| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_HOMOGENEOUS_H |
| #define EIGEN_HOMOGENEOUS_H |
| |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| /** \geometry_module \ingroup Geometry_Module |
| * |
| * \class Homogeneous |
| * |
| * \brief Expression of one (or a set of) homogeneous vector(s) |
| * |
| * \param MatrixType the type of the object in which we are making homogeneous |
| * |
| * This class represents an expression of one (or a set of) homogeneous vector(s). |
| * It is the return type of MatrixBase::homogeneous() and most of the time |
| * this is the only way it is used. |
| * |
| * \sa MatrixBase::homogeneous() |
| */ |
| |
| namespace internal { |
| |
| template<typename MatrixType,int Direction> |
| struct traits<Homogeneous<MatrixType,Direction> > |
| : traits<MatrixType> |
| { |
| typedef typename traits<MatrixType>::StorageKind StorageKind; |
| typedef typename ref_selector<MatrixType>::type MatrixTypeNested; |
| typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested; |
| enum { |
| RowsPlusOne = (MatrixType::RowsAtCompileTime != Dynamic) ? |
| int(MatrixType::RowsAtCompileTime) + 1 : Dynamic, |
| ColsPlusOne = (MatrixType::ColsAtCompileTime != Dynamic) ? |
| int(MatrixType::ColsAtCompileTime) + 1 : Dynamic, |
| RowsAtCompileTime = Direction==Vertical ? RowsPlusOne : MatrixType::RowsAtCompileTime, |
| ColsAtCompileTime = Direction==Horizontal ? ColsPlusOne : MatrixType::ColsAtCompileTime, |
| MaxRowsAtCompileTime = RowsAtCompileTime, |
| MaxColsAtCompileTime = ColsAtCompileTime, |
| TmpFlags = _MatrixTypeNested::Flags & HereditaryBits, |
| Flags = ColsAtCompileTime==1 ? (TmpFlags & ~RowMajorBit) |
| : RowsAtCompileTime==1 ? (TmpFlags | RowMajorBit) |
| : TmpFlags |
| }; |
| }; |
| |
| template<typename MatrixType,typename Lhs> struct homogeneous_left_product_impl; |
| template<typename MatrixType,typename Rhs> struct homogeneous_right_product_impl; |
| |
| } // end namespace internal |
| |
| template<typename MatrixType,int Direction_> class Homogeneous |
| : public MatrixBase<Homogeneous<MatrixType,Direction_> >, internal::no_assignment_operator |
| { |
| public: |
| |
| typedef MatrixType NestedExpression; |
| enum { Direction = Direction_ }; |
| |
| typedef MatrixBase<Homogeneous> Base; |
| EIGEN_DENSE_PUBLIC_INTERFACE(Homogeneous) |
| |
| EIGEN_DEVICE_FUNC explicit inline Homogeneous(const MatrixType& matrix) |
| : m_matrix(matrix) |
| {} |
| |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR |
| inline Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows() + (int(Direction)==Vertical ? 1 : 0); } |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR |
| inline Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols() + (int(Direction)==Horizontal ? 1 : 0); } |
| |
| EIGEN_DEVICE_FUNC const NestedExpression& nestedExpression() const { return m_matrix; } |
| |
| template<typename Rhs> |
| EIGEN_DEVICE_FUNC inline const Product<Homogeneous,Rhs> |
| operator* (const MatrixBase<Rhs>& rhs) const |
| { |
| eigen_assert(int(Direction)==Horizontal); |
| return Product<Homogeneous,Rhs>(*this,rhs.derived()); |
| } |
| |
| template<typename Lhs> friend |
| EIGEN_DEVICE_FUNC inline const Product<Lhs,Homogeneous> |
| operator* (const MatrixBase<Lhs>& lhs, const Homogeneous& rhs) |
| { |
| eigen_assert(int(Direction)==Vertical); |
| return Product<Lhs,Homogeneous>(lhs.derived(),rhs); |
| } |
| |
| template<typename Scalar, int Dim, int Mode, int Options> friend |
