm_cvtss_f32(_mm_shuffle_ps(low, low, 1)); |
| to[stride*2] = _mm_cvtss_f32(_mm_shuffle_ps(low, low, 2)); |
| to[stride*3] = _mm_cvtss_f32(_mm_shuffle_ps(low, low, 3)); |
| |
| __m128 high = _mm256_extractf128_ps(from, 1); |
| to[stride*4] = _mm_cvtss_f32(high); |
| to[stride*5] = _mm_cvtss_f32(_mm_shuffle_ps(high, high, 1)); |
| to[stride*6] = _mm_cvtss_f32(_mm_shuffle_ps(high, high, 2)); |
| to[stride*7] = _mm_cvtss_f32(_mm_shuffle_ps(high, high, 3)); |
| } |
| template<> EIGEN_DEVICE_FUNC inline void pscatter<double, Packet4d>(double* to, const Packet4d& from, Index stride) |
| { |
| __m128d low = _mm256_extractf128_pd(from, 0); |
| to[stride*0] = _mm_cvtsd_f64(low); |
| to[stride*1] = _mm_cvtsd_f64(_mm_shuffle_pd(low, low, 1)); |
| __m128d high = _mm256_extractf128_pd(from, 1); |
| to[stride*2] = _mm_cvtsd_f64(high); |
| to[stride*3] = _mm_cvtsd_f64(_mm_shuffle_pd(high, high, 1)); |
| } |
| template<> EIGEN_DEVICE_FUNC inline void pscatter<int, Packet8i>(int* to, const Packet8i& from, Index stride) |
| { |
| __m128i low = _mm256_extractf128_si256(from, 0); |
| to[stride*0] = _mm_extract_epi32(low, 0); |
| to[stride*1] = _mm_extract_epi32(low, 1); |
| to[stride*2] = _mm_extract_epi32(low, 2); |
| to[stride*3] = _mm_extract_epi32(low, 3); |
| |
| __m128i high = _mm256_extractf128_si256(from, 1); |
| to[stride*4] = _mm_extract_epi32(high, 0); |
| to[stride*5] = _mm_extract_epi32(high, 1); |
| to[stride*6] = _mm_extract_epi32(high, 2); |
| to[stride*7] = _mm_extract_epi32(high, 3); |
| } |
| |
| template<> EIGEN_STRONG_INLINE void pstore1<Packet8f>(float* to, const float& a) |
| { |
| Packet8f pa = pset1<Packet8f>(a); |
| pstore(to, pa); |
| } |
| template<> EIGEN_STRONG_INLINE void pstore1<Packet4d>(double* to, const double& a) |
| { |
| Packet4d pa = pset1<Packet4d>(a); |
| pstore(to, pa); |
| } |
| template<> EIGEN_STRONG_INLINE void pstore1<Packet8i>(int* to, const int& a) |
| { |
| Packet8i pa = pset1<Packet8i>(a); |
| pstore(to, pa); |
| } |
| |
| #ifndef EIGEN_VECTORIZE_AVX512 |
| template<> EIGEN_STRONG_INLINE void prefetch<float>(const float* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); } |
| template<> EIGEN_STRONG_INLINE void prefetch<double>(const double* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); } |
| template<> EIGEN_STRONG_INLINE void prefetch<int>(const int* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); } |
| #endif |
| |
| template<> EIGEN_STRONG_INLINE float pfirst<Packet8f>(const Packet8f& a) { |
| return _mm_cvtss_f32(_mm256_castps256_ps128(a)); |
| } |
| template<> EIGEN_STRONG_INLINE double pfirst<Packet4d>(const Packet4d& a) { |
| return _mm_cvtsd_f64(_mm256_castpd256_pd128(a)); |
| } |
| template<> EIGEN_STRONG_INLINE int pfirst<Packet8i>(const Packet8i& a) { |
| return _mm_cvtsi128_si32(_mm256_castsi256_si128(a)); |
| } |
| |
| |
| template<> EIGEN_STRONG_INLINE Packet8f preverse(const Packet8f& a) |
| { |
| __m256 tmp = _mm256_shuffle_ps(a,a,0x1b); |
| return _mm256_permute2f128_ps(tmp, tmp, 1); |
| } |
| template<> EIGEN_STRONG_INLINE Packet4d preverse(const Packet4d& a) |
| { |
| __m256d tmp = _mm256_shuffle_pd(a,a,5); |
| return _mm256_permute2f128_pd(tmp, tmp, 1); |
| #if 0 |
| // This version is unlikely to be faster as _mm256_shuffle_ps and _mm256_permute_pd |
| // exhibit the same latency/throughput, but it is here for future reference/benchmarking... |
| __m256d swap_halves = _mm256_permute2f128_pd(a,a,1); |
| return _mm256_permute_pd(swap_halves,5); |
| #endif |
| } |
| template<> EIGEN_STRONG_INLINE Packet8i preverse(const Packet8i& a) |
| { |
| return _mm256_castps_si256(preverse(_mm256_castsi256_ps(a))); |
| } |
| |
| // pabs should be ok |
| template<> EIGEN_STRONG_INLINE Packet8f pabs(const Packet8f& a) |
| { |
| const Packet8f mask = _mm256_castsi256_ps(_mm256_setr_epi32(0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF)); |
| return _mm256_and_ps(a,mask); |
| } |
| template<> EIGEN_STRONG_INLINE Packet4d pabs(const Packet4d& a) |
| { |
| const Packet4d mask = _mm256_castsi256_pd(_mm256_setr_epi32(0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF)); |
| return _mm256_and_pd(a,mask); |
| } |
| template<> EIGEN_STRONG_INLINE Packet8i pabs(const Packet8i& a) |
| { |
| #ifdef EIGEN_VECTORIZE_AVX2 |
| return _mm256_abs_epi32(a); |
| #else |
| __m128i lo = _mm_abs_epi32(_mm256_extractf128_si256(a, 0)); |
| __m128i hi = _mm_abs_epi32(_mm256_extractf128_si256(a, 1)); |
| return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1); |
| #endif |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8f pfrexp<Packet8f>(const Packet8f& a, Packet8f& exponent) { |
| return pfrexp_generic(a,exponent); |
| } |
| |
| // Extract exponent without existence of Packet4l. |
| template<> |
| EIGEN_STRONG_INLINE |
| Packet4d pfrexp_generic_get_biased_exponent(const Packet4d& a) { |
| const Packet4d cst_exp_mask = pset1frombits<Packet4d>(static_cast<uint64_t>(0x7ff0000000000000ull)); |
| __m256i a_expo = _mm256_castpd_si256(pand(a, cst_exp_mask)); |
| #ifdef EIGEN_VECTORIZE_AVX2 |
| a_expo = _mm256_srli_epi64(a_expo, 52); |
| __m128i lo = _mm256_extractf128_si256(a_expo, 0); |
| __m128i hi = _mm256_extractf128_si256(a_expo, 1); |
| #else |
| __m128i lo = _mm256_extractf128_si256(a_expo, 0); |
| __m128i hi = _mm256_extractf128_si256(a_expo, 1); |
| lo = _mm_srli_epi64(lo, 52); |
| hi = _mm_srli_epi64(hi, 52); |
| #endif |
| Packet2d exponent_lo = _mm_cvtepi32_pd(vec4i_swizzle1(lo, 0, 2, 1, 3)); |
