| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #define EIGEN_TEST_NO_LONGDOUBLE | 
 | #define EIGEN_TEST_NO_COMPLEX | 
 |  | 
 | #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int | 
 | #define EIGEN_USE_GPU | 
 |  | 
 | #include "main.h" | 
 | #include <unsupported/Eigen/CXX11/Tensor> | 
 |  | 
 | #include <Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h> | 
 |  | 
 | using Eigen::Tensor; | 
 | typedef Tensor<float, 1>::DimensionPair DimPair; | 
 |  | 
 | template<int DataLayout> | 
 | void test_gpu_cumsum(int m_size, int k_size, int n_size) | 
 | { | 
 |   std::cout << "Testing for (" << m_size << "," << k_size << "," << n_size << ")" << std::endl; | 
 |   Tensor<float, 3, DataLayout> t_input(m_size, k_size, n_size); | 
 |   Tensor<float, 3, DataLayout> t_result(m_size, k_size, n_size); | 
 |   Tensor<float, 3, DataLayout> t_result_gpu(m_size, k_size, n_size); | 
 |  | 
 |   t_input.setRandom(); | 
 |  | 
 |   std::size_t t_input_bytes = t_input.size()  * sizeof(float); | 
 |   std::size_t t_result_bytes = t_result.size() * sizeof(float); | 
 |  | 
 |   float* d_t_input; | 
 |   float* d_t_result; | 
 |  | 
 |   gpuMalloc((void**)(&d_t_input), t_input_bytes); | 
 |   gpuMalloc((void**)(&d_t_result), t_result_bytes); | 
 |  | 
 |   gpuMemcpy(d_t_input, t_input.data(), t_input_bytes, gpuMemcpyHostToDevice); | 
 |  | 
 |   Eigen::GpuStreamDevice stream; | 
 |   Eigen::GpuDevice gpu_device(&stream); | 
 |  | 
 |   Eigen::TensorMap<Eigen::Tensor<float, 3, DataLayout> > | 
 |       gpu_t_input(d_t_input, Eigen::array<int, 3>(m_size, k_size, n_size)); | 
 |   Eigen::TensorMap<Eigen::Tensor<float, 3, DataLayout> > | 
 |       gpu_t_result(d_t_result, Eigen::array<int, 3>(m_size, k_size, n_size)); | 
 |  | 
 |   gpu_t_result.device(gpu_device) = gpu_t_input.cumsum(1); | 
 |   t_result = t_input.cumsum(1); | 
 |  | 
 |   gpuMemcpy(t_result_gpu.data(), d_t_result, t_result_bytes, gpuMemcpyDeviceToHost); | 
 |   for (DenseIndex i = 0; i < t_result.size(); i++) { | 
 |     if (fabs(t_result(i) - t_result_gpu(i)) < 1e-4f) { | 
 |       continue; | 
 |     } | 
 |     if (Eigen::internal::isApprox(t_result(i), t_result_gpu(i), 1e-4f)) { | 
 |       continue; | 
 |     } | 
 |     std::cout << "mismatch detected at index " << i << ": " << t_result(i) | 
 |               << " vs " <<  t_result_gpu(i) << std::endl; | 
 |     assert(false); | 
 |   } | 
 |  | 
 |   gpuFree((void*)d_t_input); | 
 |   gpuFree((void*)d_t_result); | 
 | } | 
 |  | 
 |  | 
 | EIGEN_DECLARE_TEST(cxx11_tensor_scan_gpu) | 
 | { | 
 |   CALL_SUBTEST_1(test_gpu_cumsum<ColMajor>(128, 128, 128)); | 
 |   CALL_SUBTEST_2(test_gpu_cumsum<RowMajor>(128, 128, 128)); | 
 | } |