blob: 8d8dc2fed41c6ad30f744120bdef7ecdfd853b7d [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2011-2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ASSIGN_EVALUATOR_H
#define EIGEN_ASSIGN_EVALUATOR_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
// This implementation is based on Assign.h
namespace internal {
/***************************************************************************
* Part 1 : the logic deciding a strategy for traversal and unrolling *
***************************************************************************/
// copy_using_evaluator_traits is based on assign_traits
template <typename DstEvaluator, typename SrcEvaluator, typename AssignFunc, int MaxPacketSize = -1>
struct copy_using_evaluator_traits
{
typedef typename DstEvaluator::XprType Dst;
typedef typename Dst::Scalar DstScalar;
enum {
DstFlags = DstEvaluator::Flags,
SrcFlags = SrcEvaluator::Flags
};
public:
enum {
DstAlignment = DstEvaluator::Alignment,
SrcAlignment = SrcEvaluator::Alignment,
DstHasDirectAccess = (DstFlags & DirectAccessBit) == DirectAccessBit,
JointAlignment = plain_enum_min(DstAlignment, SrcAlignment)
};
private:
enum {
InnerSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::SizeAtCompileTime)
: int(DstFlags)&RowMajorBit ? int(Dst::ColsAtCompileTime)
: int(Dst::RowsAtCompileTime),
InnerMaxSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::MaxSizeAtCompileTime)
: int(DstFlags)&RowMajorBit ? int(Dst::MaxColsAtCompileTime)
: int(Dst::MaxRowsAtCompileTime),
RestrictedInnerSize = min_size_prefer_fixed(InnerSize, MaxPacketSize),
RestrictedLinearSize = min_size_prefer_fixed(Dst::SizeAtCompileTime, MaxPacketSize),
OuterStride = int(outer_stride_at_compile_time<Dst>::ret),
MaxSizeAtCompileTime = Dst::SizeAtCompileTime
};
// TODO distinguish between linear traversal and inner-traversals
typedef typename find_best_packet<DstScalar,RestrictedLinearSize>::type LinearPacketType;
typedef typename find_best_packet<DstScalar,RestrictedInnerSize>::type InnerPacketType;
enum {
LinearPacketSize = unpacket_traits<LinearPacketType>::size,
InnerPacketSize = unpacket_traits<InnerPacketType>::size
};
public:
enum {
LinearRequiredAlignment = unpacket_traits<LinearPacketType>::alignment,
InnerRequiredAlignment = unpacket_traits<InnerPacketType>::alignment
};
private:
enum {
DstIsRowMajor = DstFlags&RowMajorBit,
SrcIsRowMajor = SrcFlags&RowMajorBit,
StorageOrdersAgree = (int(DstIsRowMajor) == int(SrcIsRowMajor)),
MightVectorize = bool(StorageOrdersAgree)
&& (int(DstFlags) & int(SrcFlags) & ActualPacketAccessBit)
&& bool(functor_traits<AssignFunc>::PacketAccess),
MayInnerVectorize = MightVectorize
&& int(InnerSize)!=Dynamic && int(InnerSize)%int(InnerPacketSize)==0
&& int(OuterStride)!=Dynamic && int(OuterStride)%int(InnerPacketSize)==0
&& (EIGEN_UNALIGNED_VECTORIZE || int(JointAlignment)>=int(InnerRequiredAlignment)),
MayLinearize = bool(StorageOrdersAgree) && (int(DstFlags) & int(SrcFlags) & LinearAccessBit),
MayLinearVectorize = bool(MightVectorize) && bool(MayLinearize) && bool(DstHasDirectAccess)
&& (EIGEN_UNALIGNED_VECTORIZE || (int(DstAlignment)>=int(LinearRequiredAlignment)) || MaxSizeAtCompileTime == Dynamic),
/* If the destination isn't aligned, we have to do runtime checks and we don't unroll,
so it's only good for large enough sizes. */
MaySliceVectorize = bool(MightVectorize) && bool(DstHasDirectAccess)
&& (int(InnerMaxSize)==Dynamic || int(InnerMaxSize)>=(EIGEN_UNALIGNED_VECTORIZE?InnerPacketSize:(3*InnerPacketSize)))
/* slice vectorization can be slow, so we only want it if the slices are big, which is
indicated by InnerMaxSize rather than InnerSize, think of the case of a dynamic block
in a fixed-size matrix
However, with EIGEN_UNALIGNED_VECTORIZE and unrolling, slice vectorization is still worth it */
};
public:
enum {
Traversal = int(Dst::SizeAtCompileTime) == 0 ? int(AllAtOnceTraversal) // If compile-size is zero, traversing will fail at compile-time.