| Packet2d exponent_hi = _mm_cvtepi32_pd(vec4i_swizzle1(hi, 0, 2, 1, 3)); |
| Packet4d exponent = _mm256_insertf128_pd(_mm256_setzero_pd(), exponent_lo, 0); |
| exponent = _mm256_insertf128_pd(exponent, exponent_hi, 1); |
| return exponent; |
| } |
| |
| |
| template<> EIGEN_STRONG_INLINE Packet4d pfrexp<Packet4d>(const Packet4d& a, Packet4d& exponent) { |
| return pfrexp_generic(a, exponent); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8f pldexp<Packet8f>(const Packet8f& a, const Packet8f& exponent) { |
| return pldexp_generic(a, exponent); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet4d pldexp<Packet4d>(const Packet4d& a, const Packet4d& exponent) { |
| // Clamp exponent to [-2099, 2099] |
| const Packet4d max_exponent = pset1<Packet4d>(2099.0); |
| const Packet4i e = _mm256_cvtpd_epi32(pmin(pmax(exponent, pnegate(max_exponent)), max_exponent)); |
| |
| // Split 2^e into four factors and multiply. |
| const Packet4i bias = pset1<Packet4i>(1023); |
| Packet4i b = parithmetic_shift_right<2>(e); // floor(e/4) |
| |
| // 2^b |
| Packet4i hi = vec4i_swizzle1(padd(b, bias), 0, 2, 1, 3); |
| Packet4i lo = _mm_slli_epi64(hi, 52); |
| hi = _mm_slli_epi64(_mm_srli_epi64(hi, 32), 52); |
| Packet4d c = _mm256_castsi256_pd(_mm256_insertf128_si256(_mm256_castsi128_si256(lo), hi, 1)); |
| Packet4d out = pmul(pmul(pmul(a, c), c), c); // a * 2^(3b) |
| |
| // 2^(e - 3b) |
| b = psub(psub(psub(e, b), b), b); // e - 3b |
| hi = vec4i_swizzle1(padd(b, bias), 0, 2, 1, 3); |
| lo = _mm_slli_epi64(hi, 52); |
| hi = _mm_slli_epi64(_mm_srli_epi64(hi, 32), 52); |
| c = _mm256_castsi256_pd(_mm256_insertf128_si256(_mm256_castsi128_si256(lo), hi, 1)); |
| out = pmul(out, c); // a * 2^e |
| return out; |
| } |
| |
| template<> EIGEN_STRONG_INLINE float predux<Packet8f>(const Packet8f& a) |
| { |
| return predux(Packet4f(_mm_add_ps(_mm256_castps256_ps128(a),_mm256_extractf128_ps(a,1)))); |
| } |
| template<> EIGEN_STRONG_INLINE double predux<Packet4d>(const Packet4d& a) |
| { |
| return predux(Packet2d(_mm_add_pd(_mm256_castpd256_pd128(a),_mm256_extractf128_pd(a,1)))); |
| } |
| template<> EIGEN_STRONG_INLINE int predux<Packet8i>(const Packet8i& a) |
| { |
| return predux(Packet4i(_mm_add_epi32(_mm256_castsi256_si128(a),_mm256_extractf128_si256(a,1)))); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f predux_half_dowto4<Packet8f>(const Packet8f& a) |
| { |
| return _mm_add_ps(_mm256_castps256_ps128(a),_mm256_extractf128_ps(a,1)); |
| } |
| template<> EIGEN_STRONG_INLINE Packet4i predux_half_dowto4<Packet8i>(const Packet8i& a) |
| { |
| return _mm_add_epi32(_mm256_castsi256_si128(a),_mm256_extractf128_si256(a,1)); |
| } |
| |
| template<> EIGEN_STRONG_INLINE float predux_mul<Packet8f>(const Packet8f& a) |
| { |
| Packet8f tmp; |
| tmp = _mm256_mul_ps(a, _mm256_permute2f128_ps(a,a,1)); |
| tmp = _mm256_mul_ps(tmp, _mm256_shuffle_ps(tmp,tmp,_MM_SHUFFLE(1,0,3,2))); |
| return pfirst(_mm256_mul_ps(tmp, _mm256_shuffle_ps(tmp,tmp,1))); |
| } |
| template<> EIGEN_STRONG_INLINE double predux_mul<Packet4d>(const Packet4d& a) |
| { |
| Packet4d tmp; |
| tmp = _mm256_mul_pd(a, _mm256_permute2f128_pd(a,a,1)); |
| return pfirst(_mm256_mul_pd(tmp, _mm256_shuffle_pd(tmp,tmp,1))); |
| } |
| |
| template<> EIGEN_STRONG_INLINE float predux_min<Packet8f>(const Packet8f& a) |
| { |
| Packet8f tmp = _mm256_min_ps(a, _mm256_permute2f128_ps(a,a,1)); |
| tmp = _mm256_min_ps(tmp, _mm256_shuffle_ps(tmp,tmp,_MM_SHUFFLE(1,0,3,2))); |
| return pfirst(_mm256_min_ps(tmp, _mm256_shuffle_ps(tmp,tmp,1))); |
| } |
| template<> EIGEN_STRONG_INLINE double predux_min<Packet4d>(const Packet4d& a) |
| { |
| Packet4d tmp = _mm256_min_pd(a, _mm256_permute2f128_pd(a,a,1)); |
| return pfirst(_mm256_min_pd(tmp, _mm256_shuffle_pd(tmp, tmp, 1))); |
| } |
| |
| template<> EIGEN_STRONG_INLINE float predux_max<Packet8f>(const Packet8f& a) |
| { |
| Packet8f tmp = _mm256_max_ps(a, _mm256_permute2f128_ps(a,a,1)); |
| tmp = _mm256_max_ps(tmp, _mm256_shuffle_ps(tmp,tmp,_MM_SHUFFLE(1,0,3,2))); |
| return pfirst(_mm256_max_ps(tmp, _mm256_shuffle_ps(tmp,tmp,1))); |
| } |
| |
| template<> EIGEN_STRONG_INLINE double predux_max<Packet4d>(const Packet4d& a) |
| { |
| Packet4d tmp = _mm256_max_pd(a, _mm256_permute2f128_pd(a,a,1)); |
| return pfirst(_mm256_max_pd(tmp, _mm256_shuffle_pd(tmp, tmp, 1))); |
| } |
| |
| // not needed yet |
| // template<> EIGEN_STRONG_INLINE bool predux_all(const Packet8f& x) |
| // { |
| // return _mm256_movemask_ps(x)==0xFF; |
| // } |
| |
| template<> EIGEN_STRONG_INLINE bool predux_any(const Packet8f& x) |
| { |
| return _mm256_movemask_ps(x)!=0; |
| } |
| |
| EIGEN_DEVICE_FUNC inline void |
| ptranspose(PacketBlock<Packet8f,8>& kernel) { |
| __m256 T0 = _mm256_unpacklo_ps(kernel.packet[0], kernel.packet[1]); |
| __m256 T1 = _mm256_unpackhi_ps(kernel.packet[0], kernel.packet[1]); |
| __m256 T2 = _mm256_unpacklo_ps(kernel.packet[2], kernel.packet[3]); |
| __m256 T3 = _mm256_unpackhi_ps(kernel.packet[2], kernel.packet[3]); |
| __m256 T4 = _mm256_unpacklo_ps(kernel.packet[4], kernel.packet[5]); |
| __m256 T5 = _mm256_unpackhi_ps(kernel.packet[4], kernel.packet[5]); |
| __m256 T6 = _mm256_unpacklo_ps(kernel.packet[6], kernel.packet[7]); |
| __m256 T7 = _mm256_unpackhi_ps(kernel.packet[6], kernel.packet[7]); |
| __m256 S0 = _mm256_shuffle_ps(T0,T2,_MM_SHUFFLE(1,0,1,0)); |
| __m256 S1 = _mm256_shuffle_ps(T0,T2,_MM_SHUFFLE(3,2,3,2)); |
