| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com> |
| // Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr> |
| // Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr> |
| // Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_SVDBASE_H |
| #define EIGEN_SVDBASE_H |
| |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| template<typename Derived> struct traits<SVDBase<Derived> > |
| : traits<Derived> |
| { |
| typedef MatrixXpr XprKind; |
| typedef SolverStorage StorageKind; |
| typedef int StorageIndex; |
| enum { Flags = 0 }; |
| }; |
| } |
| |
| /** \ingroup SVD_Module |
| * |
| * |
| * \class SVDBase |
| * |
| * \brief Base class of SVD algorithms |
| * |
| * \tparam Derived the type of the actual SVD decomposition |
| * |
| * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product |
| * \f[ A = U S V^* \f] |
| * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal; |
| * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left |
| * and right \em singular \em vectors of \a A respectively. |
| * |
| * Singular values are always sorted in decreasing order. |
| * |
| * |
| * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the |
| * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual |
| * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix, |
| * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving. |
| * |
| * The status of the computation can be retrieved using the \a info() method. Unless \a info() returns \a Success, the results should be not |
| * considered well defined. |
| * |
| * If the input matrix has inf or nan coefficients, the result of the computation is undefined, and \a info() will return \a InvalidInput, but the computation is guaranteed to |
| * terminate in finite (and reasonable) time. |
| * \sa class BDCSVD, class JacobiSVD |
| */ |
| template<typename Derived> class SVDBase |
| : public SolverBase<SVDBase<Derived> > |
| { |
| public: |
| |
| template<typename Derived_> |
| friend struct internal::solve_assertion; |
| |
| typedef typename internal::traits<Derived>::MatrixType MatrixType; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
| typedef typename Eigen::internal::traits<SVDBase>::StorageIndex StorageIndex; |
| typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 |
| enum { |
| RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime), |
| MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, |
| MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime), |
| MatrixOptions = MatrixType::Options |
| }; |
| |
| typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixUType; |
| typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime, MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime> MatrixVType; |
| typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType; |
| |
| Derived& derived() { return *static_cast<Derived*>(this); } |
| const Derived& derived() const { return *static_cast<const Derived*>(this); } |
| |
| /** \returns the \a U matrix. |
| * |
| * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, |
| * the U matrix is n-by-n if you asked for \link Eigen::ComputeFullU ComputeFullU \endlink, and is n-by-m if you asked for \link Eigen::ComputeThinU ComputeThinU \endlink. |
| * |
| * The \a m first columns of \a U are the left singular vectors of the matrix being decomposed. |
| * |
| * This method asserts that you asked for \a U to be computed. |
| */ |
| const MatrixUType& matrixU() const |
| { |
| _check_compute_assertions(); |
| eigen_assert(computeU() && "This SVD decomposition didn't compute U. Did you ask for it?"); |
| return m_matrixU; |
| } |
| |
| /** \returns the \a V matrix. |
| * |
| * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, |
| * the V matrix is p-by-p if you asked for \link Eigen::ComputeFullV ComputeFullV \endlink, and is p-by-m if you asked for \link Eigen::ComputeThinV ComputeThinV \endlink. |
| * |
| * The \a m first columns of \a V are the right singular vectors of the matrix being decomposed. |
| * |
| * This method asserts that you asked for \a V to be computed. |
| */ |
| const MatrixVType& matrixV() const |
| { |
| _check_compute_assertions(); |
| eigen_assert(computeV() && "This SVD decomposition didn't compute V. Did you ask for it?"); |
| return m_matrixV; |
| } |
| |
| /** \returns the vector of singular values. |
| * |
| * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, the |
| * returned vector has size \a m. Singular values are always sorted in decreasing order. |