: (int(MayLinearVectorize) && (LinearPacketSize>InnerPacketSize)) ? int(LinearVectorizedTraversal)
: int(MayInnerVectorize) ? int(InnerVectorizedTraversal)
: int(MayLinearVectorize) ? int(LinearVectorizedTraversal)
: int(MaySliceVectorize) ? int(SliceVectorizedTraversal)
: int(MayLinearize) ? int(LinearTraversal)
: int(DefaultTraversal),
Vectorized = int(Traversal) == InnerVectorizedTraversal
|| int(Traversal) == LinearVectorizedTraversal
|| int(Traversal) == SliceVectorizedTraversal
};
typedef std::conditional_t<int(Traversal)==LinearVectorizedTraversal, LinearPacketType, InnerPacketType> PacketType;
private:
enum {
ActualPacketSize = int(Traversal)==LinearVectorizedTraversal ? LinearPacketSize
: Vectorized ? InnerPacketSize
: 1,
UnrollingLimit = EIGEN_UNROLLING_LIMIT * ActualPacketSize,
MayUnrollCompletely = int(Dst::SizeAtCompileTime) != Dynamic
&& int(Dst::SizeAtCompileTime) * (int(DstEvaluator::CoeffReadCost)+int(SrcEvaluator::CoeffReadCost)) <= int(UnrollingLimit),
MayUnrollInner = int(InnerSize) != Dynamic
&& int(InnerSize) * (int(DstEvaluator::CoeffReadCost)+int(SrcEvaluator::CoeffReadCost)) <= int(UnrollingLimit)
};
public:
enum {
Unrolling = (int(Traversal) == int(InnerVectorizedTraversal) || int(Traversal) == int(DefaultTraversal))
? (
int(MayUnrollCompletely) ? int(CompleteUnrolling)
: int(MayUnrollInner) ? int(InnerUnrolling)
: int(NoUnrolling)
)
: int(Traversal) == int(LinearVectorizedTraversal)
? ( bool(MayUnrollCompletely) && ( EIGEN_UNALIGNED_VECTORIZE || (int(DstAlignment)>=int(LinearRequiredAlignment)))
? int(CompleteUnrolling)
: int(NoUnrolling) )
: int(Traversal) == int(LinearTraversal)
? ( bool(MayUnrollCompletely) ? int(CompleteUnrolling)
: int(NoUnrolling) )
#if EIGEN_UNALIGNED_VECTORIZE
: int(Traversal) == int(SliceVectorizedTraversal)
? ( bool(MayUnrollInner) ? int(InnerUnrolling)
: int(NoUnrolling) )
#endif
: int(NoUnrolling)
};
#ifdef EIGEN_DEBUG_ASSIGN
static void debug()
{
std::cerr << "DstXpr: " << typeid(typename DstEvaluator::XprType).name() << std::endl;
std::cerr << "SrcXpr: " << typeid(typename SrcEvaluator::XprType).name() << std::endl;
std::cerr.setf(std::ios::hex, std::ios::basefield);
std::cerr << "DstFlags" << " = " << DstFlags << " (" << demangle_flags(DstFlags) << " )" << std::endl;
std::cerr << "SrcFlags" << " = " << SrcFlags << " (" << demangle_flags(SrcFlags) << " )" << std::endl;
std::cerr.unsetf(std::ios::hex);
EIGEN_DEBUG_VAR(DstAlignment)
EIGEN_DEBUG_VAR(SrcAlignment)
EIGEN_DEBUG_VAR(LinearRequiredAlignment)
EIGEN_DEBUG_VAR(InnerRequiredAlignment)
EIGEN_DEBUG_VAR(JointAlignment)
EIGEN_DEBUG_VAR(InnerSize)
EIGEN_DEBUG_VAR(InnerMaxSize)
EIGEN_DEBUG_VAR(LinearPacketSize)
EIGEN_DEBUG_VAR(InnerPacketSize)
EIGEN_DEBUG_VAR(ActualPacketSize)
EIGEN_DEBUG_VAR(StorageOrdersAgree)
EIGEN_DEBUG_VAR(MightVectorize)
EIGEN_DEBUG_VAR(MayLinearize)
EIGEN_DEBUG_VAR(MayInnerVectorize)
EIGEN_DEBUG_VAR(MayLinearVectorize)
EIGEN_DEBUG_VAR(MaySliceVectorize)
std::cerr << "Traversal" << " = " << Traversal << " (" << demangle_traversal(Traversal) << ")" << std::endl;