| __m256 S2 = _mm256_shuffle_ps(T1,T3,_MM_SHUFFLE(1,0,1,0)); |
| __m256 S3 = _mm256_shuffle_ps(T1,T3,_MM_SHUFFLE(3,2,3,2)); |
| __m256 S4 = _mm256_shuffle_ps(T4,T6,_MM_SHUFFLE(1,0,1,0)); |
| __m256 S5 = _mm256_shuffle_ps(T4,T6,_MM_SHUFFLE(3,2,3,2)); |
| __m256 S6 = _mm256_shuffle_ps(T5,T7,_MM_SHUFFLE(1,0,1,0)); |
| __m256 S7 = _mm256_shuffle_ps(T5,T7,_MM_SHUFFLE(3,2,3,2)); |
| kernel.packet[0] = _mm256_permute2f128_ps(S0, S4, 0x20); |
| kernel.packet[1] = _mm256_permute2f128_ps(S1, S5, 0x20); |
| kernel.packet[2] = _mm256_permute2f128_ps(S2, S6, 0x20); |
| kernel.packet[3] = _mm256_permute2f128_ps(S3, S7, 0x20); |
| kernel.packet[4] = _mm256_permute2f128_ps(S0, S4, 0x31); |
| kernel.packet[5] = _mm256_permute2f128_ps(S1, S5, 0x31); |
| kernel.packet[6] = _mm256_permute2f128_ps(S2, S6, 0x31); |
| kernel.packet[7] = _mm256_permute2f128_ps(S3, S7, 0x31); |
| } |
| |
| EIGEN_DEVICE_FUNC inline void |
| ptranspose(PacketBlock<Packet8f,4>& kernel) { |
| __m256 T0 = _mm256_unpacklo_ps(kernel.packet[0], kernel.packet[1]); |
| __m256 T1 = _mm256_unpackhi_ps(kernel.packet[0], kernel.packet[1]); |
| __m256 T2 = _mm256_unpacklo_ps(kernel.packet[2], kernel.packet[3]); |
| __m256 T3 = _mm256_unpackhi_ps(kernel.packet[2], kernel.packet[3]); |
| |
| __m256 S0 = _mm256_shuffle_ps(T0,T2,_MM_SHUFFLE(1,0,1,0)); |
| __m256 S1 = _mm256_shuffle_ps(T0,T2,_MM_SHUFFLE(3,2,3,2)); |
| __m256 S2 = _mm256_shuffle_ps(T1,T3,_MM_SHUFFLE(1,0,1,0)); |
| __m256 S3 = _mm256_shuffle_ps(T1,T3,_MM_SHUFFLE(3,2,3,2)); |
| |
| kernel.packet[0] = _mm256_permute2f128_ps(S0, S1, 0x20); |
| kernel.packet[1] = _mm256_permute2f128_ps(S2, S3, 0x20); |
| kernel.packet[2] = _mm256_permute2f128_ps(S0, S1, 0x31); |
| kernel.packet[3] = _mm256_permute2f128_ps(S2, S3, 0x31); |
| } |
| |
| #define MM256_SHUFFLE_EPI32(A, B, M) \ |
| _mm256_castps_si256(_mm256_shuffle_ps(_mm256_castsi256_ps(A), _mm256_castsi256_ps(B), M)) |
| |
| #ifndef EIGEN_VECTORIZE_AVX2 |
| #define MM256_UNPACKLO_EPI32(A, B) \ |
| _mm256_castps_si256(_mm256_unpacklo_ps(_mm256_castsi256_ps(A), _mm256_castsi256_ps(B))) |
| #define MM256_UNPACKHI_EPI32(A, B) \ |
| _mm256_castps_si256(_mm256_unpackhi_ps(_mm256_castsi256_ps(A), _mm256_castsi256_ps(B))) |
| #else |
| #define MM256_UNPACKLO_EPI32(A, B) _mm256_unpacklo_epi32(A, B) |
| #define MM256_UNPACKHI_EPI32(A, B) _mm256_unpackhi_epi32(A, B) |
| #endif |
| |
| |
| EIGEN_DEVICE_FUNC inline void |
| ptranspose(PacketBlock<Packet8i,8>& kernel) { |
| __m256i T0 = MM256_UNPACKLO_EPI32(kernel.packet[0], kernel.packet[1]); |
| __m256i T1 = MM256_UNPACKHI_EPI32(kernel.packet[0], kernel.packet[1]); |
| __m256i T2 = MM256_UNPACKLO_EPI32(kernel.packet[2], kernel.packet[3]); |
| __m256i T3 = MM256_UNPACKHI_EPI32(kernel.packet[2], kernel.packet[3]); |
| __m256i T4 = MM256_UNPACKLO_EPI32(kernel.packet[4], kernel.packet[5]); |
| __m256i T5 = MM256_UNPACKHI_EPI32(kernel.packet[4], kernel.packet[5]); |
| __m256i T6 = MM256_UNPACKLO_EPI32(kernel.packet[6], kernel.packet[7]); |
| __m256i T7 = MM256_UNPACKHI_EPI32(kernel.packet[6], kernel.packet[7]); |
| __m256i S0 = MM256_SHUFFLE_EPI32(T0,T2,_MM_SHUFFLE(1,0,1,0)); |
| __m256i S1 = MM256_SHUFFLE_EPI32(T0,T2,_MM_SHUFFLE(3,2,3,2)); |
| __m256i S2 = MM256_SHUFFLE_EPI32(T1,T3,_MM_SHUFFLE(1,0,1,0)); |
| __m256i S3 = MM256_SHUFFLE_EPI32(T1,T3,_MM_SHUFFLE(3,2,3,2)); |
| __m256i S4 = MM256_SHUFFLE_EPI32(T4,T6,_MM_SHUFFLE(1,0,1,0)); |
| __m256i S5 = MM256_SHUFFLE_EPI32(T4,T6,_MM_SHUFFLE(3,2,3,2)); |
| __m256i S6 = MM256_SHUFFLE_EPI32(T5,T7,_MM_SHUFFLE(1,0,1,0)); |
| __m256i S7 = MM256_SHUFFLE_EPI32(T5,T7,_MM_SHUFFLE(3,2,3,2)); |
| kernel.packet[0] = _mm256_permute2f128_si256(S0, S4, 0x20); |
| kernel.packet[1] = _mm256_permute2f128_si256(S1, S5, 0x20); |
| kernel.packet[2] = _mm256_permute2f128_si256(S2, S6, 0x20); |
| kernel.packet[3] = _mm256_permute2f128_si256(S3, S7, 0x20); |
| kernel.packet[4] = _mm256_permute2f128_si256(S0, S4, 0x31); |
| kernel.packet[5] = _mm256_permute2f128_si256(S1, S5, 0x31); |
| kernel.packet[6] = _mm256_permute2f128_si256(S2, S6, 0x31); |
| kernel.packet[7] = _mm256_permute2f128_si256(S3, S7, 0x31); |
| } |
| |
| EIGEN_DEVICE_FUNC inline void |
| ptranspose(PacketBlock<Packet8i,4>& kernel) { |
| __m256i T0 = MM256_UNPACKLO_EPI32(kernel.packet[0], kernel.packet[1]); |
| __m256i T1 = MM256_UNPACKHI_EPI32(kernel.packet[0], kernel.packet[1]); |
| __m256i T2 = MM256_UNPACKLO_EPI32(kernel.packet[2], kernel.packet[3]); |
| __m256i T3 = MM256_UNPACKHI_EPI32(kernel.packet[2], kernel.packet[3]); |
| |
| __m256i S0 = MM256_SHUFFLE_EPI32(T0,T2,_MM_SHUFFLE(1,0,1,0)); |
| __m256i S1 = MM256_SHUFFLE_EPI32(T0,T2,_MM_SHUFFLE(3,2,3,2)); |
| __m256i S2 = MM256_SHUFFLE_EPI32(T1,T3,_MM_SHUFFLE(1,0,1,0)); |
| __m256i S3 = MM256_SHUFFLE_EPI32(T1,T3,_MM_SHUFFLE(3,2,3,2)); |
| |
| kernel.packet[0] = _mm256_permute2f128_si256(S0, S1, 0x20); |
| kernel.packet[1] = _mm256_permute2f128_si256(S2, S3, 0x20); |
| kernel.packet[2] = _mm256_permute2f128_si256(S0, S1, 0x31); |
| kernel.packet[3] = _mm256_permute2f128_si256(S2, S3, 0x31); |
| } |
| |
| EIGEN_DEVICE_FUNC inline void |
| ptranspose(PacketBlock<Packet4d,4>& kernel) { |
| __m256d T0 = _mm256_shuffle_pd(kernel.packet[0], kernel.packet[1], 15); |
| __m256d T1 = _mm256_shuffle_pd(kernel.packet[0], kernel.packet[1], 0); |
| __m256d T2 = _mm256_shuffle_pd(kernel.packet[2], kernel.packet[3], 15); |
| __m256d T3 = _mm256_shuffle_pd(kernel.packet[2], kernel.packet[3], 0); |
| |
| kernel.packet[1] = _mm256_permute2f128_pd(T0, T2, 32); |