| EIGEN_DEVICE_FUNC inline const Product<Transform<Scalar,Dim,Mode,Options>, Homogeneous > |
| operator* (const Transform<Scalar,Dim,Mode,Options>& lhs, const Homogeneous& rhs) |
| { |
| eigen_assert(int(Direction)==Vertical); |
| return Product<Transform<Scalar,Dim,Mode,Options>, Homogeneous>(lhs,rhs); |
| } |
| |
| template<typename Func> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::result_of<Func(Scalar,Scalar)>::type |
| redux(const Func& func) const |
| { |
| return func(m_matrix.redux(func), Scalar(1)); |
| } |
| |
| protected: |
| typename MatrixType::Nested m_matrix; |
| }; |
| |
| /** \geometry_module \ingroup Geometry_Module |
| * |
| * \returns a vector expression that is one longer than the vector argument, with the value 1 symbolically appended as the last coefficient. |
| * |
| * This can be used to convert affine coordinates to homogeneous coordinates. |
| * |
| * \only_for_vectors |
| * |
| * Example: \include MatrixBase_homogeneous.cpp |
| * Output: \verbinclude MatrixBase_homogeneous.out |
| * |
| * \sa VectorwiseOp::homogeneous(), class Homogeneous |
| */ |
| template<typename Derived> |
| EIGEN_DEVICE_FUNC inline typename MatrixBase<Derived>::HomogeneousReturnType |
| MatrixBase<Derived>::homogeneous() const |
| { |
| EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); |
| return HomogeneousReturnType(derived()); |
| } |
| |
| /** \geometry_module \ingroup Geometry_Module |
| * |
| * \returns an expression where the value 1 is symbolically appended as the final coefficient to each column (or row) of the matrix. |
| * |
| * This can be used to convert affine coordinates to homogeneous coordinates. |
| * |
| * Example: \include VectorwiseOp_homogeneous.cpp |
| * Output: \verbinclude VectorwiseOp_homogeneous.out |
| * |
| * \sa MatrixBase::homogeneous(), class Homogeneous */ |
| template<typename ExpressionType, int Direction> |
| EIGEN_DEVICE_FUNC inline Homogeneous<ExpressionType,Direction> |
| VectorwiseOp<ExpressionType,Direction>::homogeneous() const |
| { |
| return HomogeneousReturnType(_expression()); |
| } |
| |
| /** \geometry_module \ingroup Geometry_Module |
| * |
| * \brief homogeneous normalization |
| * |
| * \returns a vector expression of the N-1 first coefficients of \c *this divided by that last coefficient. |
| * |
| * This can be used to convert homogeneous coordinates to affine coordinates. |
| * |
| * It is essentially a shortcut for: |
| * \code |
| this->head(this->size()-1)/this->coeff(this->size()-1); |
| \endcode |
| * |
| * Example: \include MatrixBase_hnormalized.cpp |
| * Output: \verbinclude MatrixBase_hnormalized.out |
| * |
| * \sa VectorwiseOp::hnormalized() */ |
| template<typename Derived> |
| EIGEN_DEVICE_FUNC inline const typename MatrixBase<Derived>::HNormalizedReturnType |
| MatrixBase<Derived>::hnormalized() const |
| { |
| EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); |
| return ConstStartMinusOne(derived(),0,0, |
| ColsAtCompileTime==1?size()-1:1, |
| ColsAtCompileTime==1?1:size()-1) / coeff(size()-1); |
| } |
| |
| /** \geometry_module \ingroup Geometry_Module |
| * |
| * \brief column or row-wise homogeneous normalization |
| * |
| * \returns an expression of the first N-1 coefficients of each column (or row) of \c *this divided by the last coefficient of each column (or row). |
| * |
| * This can be used to convert homogeneous coordinates to affine coordinates. |
| * |
