blob: 0d59a38a6dfbb76e388c73cf807ab16eb9cc7864 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSELU_SUPERNODAL_MATRIX_H
#define EIGEN_SPARSELU_SUPERNODAL_MATRIX_H
#include "./InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
/** \ingroup SparseLU_Module
* \brief a class to manipulate the L supernodal factor from the SparseLU factorization
*
* This class contain the data to easily store
* and manipulate the supernodes during the factorization and solution phase of Sparse LU.
* Only the lower triangular matrix has supernodes.
*
* NOTE : This class corresponds to the SCformat structure in SuperLU
*
*/
/* TODO
* InnerIterator as for sparsematrix
* SuperInnerIterator to iterate through all supernodes
* Function for triangular solve
*/
template <typename Scalar_, typename StorageIndex_>
class MappedSuperNodalMatrix
{
public:
typedef Scalar_ Scalar;
typedef StorageIndex_ StorageIndex;
typedef Matrix<StorageIndex,Dynamic,1> IndexVector;
typedef Matrix<Scalar,Dynamic,1> ScalarVector;
public:
MappedSuperNodalMatrix()
{
}
MappedSuperNodalMatrix(Index m, Index n, ScalarVector& nzval, IndexVector& nzval_colptr, IndexVector& rowind,
IndexVector& rowind_colptr, IndexVector& col_to_sup, IndexVector& sup_to_col )
{
setInfos(m, n, nzval, nzval_colptr, rowind, rowind_colptr, col_to_sup, sup_to_col);
}
~MappedSuperNodalMatrix()
{
}
/**
* Set appropriate pointers for the lower triangular supernodal matrix
* These infos are available at the end of the numerical factorization
* FIXME This class will be modified such that it can be use in the course
* of the factorization.
*/
void setInfos(Index m, Index n, ScalarVector& nzval, IndexVector& nzval_colptr, IndexVector& rowind,
IndexVector& rowind_colptr, IndexVector& col_to_sup, IndexVector& sup_to_col )
{
m_row = m;
m_col = n;
m_nzval = nzval.data();
m_nzval_colptr = nzval_colptr.data();
m_rowind = rowind.data();
m_rowind_colptr = rowind_colptr.data();
m_nsuper = col_to_sup(n);
m_col_to_sup = col_to_sup.data();
m_sup_to_col = sup_to_col.data();
}
/**
* Number of rows
*/
Index rows() const { return m_row; }
/**
* Number of columns
*/
Index cols() const { return m_col; }
/**
* Return the array of nonzero values packed by column
*
* The size is nnz
*/
Scalar* valuePtr() { return m_nzval; }
const Scalar* valuePtr() const
{
return m_nzval;
}
/**
* Return the pointers to the beginning of each column in \ref valuePtr()
*/
StorageIndex* colIndexPtr()
{
return m_nzval_colptr;
}
const StorageIndex* colIndexPtr() const
{
return m_nzval_colptr;
}
/**
* Return the array of compressed row indices of all supernodes
*/
StorageIndex* rowIndex() { return m_rowind; }
const StorageIndex* rowIndex() const
{
return m_rowind;
}
/**
* Return the location in \em rowvaluePtr() which starts each column
*/
StorageIndex* rowIndexPtr() { return m_rowind_colptr; }
const StorageIndex* rowIndexPtr() const
{
return m_rowind_colptr;
}
/**
* Return the array of column-to-supernode mapping
*/
StorageIndex* colToSup() { return m_col_to_sup; }
const StorageIndex* colToSup() const
{
return m_col_to_sup;
}
/**
* Return the array of supernode-to-column mapping
*/
StorageIndex* supToCol() { return m_sup_to_col; }
const StorageIndex* supToCol() const
{
return m_sup_to_col;
}
/**
* Return the number of supernodes
*/
Index nsuper() const
{
return m_nsuper;
}
class InnerIterator;
template<typename Dest>
void solveInPlace( MatrixBase<Dest>&X) const;
template<bool Conjugate, typename Dest>