| kernel.packet[3] = _mm256_permute2f128_pd(T0, T2, 49); |
| kernel.packet[0] = _mm256_permute2f128_pd(T1, T3, 32); |
| kernel.packet[2] = _mm256_permute2f128_pd(T1, T3, 49); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8f pblend(const Selector<8>& ifPacket, const Packet8f& thenPacket, const Packet8f& elsePacket) { |
| const __m256 zero = _mm256_setzero_ps(); |
| const __m256 select = _mm256_set_ps(ifPacket.select[7], ifPacket.select[6], ifPacket.select[5], ifPacket.select[4], ifPacket.select[3], ifPacket.select[2], ifPacket.select[1], ifPacket.select[0]); |
| __m256 false_mask = _mm256_cmp_ps(select, zero, _CMP_EQ_UQ); |
| return _mm256_blendv_ps(thenPacket, elsePacket, false_mask); |
| } |
| template<> EIGEN_STRONG_INLINE Packet4d pblend(const Selector<4>& ifPacket, const Packet4d& thenPacket, const Packet4d& elsePacket) { |
| const __m256d zero = _mm256_setzero_pd(); |
| const __m256d select = _mm256_set_pd(ifPacket.select[3], ifPacket.select[2], ifPacket.select[1], ifPacket.select[0]); |
| __m256d false_mask = _mm256_cmp_pd(select, zero, _CMP_EQ_UQ); |
| return _mm256_blendv_pd(thenPacket, elsePacket, false_mask); |
| } |
| |
| // Packet math for Eigen::half |
| |
| template<> struct unpacket_traits<Packet8h> { typedef Eigen::half type; enum {size=8, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; typedef Packet8h half; }; |
| |
| template<> EIGEN_STRONG_INLINE Packet8h pset1<Packet8h>(const Eigen::half& from) { |
| return _mm_set1_epi16(numext::bit_cast<numext::uint16_t>(from)); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Eigen::half pfirst<Packet8h>(const Packet8h& from) { |
| return numext::bit_cast<Eigen::half>(static_cast<numext::uint16_t>(_mm_extract_epi16(from, 0))); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8h pload<Packet8h>(const Eigen::half* from) { |
| return _mm_load_si128(reinterpret_cast<const __m128i*>(from)); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8h ploadu<Packet8h>(const Eigen::half* from) { |
| return _mm_loadu_si128(reinterpret_cast<const __m128i*>(from)); |
| } |
| |
| template<> EIGEN_STRONG_INLINE void pstore<Eigen::half>(Eigen::half* to, const Packet8h& from) { |
| _mm_store_si128(reinterpret_cast<__m128i*>(to), from); |
| } |
| |
| template<> EIGEN_STRONG_INLINE void pstoreu<Eigen::half>(Eigen::half* to, const Packet8h& from) { |
| _mm_storeu_si128(reinterpret_cast<__m128i*>(to), from); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8h |
| ploaddup<Packet8h>(const Eigen::half* from) { |
| const numext::uint16_t a = numext::bit_cast<numext::uint16_t>(from[0]); |
| const numext::uint16_t b = numext::bit_cast<numext::uint16_t>(from[1]); |
| const numext::uint16_t c = numext::bit_cast<numext::uint16_t>(from[2]); |
| const numext::uint16_t d = numext::bit_cast<numext::uint16_t>(from[3]); |
| return _mm_set_epi16(d, d, c, c, b, b, a, a); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8h |
| ploadquad<Packet8h>(const Eigen::half* from) { |
| const numext::uint16_t a = numext::bit_cast<numext::uint16_t>(from[0]); |
| const numext::uint16_t b = numext::bit_cast<numext::uint16_t>(from[1]); |
| return _mm_set_epi16(b, b, b, b, a, a, a, a); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8h ptrue(const Packet8h& a) { |
| return _mm_cmpeq_epi32(a, a); |
| } |
| |
| template <> |
| EIGEN_STRONG_INLINE Packet8h pabs(const Packet8h& a) { |
| const __m128i sign_mask = _mm_set1_epi16(static_cast<numext::uint16_t>(0x8000)); |
| return _mm_andnot_si128(sign_mask, a); |
| } |
| |
| EIGEN_STRONG_INLINE Packet8f half2float(const Packet8h& a) { |
| #ifdef EIGEN_HAS_FP16_C |
| return _mm256_cvtph_ps(a); |
| #else |
| EIGEN_ALIGN32 Eigen::half aux[8]; |
| pstore(aux, a); |
| float f0(aux[0]); |
| float f1(aux[1]); |
| float f2(aux[2]); |
| float f3(aux[3]); |
| float f4(aux[4]); |
| float f5(aux[5]); |
| float f6(aux[6]); |
| float f7(aux[7]); |
| |
| return _mm256_set_ps(f7, f6, f5, f4, f3, f2, f1, f0); |
| #endif |
| } |
| |
| EIGEN_STRONG_INLINE Packet8h float2half(const Packet8f& a) { |
| #ifdef EIGEN_HAS_FP16_C |
| return _mm256_cvtps_ph(a, _MM_FROUND_TO_NEAREST_INT|_MM_FROUND_NO_EXC); |
| #else |
| EIGEN_ALIGN32 float aux[8]; |
| pstore(aux, a); |
| const numext::uint16_t s0 = numext::bit_cast<numext::uint16_t>(Eigen::half(aux[0])); |
| const numext::uint16_t s1 = numext::bit_cast<numext::uint16_t>(Eigen::half(aux[1])); |
| const numext::uint16_t s2 = numext::bit_cast<numext::uint16_t>(Eigen::half(aux[2])); |
| const numext::uint16_t s3 = numext::bit_cast<numext::uint16_t>(Eigen::half(aux[3])); |
| const numext::uint16_t s4 = numext::bit_cast<numext::uint16_t>(Eigen::half(aux[4])); |
| const numext::uint16_t s5 = numext::bit_cast<numext::uint16_t>(Eigen::half(aux[5])); |
| const numext::uint16_t s6 = numext::bit_cast<numext::uint16_t>(Eigen::half(aux[6])); |
| const numext::uint16_t s7 = numext::bit_cast<numext::uint16_t>(Eigen::half(aux[7])); |
| return _mm_set_epi16(s7, s6, s5, s4, s3, s2, s1, s0); |
| #endif |
| } |
| |
| template <> |
| EIGEN_STRONG_INLINE Packet8h pmin<Packet8h>(const Packet8h& a, |
| const Packet8h& b) { |
| return float2half(pmin<Packet8f>(half2float(a), half2float(b))); |
| } |
| |
| template <> |
| EIGEN_STRONG_INLINE Packet8h pmax<Packet8h>(const Packet8h& a, |
| const Packet8h& b) { |
| return float2half(pmax<Packet8f>(half2float(a), half2float(b))); |
| } |
| |
| template <> |