| * It is conceptually equivalent to calling MatrixBase::hnormalized() to each column (or row) of \c *this. |
| * |
| * Example: \include DirectionWise_hnormalized.cpp |
| * Output: \verbinclude DirectionWise_hnormalized.out |
| * |
| * \sa MatrixBase::hnormalized() */ |
| template<typename ExpressionType, int Direction> |
| EIGEN_DEVICE_FUNC inline const typename VectorwiseOp<ExpressionType,Direction>::HNormalizedReturnType |
| VectorwiseOp<ExpressionType,Direction>::hnormalized() const |
| { |
| return HNormalized_Block(_expression(),0,0, |
| Direction==Vertical ? _expression().rows()-1 : _expression().rows(), |
| Direction==Horizontal ? _expression().cols()-1 : _expression().cols()).cwiseQuotient( |
| Replicate<HNormalized_Factors, |
| Direction==Vertical ? HNormalized_SizeMinusOne : 1, |
| Direction==Horizontal ? HNormalized_SizeMinusOne : 1> |
| (HNormalized_Factors(_expression(), |
| Direction==Vertical ? _expression().rows()-1:0, |
| Direction==Horizontal ? _expression().cols()-1:0, |
| Direction==Vertical ? 1 : _expression().rows(), |
| Direction==Horizontal ? 1 : _expression().cols()), |
| Direction==Vertical ? _expression().rows()-1 : 1, |
| Direction==Horizontal ? _expression().cols()-1 : 1)); |
| } |
| |
| namespace internal { |
| |
| template<typename MatrixOrTransformType> |
| struct take_matrix_for_product |
| { |
| typedef MatrixOrTransformType type; |
| EIGEN_DEVICE_FUNC static const type& run(const type &x) { return x; } |
| }; |
| |
| template<typename Scalar, int Dim, int Mode,int Options> |
| struct take_matrix_for_product<Transform<Scalar, Dim, Mode, Options> > |
| { |
| typedef Transform<Scalar, Dim, Mode, Options> TransformType; |
| typedef typename internal::add_const<typename TransformType::ConstAffinePart>::type type; |
| EIGEN_DEVICE_FUNC static type run (const TransformType& x) { return x.affine(); } |
| }; |
| |
| template<typename Scalar, int Dim, int Options> |
| struct take_matrix_for_product<Transform<Scalar, Dim, Projective, Options> > |
| { |
| typedef Transform<Scalar, Dim, Projective, Options> TransformType; |
| typedef typename TransformType::MatrixType type; |
| EIGEN_DEVICE_FUNC static const type& run (const TransformType& x) { return x.matrix(); } |
| }; |
| |
| template<typename MatrixType,typename Lhs> |
| struct traits<homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs> > |
| { |
| typedef typename take_matrix_for_product<Lhs>::type LhsMatrixType; |
| typedef typename remove_all<MatrixType>::type MatrixTypeCleaned; |
| typedef typename remove_all<LhsMatrixType>::type LhsMatrixTypeCleaned; |
| typedef typename make_proper_matrix_type< |
| typename traits<MatrixTypeCleaned>::Scalar, |
| LhsMatrixTypeCleaned::RowsAtCompileTime, |
| MatrixTypeCleaned::ColsAtCompileTime, |
| MatrixTypeCleaned::PlainObject::Options, |
| LhsMatrixTypeCleaned::MaxRowsAtCompileTime, |
| MatrixTypeCleaned::MaxColsAtCompileTime>::type ReturnType; |
| }; |
| |
| template<typename MatrixType,typename Lhs> |
| struct homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs> |
| : public ReturnByValue<homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs> > |
| { |
| typedef typename traits<homogeneous_left_product_impl>::LhsMatrixType LhsMatrixType; |
| typedef typename remove_all<LhsMatrixType>::type LhsMatrixTypeCleaned; |
| typedef typename remove_all<typename LhsMatrixTypeCleaned::Nested>::type LhsMatrixTypeNested; |
| EIGEN_DEVICE_FUNC homogeneous_left_product_impl(const Lhs& lhs, const MatrixType& rhs) |