| */ |
| const SingularValuesType& singularValues() const |
| { |
| _check_compute_assertions(); |
| return m_singularValues; |
| } |
| |
| /** \returns the number of singular values that are not exactly 0 */ |
| Index nonzeroSingularValues() const |
| { |
| _check_compute_assertions(); |
| return m_nonzeroSingularValues; |
| } |
| |
| /** \returns the rank of the matrix of which \c *this is the SVD. |
| * |
| * \note This method has to determine which singular values should be considered nonzero. |
| * For that, it uses the threshold value that you can control by calling |
| * setThreshold(const RealScalar&). |
| */ |
| inline Index rank() const |
| { |
| using std::abs; |
| _check_compute_assertions(); |
| if(m_singularValues.size()==0) return 0; |
| RealScalar premultiplied_threshold = numext::maxi<RealScalar>(m_singularValues.coeff(0) * threshold(), (std::numeric_limits<RealScalar>::min)()); |
| Index i = m_nonzeroSingularValues-1; |
| while(i>=0 && m_singularValues.coeff(i) < premultiplied_threshold) --i; |
| return i+1; |
| } |
| |
| /** Allows to prescribe a threshold to be used by certain methods, such as rank() and solve(), |
| * which need to determine when singular values are to be considered nonzero. |
| * This is not used for the SVD decomposition itself. |
| * |
| * When it needs to get the threshold value, Eigen calls threshold(). |
| * The default is \c NumTraits<Scalar>::epsilon() |
| * |
| * \param threshold The new value to use as the threshold. |
| * |
| * A singular value will be considered nonzero if its value is strictly greater than |
| * \f$ \vert singular value \vert \leqslant threshold \times \vert max singular value \vert \f$. |
| * |
| * If you want to come back to the default behavior, call setThreshold(Default_t) |
| */ |
| Derived& setThreshold(const RealScalar& threshold) |
| { |
| m_usePrescribedThreshold = true; |
| m_prescribedThreshold = threshold; |
| return derived(); |
| } |
| |
| /** Allows to come back to the default behavior, letting Eigen use its default formula for |
| * determining the threshold. |
| * |
| * You should pass the special object Eigen::Default as parameter here. |
| * \code svd.setThreshold(Eigen::Default); \endcode |
| * |
| * See the documentation of setThreshold(const RealScalar&). |
| */ |
| Derived& setThreshold(Default_t) |
| { |
| m_usePrescribedThreshold = false; |
| return derived(); |
| } |
| |
| /** Returns the threshold that will be used by certain methods such as rank(). |
| * |
| * See the documentation of setThreshold(const RealScalar&). |
| */ |
| RealScalar threshold() const |
| { |
| eigen_assert(m_isInitialized || m_usePrescribedThreshold); |
| // this temporary is needed to workaround a MSVC issue |
| Index diagSize = (std::max<Index>)(1,m_diagSize); |
| return m_usePrescribedThreshold ? m_prescribedThreshold |
| : RealScalar(diagSize)*NumTraits<Scalar>::epsilon(); |
| } |
| |
| /** \returns true if \a U (full or thin) is asked for in this SVD decomposition */ |
| inline bool computeU() const { return m_computeFullU || m_computeThinU; } |
| /** \returns true if \a V (full or thin) is asked for in this SVD decomposition */ |
| inline bool computeV() const { return m_computeFullV || m_computeThinV; } |
| |
| inline Index rows() const { return m_rows; } |
| inline Index cols() const { return m_cols; } |
| |
| #ifdef EIGEN_PARSED_BY_DOXYGEN |
| /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A. |
| * |
| * \param b the right-hand-side of the equation to solve. |
| * |
| * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V. |
| * |
| * \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving. |
| * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$. |
| */ |
| template<typename Rhs> |
| inline const Solve<Derived, Rhs> |
| solve(const MatrixBase<Rhs>& b) const; |
| #endif |
| |
| |
| /** \brief Reports whether previous computation was successful. |
| * |
| * \returns \c Success if computation was successful. |
| */ |
| EIGEN_DEVICE_FUNC |
| ComputationInfo info() const |
| { |
| eigen_assert(m_isInitialized && "SVD is not initialized."); |
| return m_info; |
| } |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| template<typename RhsType, typename DstType> |
| void _solve_impl(const RhsType &rhs, DstType &dst) const; |
| |
| template<bool Conjugate, typename RhsType, typename DstType> |
| void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const; |
| #endif |
| |
| protected: |