| EIGEN_STRONG_INLINE Packet8h plset<Packet8h>(const half& a) { |
| return float2half(plset<Packet8f>(static_cast<float>(a))); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8h por(const Packet8h& a,const Packet8h& b) { |
| // in some cases Packet4i is a wrapper around __m128i, so we either need to |
| // cast to Packet4i to directly call the intrinsics as below: |
| return _mm_or_si128(a,b); |
| } |
| template<> EIGEN_STRONG_INLINE Packet8h pxor(const Packet8h& a,const Packet8h& b) { |
| return _mm_xor_si128(a,b); |
| } |
| template<> EIGEN_STRONG_INLINE Packet8h pand(const Packet8h& a,const Packet8h& b) { |
| return _mm_and_si128(a,b); |
| } |
| template<> EIGEN_STRONG_INLINE Packet8h pandnot(const Packet8h& a,const Packet8h& b) { |
| return _mm_andnot_si128(b,a); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8h pselect(const Packet8h& mask, const Packet8h& a, const Packet8h& b) { |
| return _mm_blendv_epi8(b, a, mask); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8h pround<Packet8h>(const Packet8h& a) { |
| return float2half(pround<Packet8f>(half2float(a))); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8h print<Packet8h>(const Packet8h& a) { |
| return float2half(print<Packet8f>(half2float(a))); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8h pceil<Packet8h>(const Packet8h& a) { |
| return float2half(pceil<Packet8f>(half2float(a))); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8h pfloor<Packet8h>(const Packet8h& a) { |
| return float2half(pfloor<Packet8f>(half2float(a))); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8h pcmp_eq(const Packet8h& a,const Packet8h& b) { |
| return Pack16To8(pcmp_eq(half2float(a), half2float(b))); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8h pcmp_le(const Packet8h& a,const Packet8h& b) { |
| return Pack16To8(pcmp_le(half2float(a), half2float(b))); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8h pcmp_lt(const Packet8h& a,const Packet8h& b) { |
| return Pack16To8(pcmp_lt(half2float(a), half2float(b))); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8h pcmp_lt_or_nan(const Packet8h& a,const Packet8h& b) { |
| return Pack16To8(pcmp_lt_or_nan(half2float(a), half2float(b))); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8h pconj(const Packet8h& a) { return a; } |
| |
| template<> EIGEN_STRONG_INLINE Packet8h pnegate(const Packet8h& a) { |
| Packet8h sign_mask = _mm_set1_epi16(static_cast<numext::uint16_t>(0x8000)); |
| return _mm_xor_si128(a, sign_mask); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8h padd<Packet8h>(const Packet8h& a, const Packet8h& b) { |
| Packet8f af = half2float(a); |
| Packet8f bf = half2float(b); |
| Packet8f rf = padd(af, bf); |
| return float2half(rf); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8h psub<Packet8h>(const Packet8h& a, const Packet8h& b) { |
| Packet8f af = half2float(a); |
| Packet8f bf = half2float(b); |
| Packet8f rf = psub(af, bf); |
| return float2half(rf); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8h pmul<Packet8h>(const Packet8h& a, const Packet8h& b) { |
| Packet8f af = half2float(a); |
| Packet8f bf = half2float(b); |
| Packet8f rf = pmul(af, bf); |
| return float2half(rf); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8h pdiv<Packet8h>(const Packet8h& a, const Packet8h& b) { |
| Packet8f af = half2float(a); |
| Packet8f bf = half2float(b); |
| Packet8f rf = pdiv(af, bf); |
| return float2half(rf); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8h pgather<Eigen::half, Packet8h>(const Eigen::half* from, Index stride) |
| { |
| const numext::uint16_t s0 = numext::bit_cast<numext::uint16_t>(from[0*stride]); |
| const numext::uint16_t s1 = numext::bit_cast<numext::uint16_t>(from[1*stride]); |
| const numext::uint16_t s2 = numext::bit_cast<numext::uint16_t>(from[2*stride]); |
| const numext::uint16_t s3 = numext::bit_cast<numext::uint16_t>(from[3*stride]); |
| const numext::uint16_t s4 = numext::bit_cast<numext::uint16_t>(from[4*stride]); |
| const numext::uint16_t s5 = numext::bit_cast<numext::uint16_t>(from[5*stride]); |
| const numext::uint16_t s6 = numext::bit_cast<numext::uint16_t>(from[6*stride]); |
| const numext::uint16_t s7 = numext::bit_cast<numext::uint16_t>(from[7*stride]); |
| return _mm_set_epi16(s7, s6, s5, s4, s3, s2, s1, s0); |
| } |
| |
| template<> EIGEN_STRONG_INLINE void pscatter<Eigen::half, Packet8h>(Eigen::half* to, const Packet8h& from, Index stride) |
| { |
| EIGEN_ALIGN32 Eigen::half aux[8]; |
| pstore(aux, from); |
| to[stride*0] = aux[0]; |
| to[stride*1] = aux[1]; |
| to[stride*2] = aux[2]; |
| to[stride*3] = aux[3]; |
| to[stride*4] = aux[4]; |
| to[stride*5] = aux[5]; |
| to[stride*6] = aux[6]; |
| to[stride*7] = aux[7]; |
| } |
| |
| template<> EIGEN_STRONG_INLINE Eigen::half predux<Packet8h>(const Packet8h& a) { |
| Packet8f af = half2float(a); |
| float reduced = predux<Packet8f>(af); |
| return Eigen::half(reduced); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Eigen::half predux_max<Packet8h>(const Packet8h& a) { |
| Packet8f af = half2float(a); |
| float reduced = predux_max<Packet8f>(af); |
| return Eigen::half(reduced); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Eigen::half predux_min<Packet8h>(const Packet8h& a) { |
| Packet8f af = half2float(a); |
| float reduced = predux_min<Packet8f>(af); |
| return Eigen::half(reduced); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Eigen::half predux_mul<Packet8h>(const Packet8h& a) { |