| : m_lhs(take_matrix_for_product<Lhs>::run(lhs)), |
| m_rhs(rhs) |
| {} |
| |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR |
| inline Index rows() const EIGEN_NOEXCEPT { return m_lhs.rows(); } |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR |
| inline Index cols() const EIGEN_NOEXCEPT { return m_rhs.cols(); } |
| |
| template<typename Dest> EIGEN_DEVICE_FUNC void evalTo(Dest& dst) const |
| { |
| // FIXME investigate how to allow lazy evaluation of this product when possible |
| dst = Block<const LhsMatrixTypeNested, |
| LhsMatrixTypeNested::RowsAtCompileTime, |
| LhsMatrixTypeNested::ColsAtCompileTime==Dynamic?Dynamic:LhsMatrixTypeNested::ColsAtCompileTime-1> |
| (m_lhs,0,0,m_lhs.rows(),m_lhs.cols()-1) * m_rhs; |
| dst += m_lhs.col(m_lhs.cols()-1).rowwise() |
| .template replicate<MatrixType::ColsAtCompileTime>(m_rhs.cols()); |
| } |
| |
| typename LhsMatrixTypeCleaned::Nested m_lhs; |
| typename MatrixType::Nested m_rhs; |
| }; |
| |
| template<typename MatrixType,typename Rhs> |
| struct traits<homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs> > |
| { |
| typedef typename make_proper_matrix_type<typename traits<MatrixType>::Scalar, |
| MatrixType::RowsAtCompileTime, |
| Rhs::ColsAtCompileTime, |
| MatrixType::PlainObject::Options, |
| MatrixType::MaxRowsAtCompileTime, |
| Rhs::MaxColsAtCompileTime>::type ReturnType; |
| }; |
| |
| template<typename MatrixType,typename Rhs> |
| struct homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs> |
| : public ReturnByValue<homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs> > |
| { |
| typedef typename remove_all<typename Rhs::Nested>::type RhsNested; |
| EIGEN_DEVICE_FUNC homogeneous_right_product_impl(const MatrixType& lhs, const Rhs& rhs) |
| : m_lhs(lhs), m_rhs(rhs) |
| {} |
| |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index rows() const EIGEN_NOEXCEPT { return m_lhs.rows(); } |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index cols() const EIGEN_NOEXCEPT { return m_rhs.cols(); } |
| |
| template<typename Dest> EIGEN_DEVICE_FUNC void evalTo(Dest& dst) const |
| { |
| // FIXME investigate how to allow lazy evaluation of this product when possible |
| dst = m_lhs * Block<const RhsNested, |
| RhsNested::RowsAtCompileTime==Dynamic?Dynamic:RhsNested::RowsAtCompileTime-1, |
| RhsNested::ColsAtCompileTime> |
| (m_rhs,0,0,m_rhs.rows()-1,m_rhs.cols()); |
| dst += m_rhs.row(m_rhs.rows()-1).colwise() |
| .template replicate<MatrixType::RowsAtCompileTime>(m_lhs.rows()); |
| } |
| |
| typename MatrixType::Nested m_lhs; |
| typename Rhs::Nested m_rhs; |
| }; |
| |
| template<typename ArgType,int Direction> |
| struct evaluator_traits<Homogeneous<ArgType,Direction> > |
| { |
| typedef typename storage_kind_to_evaluator_kind<typename ArgType::StorageKind>::Kind Kind; |
| typedef HomogeneousShape Shape; |
| }; |
| |
| template<> struct AssignmentKind<DenseShape,HomogeneousShape> { typedef Dense2Dense Kind; }; |
| |
| |
| template<typename ArgType,int Direction> |
| struct unary_evaluator<Homogeneous<ArgType,Direction>, IndexBased> |
| : evaluator<typename Homogeneous<ArgType,Direction>::PlainObject > |
| { |
| typedef Homogeneous<ArgType,Direction> XprType; |
| typedef typename XprType::PlainObject PlainObject; |
| typedef evaluator<PlainObject> Base; |
| |
| EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& op) |
| : Base(), m_temp(op) |
| { |
| ::new (static_cast<Base*>(this)) Base(m_temp); |