| |
| EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) |
| |
| void _check_compute_assertions() const { |
| eigen_assert(m_isInitialized && "SVD is not initialized."); |
| } |
| |
| template<bool Transpose_, typename Rhs> |
| void _check_solve_assertion(const Rhs& b) const { |
| EIGEN_ONLY_USED_FOR_DEBUG(b); |
| _check_compute_assertions(); |
| eigen_assert(computeU() && computeV() && "SVDBase::solve(): Both unitaries U and V are required to be computed (thin unitaries suffice)."); |
| eigen_assert((Transpose_?cols():rows())==b.rows() && "SVDBase::solve(): invalid number of rows of the right hand side matrix b"); |
| } |
| |
| // return true if already allocated |
| bool allocate(Index rows, Index cols, unsigned int computationOptions) ; |
| |
| MatrixUType m_matrixU; |
| MatrixVType m_matrixV; |
| SingularValuesType m_singularValues; |
| ComputationInfo m_info; |
| bool m_isInitialized, m_isAllocated, m_usePrescribedThreshold; |
| bool m_computeFullU, m_computeThinU; |
| bool m_computeFullV, m_computeThinV; |
| unsigned int m_computationOptions; |
| Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize; |
| RealScalar m_prescribedThreshold; |
| |
| /** \brief Default Constructor. |
| * |
| * Default constructor of SVDBase |
| */ |
| SVDBase() |
| : m_info(Success), |
| m_isInitialized(false), |
| m_isAllocated(false), |
| m_usePrescribedThreshold(false), |
| m_computeFullU(false), |
| m_computeThinU(false), |
| m_computeFullV(false), |
| m_computeThinV(false), |
| m_computationOptions(0), |
| m_rows(-1), m_cols(-1), m_diagSize(0) |
| { } |
| |
| |
| }; |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| template<typename Derived> |
| template<typename RhsType, typename DstType> |
| void SVDBase<Derived>::_solve_impl(const RhsType &rhs, DstType &dst) const |
| { |
| // A = U S V^* |
| // So A^{-1} = V S^{-1} U^* |
| |
| Matrix<typename RhsType::Scalar, Dynamic, RhsType::ColsAtCompileTime, 0, MatrixType::MaxRowsAtCompileTime, RhsType::MaxColsAtCompileTime> tmp; |
| Index l_rank = rank(); |
| tmp.noalias() = m_matrixU.leftCols(l_rank).adjoint() * rhs; |
| tmp = m_singularValues.head(l_rank).asDiagonal().inverse() * tmp; |
| dst = m_matrixV.leftCols(l_rank) * tmp; |
| } |
| |
| template<typename Derived> |
| template<bool Conjugate, typename RhsType, typename DstType> |
| void SVDBase<Derived>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const |
| { |
| // A = U S V^* |
| // So A^{-*} = U S^{-1} V^* |
| // And A^{-T} = U_conj S^{-1} V^T |
| Matrix<typename RhsType::Scalar, Dynamic, RhsType::ColsAtCompileTime, 0, MatrixType::MaxRowsAtCompileTime, RhsType::MaxColsAtCompileTime> tmp; |
| Index l_rank = rank(); |
| |
| tmp.noalias() = m_matrixV.leftCols(l_rank).transpose().template conjugateIf<Conjugate>() * rhs; |
| tmp = m_singularValues.head(l_rank).asDiagonal().inverse() * tmp; |
| dst = m_matrixU.template conjugateIf<!Conjugate>().leftCols(l_rank) * tmp; |
| } |
| #endif |
| |
| template<typename MatrixType> |
| bool SVDBase<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions) |
| { |
| eigen_assert(rows >= 0 && cols >= 0); |
| |
| if (m_isAllocated && |
| rows == m_rows && |
| cols == m_cols && |
| computationOptions == m_computationOptions) |
| { |
| return true; |
| } |
| |
| m_rows = rows; |
| m_cols = cols; |
| m_info = Success; |
| m_isInitialized = false; |
| m_isAllocated = true; |
| m_computationOptions = computationOptions; |
| m_computeFullU = (computationOptions & ComputeFullU) != 0; |
| m_computeThinU = (computationOptions & ComputeThinU) != 0; |
| m_computeFullV = (computationOptions & ComputeFullV) != 0; |
| m_computeThinV = (computationOptions & ComputeThinV) != 0; |
| eigen_assert(!(m_computeFullU && m_computeThinU) && "SVDBase: you can't ask for both full and thin U"); |
| eigen_assert(!(m_computeFullV && m_computeThinV) && "SVDBase: you can't ask for both full and thin V"); |
| eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) && |
| "SVDBase: thin U and V are only available when your matrix has a dynamic number of columns."); |
| |
| m_diagSize = (std::min)(m_rows, m_cols); |
| m_singularValues.resize(m_diagSize); |
| if(RowsAtCompileTime==Dynamic) |
| m_matrixU.resize(m_rows, m_computeFullU ? m_rows : m_computeThinU ? m_diagSize : 0); |
| if(ColsAtCompileTime==Dynamic) |
| m_matrixV.resize(m_cols, m_computeFullV ? m_cols : m_computeThinV ? m_diagSize : 0); |
| |
| return false; |
| } |
| |
| }// end namespace |
| |
| #endif // EIGEN_SVDBASE_H |