| Packet8f af = half2float(a); |
| float reduced = predux_mul<Packet8f>(af); |
| return Eigen::half(reduced); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8h preverse(const Packet8h& a) |
| { |
| __m128i m = _mm_setr_epi8(14,15,12,13,10,11,8,9,6,7,4,5,2,3,0,1); |
| return _mm_shuffle_epi8(a,m); |
| } |
| |
| EIGEN_STRONG_INLINE void |
| ptranspose(PacketBlock<Packet8h,8>& kernel) { |
| __m128i a = kernel.packet[0]; |
| __m128i b = kernel.packet[1]; |
| __m128i c = kernel.packet[2]; |
| __m128i d = kernel.packet[3]; |
| __m128i e = kernel.packet[4]; |
| __m128i f = kernel.packet[5]; |
| __m128i g = kernel.packet[6]; |
| __m128i h = kernel.packet[7]; |
| |
| __m128i a03b03 = _mm_unpacklo_epi16(a, b); |
| __m128i c03d03 = _mm_unpacklo_epi16(c, d); |
| __m128i e03f03 = _mm_unpacklo_epi16(e, f); |
| __m128i g03h03 = _mm_unpacklo_epi16(g, h); |
| __m128i a47b47 = _mm_unpackhi_epi16(a, b); |
| __m128i c47d47 = _mm_unpackhi_epi16(c, d); |
| __m128i e47f47 = _mm_unpackhi_epi16(e, f); |
| __m128i g47h47 = _mm_unpackhi_epi16(g, h); |
| |
| __m128i a01b01c01d01 = _mm_unpacklo_epi32(a03b03, c03d03); |
| __m128i a23b23c23d23 = _mm_unpackhi_epi32(a03b03, c03d03); |
| __m128i e01f01g01h01 = _mm_unpacklo_epi32(e03f03, g03h03); |
| __m128i e23f23g23h23 = _mm_unpackhi_epi32(e03f03, g03h03); |
| __m128i a45b45c45d45 = _mm_unpacklo_epi32(a47b47, c47d47); |
| __m128i a67b67c67d67 = _mm_unpackhi_epi32(a47b47, c47d47); |
| __m128i e45f45g45h45 = _mm_unpacklo_epi32(e47f47, g47h47); |
| __m128i e67f67g67h67 = _mm_unpackhi_epi32(e47f47, g47h47); |
| |
| __m128i a0b0c0d0e0f0g0h0 = _mm_unpacklo_epi64(a01b01c01d01, e01f01g01h01); |
| __m128i a1b1c1d1e1f1g1h1 = _mm_unpackhi_epi64(a01b01c01d01, e01f01g01h01); |
| __m128i a2b2c2d2e2f2g2h2 = _mm_unpacklo_epi64(a23b23c23d23, e23f23g23h23); |
| __m128i a3b3c3d3e3f3g3h3 = _mm_unpackhi_epi64(a23b23c23d23, e23f23g23h23); |
| __m128i a4b4c4d4e4f4g4h4 = _mm_unpacklo_epi64(a45b45c45d45, e45f45g45h45); |
| __m128i a5b5c5d5e5f5g5h5 = _mm_unpackhi_epi64(a45b45c45d45, e45f45g45h45); |
| __m128i a6b6c6d6e6f6g6h6 = _mm_unpacklo_epi64(a67b67c67d67, e67f67g67h67); |
| __m128i a7b7c7d7e7f7g7h7 = _mm_unpackhi_epi64(a67b67c67d67, e67f67g67h67); |
| |
| kernel.packet[0] = a0b0c0d0e0f0g0h0; |
| kernel.packet[1] = a1b1c1d1e1f1g1h1; |
| kernel.packet[2] = a2b2c2d2e2f2g2h2; |
| kernel.packet[3] = a3b3c3d3e3f3g3h3; |
| kernel.packet[4] = a4b4c4d4e4f4g4h4; |
| kernel.packet[5] = a5b5c5d5e5f5g5h5; |
| kernel.packet[6] = a6b6c6d6e6f6g6h6; |
| kernel.packet[7] = a7b7c7d7e7f7g7h7; |
| } |
| |
| EIGEN_STRONG_INLINE void |
| ptranspose(PacketBlock<Packet8h,4>& kernel) { |
| EIGEN_ALIGN32 Eigen::half in[4][8]; |
| pstore<Eigen::half>(in[0], kernel.packet[0]); |
| pstore<Eigen::half>(in[1], kernel.packet[1]); |
| pstore<Eigen::half>(in[2], kernel.packet[2]); |
| pstore<Eigen::half>(in[3], kernel.packet[3]); |
| |
| EIGEN_ALIGN32 Eigen::half out[4][8]; |
| |
| for (int i = 0; i < 4; ++i) { |
| for (int j = 0; j < 4; ++j) { |
| out[i][j] = in[j][2*i]; |
| } |
| for (int j = 0; j < 4; ++j) { |
| out[i][j+4] = in[j][2*i+1]; |
| } |
| } |
| |
| kernel.packet[0] = pload<Packet8h>(out[0]); |
| kernel.packet[1] = pload<Packet8h>(out[1]); |
| kernel.packet[2] = pload<Packet8h>(out[2]); |
| kernel.packet[3] = pload<Packet8h>(out[3]); |
| } |
| |
| // BFloat16 implementation. |
| |
| EIGEN_STRONG_INLINE Packet8f Bf16ToF32(const Packet8bf& a) { |
| #ifdef EIGEN_VECTORIZE_AVX2 |
| __m256i extend = _mm256_cvtepu16_epi32(a); |
| return _mm256_castsi256_ps(_mm256_slli_epi32(extend, 16)); |
| #else |
| __m128i lo = _mm_cvtepu16_epi32(a); |
| __m128i hi = _mm_cvtepu16_epi32(_mm_srli_si128(a, 8)); |
| __m128i lo_shift = _mm_slli_epi32(lo, 16); |
| __m128i hi_shift = _mm_slli_epi32(hi, 16); |
| return _mm256_castsi256_ps(_mm256_insertf128_si256(_mm256_castsi128_si256(lo_shift), hi_shift, 1)); |
| #endif |
| } |
| |
| // Convert float to bfloat16 according to round-to-nearest-even/denormals algorithm. |
| EIGEN_STRONG_INLINE Packet8bf F32ToBf16(const Packet8f& a) { |
| |
| __m256i input = _mm256_castps_si256(a); |
| |
| #ifdef EIGEN_VECTORIZE_AVX2 |
| // uint32_t lsb = (input >> 16); |
| __m256i t = _mm256_srli_epi32(input, 16); |
| // uint32_t lsb = lsb & 1; |
| t = _mm256_and_si256(t, _mm256_set1_epi32(1)); |
| // uint32_t rounding_bias = 0x7fff + lsb; |
| t = _mm256_add_epi32(t, _mm256_set1_epi32(0x7fff)); |
| // input += rounding_bias; |
| t = _mm256_add_epi32(t, input); |
| // input = input >> 16; |
| t = _mm256_srli_epi32(t, 16); |
| // Check NaN before converting back to bf16 |
| __m256 mask = _mm256_cmp_ps(a, a, _CMP_ORD_Q); |
| __m256i nan = _mm256_set1_epi32(0x7fc0); |
| t = _mm256_blendv_epi8(nan, t, _mm256_castps_si256(mask)); |
| // output = numext::bit_cast<uint16_t>(input); |
| return _mm_packus_epi32(_mm256_extractf128_si256(t, 0), |
| _mm256_extractf128_si256(t, 1)); |
| #else |
| // uint32_t lsb = (input >> 16); |
| __m128i lo = _mm_srli_epi32(_mm256_extractf128_si256(input, 0), 16); |
| __m128i hi = _mm_srli_epi32(_mm256_extractf128_si256(input, 1), 16); |
| // uint32_t lsb = lsb & 1; |
| lo = _mm_and_si128(lo, _mm_set1_epi32(1)); |
| hi = _mm_and_si128(hi, _mm_set1_epi32(1)); |
| // uint32_t rounding_bias = 0x7fff + lsb; |
| lo = _mm_add_epi32(lo, _mm_set1_epi32(0x7fff)); |
| hi = _mm_add_epi32(hi, _mm_set1_epi32(0x7fff)); |
| // input += rounding_bias; |
| lo = _mm_add_epi32(lo, _mm256_extractf128_si256(input, 0)); |