void solveTransposedInPlace( MatrixBase<Dest>&X) const;
protected:
Index m_row; // Number of rows
Index m_col; // Number of columns
Index m_nsuper; // Number of supernodes
Scalar* m_nzval; //array of nonzero values packed by column
StorageIndex* m_nzval_colptr; //nzval_colptr[j] Stores the location in nzval[] which starts column j
StorageIndex* m_rowind; // Array of compressed row indices of rectangular supernodes
StorageIndex* m_rowind_colptr; //rowind_colptr[j] stores the location in rowind[] which starts column j
StorageIndex* m_col_to_sup; // col_to_sup[j] is the supernode number to which column j belongs
StorageIndex* m_sup_to_col; //sup_to_col[s] points to the starting column of the s-th supernode
private :
};
/**
* \brief InnerIterator class to iterate over nonzero values of the current column in the supernodal matrix L
*
*/
template<typename Scalar, typename StorageIndex>
class MappedSuperNodalMatrix<Scalar,StorageIndex>::InnerIterator
{
public:
InnerIterator(const MappedSuperNodalMatrix& mat, Index outer)
: m_matrix(mat),
m_outer(outer),
m_supno(mat.colToSup()[outer]),
m_idval(mat.colIndexPtr()[outer]),
m_startidval(m_idval),
m_endidval(mat.colIndexPtr()[outer+1]),
m_idrow(mat.rowIndexPtr()[mat.supToCol()[mat.colToSup()[outer]]]),
m_endidrow(mat.rowIndexPtr()[mat.supToCol()[mat.colToSup()[outer]]+1])
{}
inline InnerIterator& operator++()
{
m_idval++;
m_idrow++;
return *this;
}
inline Scalar value() const { return m_matrix.valuePtr()[m_idval]; }
inline Scalar& valueRef() { return const_cast<Scalar&>(m_matrix.valuePtr()[m_idval]); }
inline Index index() const { return m_matrix.rowIndex()[m_idrow]; }
inline Index row() const { return index(); }
inline Index col() const { return m_outer; }
inline Index supIndex() const { return m_supno; }
inline operator bool() const
{
return ( (m_idval < m_endidval) && (m_idval >= m_startidval)
&& (m_idrow < m_endidrow) );
}
protected:
const MappedSuperNodalMatrix& m_matrix; // Supernodal lower triangular matrix
const Index m_outer; // Current column
const Index m_supno; // Current SuperNode number
Index m_idval; // Index to browse the values in the current column
const Index m_startidval; // Start of the column value
const Index m_endidval; // End of the column value
Index m_idrow; // Index to browse the row indices
Index m_endidrow; // End index of row indices of the current column
};
/**
* \brief Solve with the supernode triangular matrix
*
*/
template<typename Scalar, typename Index_>
template<typename Dest>
void MappedSuperNodalMatrix<Scalar,Index_>::solveInPlace( MatrixBase<Dest>&X) const
{
/* Explicit type conversion as the Index type of MatrixBase<Dest> may be wider than Index */
// eigen_assert(X.rows() <= NumTraits<Index>::highest());
// eigen_assert(X.cols() <= NumTraits<Index>::highest());
Index n = int(X.rows());
Index nrhs = Index(X.cols());
const Scalar * Lval = valuePtr(); // Nonzero values
Matrix<Scalar,Dynamic,Dest::ColsAtCompileTime, ColMajor> work(n, nrhs); // working vector
work.setZero();
for (Index k = 0; k <= nsuper(); k ++)
{
Index fsupc = supToCol()[k]; // First column of the current supernode
Index istart = rowIndexPtr()[fsupc]; // Pointer index to the subscript of the current column
Index nsupr = rowIndexPtr()[fsupc+1] - istart; // Number of rows in the current supernode
Index nsupc = supToCol()[k+1] - fsupc; // Number of columns in the current supernode
Index nrow = nsupr - nsupc; // Number of rows in the non-diagonal part of the supernode