| } |
| |
| protected: |
| PlainObject m_temp; |
| }; |
| |
| // dense = homogeneous |
| template< typename DstXprType, typename ArgType, typename Scalar> |
| struct Assignment<DstXprType, Homogeneous<ArgType,Vertical>, internal::assign_op<Scalar,typename ArgType::Scalar>, Dense2Dense> |
| { |
| typedef Homogeneous<ArgType,Vertical> SrcXprType; |
| EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,typename ArgType::Scalar> &) |
| { |
| Index dstRows = src.rows(); |
| Index dstCols = src.cols(); |
| if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) |
| dst.resize(dstRows, dstCols); |
| |
| dst.template topRows<ArgType::RowsAtCompileTime>(src.nestedExpression().rows()) = src.nestedExpression(); |
| dst.row(dst.rows()-1).setOnes(); |
| } |
| }; |
| |
| // dense = homogeneous |
| template< typename DstXprType, typename ArgType, typename Scalar> |
| struct Assignment<DstXprType, Homogeneous<ArgType,Horizontal>, internal::assign_op<Scalar,typename ArgType::Scalar>, Dense2Dense> |
| { |
| typedef Homogeneous<ArgType,Horizontal> SrcXprType; |
| EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,typename ArgType::Scalar> &) |
| { |
| Index dstRows = src.rows(); |
| Index dstCols = src.cols(); |
| if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) |
| dst.resize(dstRows, dstCols); |
| |
| dst.template leftCols<ArgType::ColsAtCompileTime>(src.nestedExpression().cols()) = src.nestedExpression(); |
| dst.col(dst.cols()-1).setOnes(); |
| } |
| }; |
| |
| template<typename LhsArg, typename Rhs, int ProductTag> |
| struct generic_product_impl<Homogeneous<LhsArg,Horizontal>, Rhs, HomogeneousShape, DenseShape, ProductTag> |
| { |
| template<typename Dest> |
| EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const Homogeneous<LhsArg,Horizontal>& lhs, const Rhs& rhs) |
| { |
| homogeneous_right_product_impl<Homogeneous<LhsArg,Horizontal>, Rhs>(lhs.nestedExpression(), rhs).evalTo(dst); |
| } |
| }; |
| |
| template<typename Lhs,typename Rhs> |
| struct homogeneous_right_product_refactoring_helper |
| { |
| enum { |
| Dim = Lhs::ColsAtCompileTime, |
| Rows = Lhs::RowsAtCompileTime |
| }; |
| typedef typename Rhs::template ConstNRowsBlockXpr<Dim>::Type LinearBlockConst; |
| typedef typename remove_const<LinearBlockConst>::type LinearBlock; |
| typedef typename Rhs::ConstRowXpr ConstantColumn; |
| typedef Replicate<const ConstantColumn,Rows,1> ConstantBlock; |
| typedef Product<Lhs,LinearBlock,LazyProduct> LinearProduct; |
| typedef CwiseBinaryOp<internal::scalar_sum_op<typename Lhs::Scalar,typename Rhs::Scalar>, const LinearProduct, const ConstantBlock> Xpr; |
| }; |
| |
| template<typename Lhs, typename Rhs, int ProductTag> |
| struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, HomogeneousShape, DenseShape> |
| : public evaluator<typename homogeneous_right_product_refactoring_helper<typename Lhs::NestedExpression,Rhs>::Xpr> |
| { |
| typedef Product<Lhs, Rhs, LazyProduct> XprType; |
| typedef homogeneous_right_product_refactoring_helper<typename Lhs::NestedExpression,Rhs> helper; |
| typedef typename helper::ConstantBlock ConstantBlock; |
| typedef typename helper::Xpr RefactoredXpr; |
| typedef evaluator<RefactoredXpr> Base; |
| |
| EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr) |
| : Base( xpr.lhs().nestedExpression() .lazyProduct( xpr.rhs().template topRows<helper::Dim>(xpr.lhs().nestedExpression().cols()) ) |
| + ConstantBlock(xpr.rhs().row(xpr.rhs().rows()-1),xpr.lhs().rows(), 1) ) |