| hi = _mm_add_epi32(hi, _mm256_extractf128_si256(input, 1)); |
| // input = input >> 16; |
| lo = _mm_srli_epi32(lo, 16); |
| hi = _mm_srli_epi32(hi, 16); |
| // Check NaN before converting back to bf16 |
| __m256 mask = _mm256_cmp_ps(a, a, _CMP_ORD_Q); |
| __m128i nan = _mm_set1_epi32(0x7fc0); |
| lo = _mm_blendv_epi8(nan, lo, _mm_castps_si128(_mm256_castps256_ps128(mask))); |
| hi = _mm_blendv_epi8(nan, hi, _mm_castps_si128(_mm256_extractf128_ps(mask, 1))); |
| // output = numext::bit_cast<uint16_t>(input); |
| return _mm_packus_epi32(lo, hi); |
| #endif |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8bf pset1<Packet8bf>(const bfloat16& from) { |
| return _mm_set1_epi16(numext::bit_cast<numext::uint16_t>(from)); |
| } |
| |
| template<> EIGEN_STRONG_INLINE bfloat16 pfirst<Packet8bf>(const Packet8bf& from) { |
| return numext::bit_cast<bfloat16>(static_cast<numext::uint16_t>(_mm_extract_epi16(from, 0))); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8bf pload<Packet8bf>(const bfloat16* from) { |
| return _mm_load_si128(reinterpret_cast<const __m128i*>(from)); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8bf ploadu<Packet8bf>(const bfloat16* from) { |
| return _mm_loadu_si128(reinterpret_cast<const __m128i*>(from)); |
| } |
| |
| template<> EIGEN_STRONG_INLINE void pstore<bfloat16>(bfloat16* to, const Packet8bf& from) { |
| _mm_store_si128(reinterpret_cast<__m128i*>(to), from); |
| } |
| |
| template<> EIGEN_STRONG_INLINE void pstoreu<bfloat16>(bfloat16* to, const Packet8bf& from) { |
| _mm_storeu_si128(reinterpret_cast<__m128i*>(to), from); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8bf |
| ploaddup<Packet8bf>(const bfloat16* from) { |
| const numext::uint16_t a = numext::bit_cast<numext::uint16_t>(from[0]); |
| const numext::uint16_t b = numext::bit_cast<numext::uint16_t>(from[1]); |
| const numext::uint16_t c = numext::bit_cast<numext::uint16_t>(from[2]); |
| const numext::uint16_t d = numext::bit_cast<numext::uint16_t>(from[3]); |
| return _mm_set_epi16(d, d, c, c, b, b, a, a); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8bf |
| ploadquad<Packet8bf>(const bfloat16* from) { |
| const numext::uint16_t a = numext::bit_cast<numext::uint16_t>(from[0]); |
| const numext::uint16_t b = numext::bit_cast<numext::uint16_t>(from[1]); |
| return _mm_set_epi16(b, b, b, b, a, a, a, a); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8bf ptrue(const Packet8bf& a) { |
| return _mm_cmpeq_epi32(a, a); |
| } |
| |
| template <> |
| EIGEN_STRONG_INLINE Packet8bf pabs(const Packet8bf& a) { |
| const __m128i sign_mask = _mm_set1_epi16(static_cast<numext::uint16_t>(0x8000)); |
| return _mm_andnot_si128(sign_mask, a); |
| } |
| |
| template <> |
| EIGEN_STRONG_INLINE Packet8bf pmin<Packet8bf>(const Packet8bf& a, |
| const Packet8bf& b) { |
| return F32ToBf16(pmin<Packet8f>(Bf16ToF32(a), Bf16ToF32(b))); |
| } |
| |
| template <> |
| EIGEN_STRONG_INLINE Packet8bf pmax<Packet8bf>(const Packet8bf& a, |
| const Packet8bf& b) { |
| return F32ToBf16(pmax<Packet8f>(Bf16ToF32(a), Bf16ToF32(b))); |
| } |
| |
| template <> |
| EIGEN_STRONG_INLINE Packet8bf plset<Packet8bf>(const bfloat16& a) { |
| return F32ToBf16(plset<Packet8f>(static_cast<float>(a))); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8bf por(const Packet8bf& a,const Packet8bf& b) { |
| return _mm_or_si128(a,b); |
| } |
| template<> EIGEN_STRONG_INLINE Packet8bf pxor(const Packet8bf& a,const Packet8bf& b) { |
| return _mm_xor_si128(a,b); |
| } |
| template<> EIGEN_STRONG_INLINE Packet8bf pand(const Packet8bf& a,const Packet8bf& b) { |
| return _mm_and_si128(a,b); |
| } |
| template<> EIGEN_STRONG_INLINE Packet8bf pandnot(const Packet8bf& a,const Packet8bf& b) { |
| return _mm_andnot_si128(b,a); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8bf pselect(const Packet8bf& mask, const Packet8bf& a, const Packet8bf& b) { |
| return _mm_blendv_epi8(b, a, mask); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8bf pround<Packet8bf>(const Packet8bf& a) |
| { |
| return F32ToBf16(pround<Packet8f>(Bf16ToF32(a))); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8bf print<Packet8bf>(const Packet8bf& a) { |
| return F32ToBf16(print<Packet8f>(Bf16ToF32(a))); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8bf pceil<Packet8bf>(const Packet8bf& a) { |
| return F32ToBf16(pceil<Packet8f>(Bf16ToF32(a))); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8bf pfloor<Packet8bf>(const Packet8bf& a) { |
| return F32ToBf16(pfloor<Packet8f>(Bf16ToF32(a))); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8bf pcmp_eq(const Packet8bf& a,const Packet8bf& b) { |
| return Pack16To8(pcmp_eq(Bf16ToF32(a), Bf16ToF32(b))); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8bf pcmp_le(const Packet8bf& a,const Packet8bf& b) { |
| return Pack16To8(pcmp_le(Bf16ToF32(a), Bf16ToF32(b))); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8bf pcmp_lt(const Packet8bf& a,const Packet8bf& b) { |
| return Pack16To8(pcmp_lt(Bf16ToF32(a), Bf16ToF32(b))); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8bf pcmp_lt_or_nan(const Packet8bf& a,const Packet8bf& b) { |
| return Pack16To8(pcmp_lt_or_nan(Bf16ToF32(a), Bf16ToF32(b))); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8bf pconj(const Packet8bf& a) { return a; } |
| |
| template<> EIGEN_STRONG_INLINE Packet8bf pnegate(const Packet8bf& a) { |
| Packet8bf sign_mask = _mm_set1_epi16(static_cast<numext::uint16_t>(0x8000)); |