Index irow; //Current index row
if (nsupc == 1 )
{
for (Index j = 0; j < nrhs; j++)
{
InnerIterator it(*this, fsupc);
++it; // Skip the diagonal element
for (; it; ++it)
{
irow = it.row();
X(irow, j) -= X(fsupc, j) * it.value();
}
}
}
else
{
// The supernode has more than one column
Index luptr = colIndexPtr()[fsupc];
Index lda = colIndexPtr()[fsupc+1] - luptr;
// Triangular solve
Map<const Matrix<Scalar,Dynamic,Dynamic, ColMajor>, 0, OuterStride<> > A( &(Lval[luptr]), nsupc, nsupc, OuterStride<>(lda) );
Map< Matrix<Scalar,Dynamic,Dest::ColsAtCompileTime, ColMajor>, 0, OuterStride<> > U (&(X(fsupc,0)), nsupc, nrhs, OuterStride<>(n) );
U = A.template triangularView<UnitLower>().solve(U);
// Matrix-vector product
new (&A) Map<const Matrix<Scalar,Dynamic,Dynamic, ColMajor>, 0, OuterStride<> > ( &(Lval[luptr+nsupc]), nrow, nsupc, OuterStride<>(lda) );
work.topRows(nrow).noalias() = A * U;
//Begin Scatter
for (Index j = 0; j < nrhs; j++)
{
Index iptr = istart + nsupc;
for (Index i = 0; i < nrow; i++)
{
irow = rowIndex()[iptr];
X(irow, j) -= work(i, j); // Scatter operation
work(i, j) = Scalar(0);
iptr++;
}
}
}
}
}
template<typename Scalar, typename Index_>
template<bool Conjugate, typename Dest>
void MappedSuperNodalMatrix<Scalar,Index_>::solveTransposedInPlace( MatrixBase<Dest>&X) const
{
using numext::conj;
Index n = int(X.rows());
Index nrhs = Index(X.cols());
const Scalar * Lval = valuePtr(); // Nonzero values
Matrix<Scalar,Dynamic,Dest::ColsAtCompileTime, ColMajor> work(n, nrhs); // working vector
work.setZero();
for (Index k = nsuper(); k >= 0; k--)
{
Index fsupc = supToCol()[k]; // First column of the current supernode
Index istart = rowIndexPtr()[fsupc]; // Pointer index to the subscript of the current column
Index nsupr = rowIndexPtr()[fsupc+1] - istart; // Number of rows in the current supernode
Index nsupc = supToCol()[k+1] - fsupc; // Number of columns in the current supernode
Index nrow = nsupr - nsupc; // Number of rows in the non-diagonal part of the supernode
Index irow; //Current index row
if (nsupc == 1 )
{
for (Index j = 0; j < nrhs; j++)
{
InnerIterator it(*this, fsupc);
++it; // Skip the diagonal element
for (; it; ++it)
{
irow = it.row();
X(fsupc,j) -= X(irow, j) * (Conjugate?conj(it.value()):it.value());
}
}
}
else
{
// The supernode has more than one column
Index luptr = colIndexPtr()[fsupc];
Index lda = colIndexPtr()[fsupc+1] - luptr;
//Begin Gather
for (Index j = 0; j < nrhs; j++)
{
Index iptr = istart + nsupc;
for (Index i = 0; i < nrow; i++)
{
irow = rowIndex()[iptr];
work.topRows(nrow)(i,j)= X(irow,j); // Gather operation
iptr++;
}
}
// Matrix-vector product with transposed submatrix
Map<const Matrix<Scalar,Dynamic,Dynamic, ColMajor>, 0, OuterStride<> > A( &(Lval[luptr+nsupc]), nrow, nsupc, OuterStride<>(lda) );
Map< Matrix<Scalar,Dynamic,Dest::ColsAtCompileTime, ColMajor>, 0, OuterStride<> > U (&(X(fsupc,0)), nsupc, nrhs, OuterStride<>(n) );
if(Conjugate)
U = U - A.adjoint() * work.topRows(nrow);
else
U = U - A.transpose() * work.topRows(nrow);
// Triangular solve (of transposed diagonal block)
new (&A) Map<const Matrix<Scalar,Dynamic,Dynamic, ColMajor>, 0, OuterStride<> > ( &(Lval[luptr]), nsupc, nsupc, OuterStride<>(lda) );
if(Conjugate)
U = A.adjoint().template triangularView<UnitUpper>().solve(U);
else
U = A.transpose().template triangularView<UnitUpper>().solve(U);
}
}
}
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_SPARSELU_MATRIX_H