| {} |
| }; |
| |
| template<typename Lhs, typename RhsArg, int ProductTag> |
| struct generic_product_impl<Lhs, Homogeneous<RhsArg,Vertical>, DenseShape, HomogeneousShape, ProductTag> |
| { |
| template<typename Dest> |
| EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const Lhs& lhs, const Homogeneous<RhsArg,Vertical>& rhs) |
| { |
| homogeneous_left_product_impl<Homogeneous<RhsArg,Vertical>, Lhs>(lhs, rhs.nestedExpression()).evalTo(dst); |
| } |
| }; |
| |
| // TODO: the following specialization is to address a regression from 3.2 to 3.3 |
| // In the future, this path should be optimized. |
| template<typename Lhs, typename RhsArg, int ProductTag> |
| struct generic_product_impl<Lhs, Homogeneous<RhsArg,Vertical>, TriangularShape, HomogeneousShape, ProductTag> |
| { |
| template<typename Dest> |
| static void evalTo(Dest& dst, const Lhs& lhs, const Homogeneous<RhsArg,Vertical>& rhs) |
| { |
| dst.noalias() = lhs * rhs.eval(); |
| } |
| }; |
| |
| template<typename Lhs,typename Rhs> |
| struct homogeneous_left_product_refactoring_helper |
| { |
| enum { |
| Dim = Rhs::RowsAtCompileTime, |
| Cols = Rhs::ColsAtCompileTime |
| }; |
| typedef typename Lhs::template ConstNColsBlockXpr<Dim>::Type LinearBlockConst; |
| typedef typename remove_const<LinearBlockConst>::type LinearBlock; |
| typedef typename Lhs::ConstColXpr ConstantColumn; |
| typedef Replicate<const ConstantColumn,1,Cols> ConstantBlock; |
| typedef Product<LinearBlock,Rhs,LazyProduct> LinearProduct; |
| typedef CwiseBinaryOp<internal::scalar_sum_op<typename Lhs::Scalar,typename Rhs::Scalar>, const LinearProduct, const ConstantBlock> Xpr; |
| }; |
| |
| template<typename Lhs, typename Rhs, int ProductTag> |
| struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, DenseShape, HomogeneousShape> |
| : public evaluator<typename homogeneous_left_product_refactoring_helper<Lhs,typename Rhs::NestedExpression>::Xpr> |
| { |
| typedef Product<Lhs, Rhs, LazyProduct> XprType; |
| typedef homogeneous_left_product_refactoring_helper<Lhs,typename Rhs::NestedExpression> helper; |
| typedef typename helper::ConstantBlock ConstantBlock; |
| typedef typename helper::Xpr RefactoredXpr; |
| typedef evaluator<RefactoredXpr> Base; |
| |
| EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr) |
| : Base( xpr.lhs().template leftCols<helper::Dim>(xpr.rhs().nestedExpression().rows()) .lazyProduct( xpr.rhs().nestedExpression() ) |
| + ConstantBlock(xpr.lhs().col(xpr.lhs().cols()-1),1,xpr.rhs().cols()) ) |
| {} |
| }; |
| |
| template<typename Scalar, int Dim, int Mode,int Options, typename RhsArg, int ProductTag> |
| struct generic_product_impl<Transform<Scalar,Dim,Mode,Options>, Homogeneous<RhsArg,Vertical>, DenseShape, HomogeneousShape, ProductTag> |
| { |
| typedef Transform<Scalar,Dim,Mode,Options> TransformType; |
| template<typename Dest> |
| EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const TransformType& lhs, const Homogeneous<RhsArg,Vertical>& rhs) |
| { |
| homogeneous_left_product_impl<Homogeneous<RhsArg,Vertical>, TransformType>(lhs, rhs.nestedExpression()).evalTo(dst); |
| } |
| }; |
| |
| template<typename ExpressionType, int Side, bool Transposed> |
| struct permutation_matrix_product<ExpressionType, Side, Transposed, HomogeneousShape> |
| : public permutation_matrix_product<ExpressionType, Side, Transposed, DenseShape> |
| {}; |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_HOMOGENEOUS_H |