| return _mm_xor_si128(a, sign_mask); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8bf padd<Packet8bf>(const Packet8bf& a, const Packet8bf& b) { |
| return F32ToBf16(padd<Packet8f>(Bf16ToF32(a), Bf16ToF32(b))); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8bf psub<Packet8bf>(const Packet8bf& a, const Packet8bf& b) { |
| return F32ToBf16(psub<Packet8f>(Bf16ToF32(a), Bf16ToF32(b))); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8bf pmul<Packet8bf>(const Packet8bf& a, const Packet8bf& b) { |
| return F32ToBf16(pmul<Packet8f>(Bf16ToF32(a), Bf16ToF32(b))); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8bf pdiv<Packet8bf>(const Packet8bf& a, const Packet8bf& b) { |
| return F32ToBf16(pdiv<Packet8f>(Bf16ToF32(a), Bf16ToF32(b))); |
| } |
| |
| |
| template<> EIGEN_STRONG_INLINE Packet8bf pgather<bfloat16, Packet8bf>(const bfloat16* from, Index stride) |
| { |
| const numext::uint16_t s0 = numext::bit_cast<numext::uint16_t>(from[0*stride]); |
| const numext::uint16_t s1 = numext::bit_cast<numext::uint16_t>(from[1*stride]); |
| const numext::uint16_t s2 = numext::bit_cast<numext::uint16_t>(from[2*stride]); |
| const numext::uint16_t s3 = numext::bit_cast<numext::uint16_t>(from[3*stride]); |
| const numext::uint16_t s4 = numext::bit_cast<numext::uint16_t>(from[4*stride]); |
| const numext::uint16_t s5 = numext::bit_cast<numext::uint16_t>(from[5*stride]); |
| const numext::uint16_t s6 = numext::bit_cast<numext::uint16_t>(from[6*stride]); |
| const numext::uint16_t s7 = numext::bit_cast<numext::uint16_t>(from[7*stride]); |
| return _mm_set_epi16(s7, s6, s5, s4, s3, s2, s1, s0); |
| } |
| |
| template<> EIGEN_STRONG_INLINE void pscatter<bfloat16, Packet8bf>(bfloat16* to, const Packet8bf& from, Index stride) |
| { |
| EIGEN_ALIGN32 bfloat16 aux[8]; |
| pstore(aux, from); |
| to[stride*0] = aux[0]; |
| to[stride*1] = aux[1]; |
| to[stride*2] = aux[2]; |
| to[stride*3] = aux[3]; |
| to[stride*4] = aux[4]; |
| to[stride*5] = aux[5]; |
| to[stride*6] = aux[6]; |
| to[stride*7] = aux[7]; |
| } |
| |
| template<> EIGEN_STRONG_INLINE bfloat16 predux<Packet8bf>(const Packet8bf& a) { |
| return static_cast<bfloat16>(predux<Packet8f>(Bf16ToF32(a))); |
| } |
| |
| template<> EIGEN_STRONG_INLINE bfloat16 predux_max<Packet8bf>(const Packet8bf& a) { |
| return static_cast<bfloat16>(predux_max<Packet8f>(Bf16ToF32(a))); |
| } |
| |
| template<> EIGEN_STRONG_INLINE bfloat16 predux_min<Packet8bf>(const Packet8bf& a) { |
| return static_cast<bfloat16>(predux_min<Packet8f>(Bf16ToF32(a))); |
| } |
| |
| template<> EIGEN_STRONG_INLINE bfloat16 predux_mul<Packet8bf>(const Packet8bf& a) { |
| return static_cast<bfloat16>(predux_mul<Packet8f>(Bf16ToF32(a))); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet8bf preverse(const Packet8bf& a) |
| { |
| __m128i m = _mm_setr_epi8(14,15,12,13,10,11,8,9,6,7,4,5,2,3,0,1); |
| return _mm_shuffle_epi8(a,m); |
| } |
| |
| EIGEN_STRONG_INLINE void |
| ptranspose(PacketBlock<Packet8bf,8>& kernel) { |
| __m128i a = kernel.packet[0]; |
| __m128i b = kernel.packet[1]; |
| __m128i c = kernel.packet[2]; |
| __m128i d = kernel.packet[3]; |
| __m128i e = kernel.packet[4]; |
| __m128i f = kernel.packet[5]; |
| __m128i g = kernel.packet[6]; |
| __m128i h = kernel.packet[7]; |
| |
| __m128i a03b03 = _mm_unpacklo_epi16(a, b); |
| __m128i c03d03 = _mm_unpacklo_epi16(c, d); |
| __m128i e03f03 = _mm_unpacklo_epi16(e, f); |
| __m128i g03h03 = _mm_unpacklo_epi16(g, h); |
| __m128i a47b47 = _mm_unpackhi_epi16(a, b); |
| __m128i c47d47 = _mm_unpackhi_epi16(c, d); |
| __m128i e47f47 = _mm_unpackhi_epi16(e, f); |
| __m128i g47h47 = _mm_unpackhi_epi16(g, h); |
| |
| __m128i a01b01c01d01 = _mm_unpacklo_epi32(a03b03, c03d03); |
| __m128i a23b23c23d23 = _mm_unpackhi_epi32(a03b03, c03d03); |
| __m128i e01f01g01h01 = _mm_unpacklo_epi32(e03f03, g03h03); |
| __m128i e23f23g23h23 = _mm_unpackhi_epi32(e03f03, g03h03); |
| __m128i a45b45c45d45 = _mm_unpacklo_epi32(a47b47, c47d47); |
| __m128i a67b67c67d67 = _mm_unpackhi_epi32(a47b47, c47d47); |
| __m128i e45f45g45h45 = _mm_unpacklo_epi32(e47f47, g47h47); |
| __m128i e67f67g67h67 = _mm_unpackhi_epi32(e47f47, g47h47); |
| |
| kernel.packet[0] = _mm_unpacklo_epi64(a01b01c01d01, e01f01g01h01); |
| kernel.packet[1] = _mm_unpackhi_epi64(a01b01c01d01, e01f01g01h01); |
| kernel.packet[2] = _mm_unpacklo_epi64(a23b23c23d23, e23f23g23h23); |
| kernel.packet[3] = _mm_unpackhi_epi64(a23b23c23d23, e23f23g23h23); |
| kernel.packet[4] = _mm_unpacklo_epi64(a45b45c45d45, e45f45g45h45); |
| kernel.packet[5] = _mm_unpackhi_epi64(a45b45c45d45, e45f45g45h45); |
| kernel.packet[6] = _mm_unpacklo_epi64(a67b67c67d67, e67f67g67h67); |
| kernel.packet[7] = _mm_unpackhi_epi64(a67b67c67d67, e67f67g67h67); |
| } |
| |
| EIGEN_STRONG_INLINE void |
| ptranspose(PacketBlock<Packet8bf,4>& kernel) { |
| __m128i a = kernel.packet[0]; |
| __m128i b = kernel.packet[1]; |
| __m128i c = kernel.packet[2]; |
| __m128i d = kernel.packet[3]; |
| |
| __m128i ab_03 = _mm_unpacklo_epi16(a, b); |
| __m128i cd_03 = _mm_unpacklo_epi16(c, d); |
| __m128i ab_47 = _mm_unpackhi_epi16(a, b); |
| __m128i cd_47 = _mm_unpackhi_epi16(c, d); |
| |
| kernel.packet[0] = _mm_unpacklo_epi32(ab_03, cd_03); |
| kernel.packet[1] = _mm_unpackhi_epi32(ab_03, cd_03); |
| kernel.packet[2] = _mm_unpacklo_epi32(ab_47, cd_47); |
| kernel.packet[3] = _mm_unpackhi_epi32(ab_47, cd_47); |
| } |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_PACKET_MATH_AVX_H |