EIGEN_DEBUG_VAR(SrcEvaluator::CoeffReadCost)
EIGEN_DEBUG_VAR(DstEvaluator::CoeffReadCost)
EIGEN_DEBUG_VAR(Dst::SizeAtCompileTime)
EIGEN_DEBUG_VAR(UnrollingLimit)
EIGEN_DEBUG_VAR(MayUnrollCompletely)
EIGEN_DEBUG_VAR(MayUnrollInner)
std::cerr << "Unrolling" << " = " << Unrolling << " (" << demangle_unrolling(Unrolling) << ")" << std::endl;
std::cerr << std::endl;
}
#endif
};
/***************************************************************************
* Part 2 : meta-unrollers
***************************************************************************/
/************************
*** Default traversal ***
************************/
template<typename Kernel, int Index, int Stop>
struct copy_using_evaluator_DefaultTraversal_CompleteUnrolling
{
// FIXME: this is not very clean, perhaps this information should be provided by the kernel?
typedef typename Kernel::DstEvaluatorType DstEvaluatorType;
typedef typename DstEvaluatorType::XprType DstXprType;
enum {
outer = Index / DstXprType::InnerSizeAtCompileTime,
inner = Index % DstXprType::InnerSizeAtCompileTime
};
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
kernel.assignCoeffByOuterInner(outer, inner);
copy_using_evaluator_DefaultTraversal_CompleteUnrolling<Kernel, Index+1, Stop>::run(kernel);
}
};
template<typename Kernel, int Stop>
struct copy_using_evaluator_DefaultTraversal_CompleteUnrolling<Kernel, Stop, Stop>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel&) { }
};
template<typename Kernel, int Index_, int Stop>
struct copy_using_evaluator_DefaultTraversal_InnerUnrolling
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel, Index outer)
{
kernel.assignCoeffByOuterInner(outer, Index_);
copy_using_evaluator_DefaultTraversal_InnerUnrolling<Kernel, Index_+1, Stop>::run(kernel, outer);
}
};
template<typename Kernel, int Stop>
struct copy_using_evaluator_DefaultTraversal_InnerUnrolling<Kernel, Stop, Stop>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&, Index) { }
};
/***********************
*** Linear traversal ***
***********************/
template<typename Kernel, int Index, int Stop>
struct copy_using_evaluator_LinearTraversal_CompleteUnrolling
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel& kernel)
{
kernel.assignCoeff(Index);
copy_using_evaluator_LinearTraversal_CompleteUnrolling<Kernel, Index+1, Stop>::run(kernel);
}
};
template<typename Kernel, int Stop>
struct copy_using_evaluator_LinearTraversal_CompleteUnrolling<Kernel, Stop, Stop>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&) { }
};
/**************************
*** Inner vectorization ***
**************************/
template<typename Kernel, int Index, int Stop>
struct copy_using_evaluator_innervec_CompleteUnrolling
{
// FIXME: this is not very clean, perhaps this information should be provided by the kernel?
typedef typename Kernel::DstEvaluatorType DstEvaluatorType;
typedef typename DstEvaluatorType::XprType DstXprType;
typedef typename Kernel::PacketType PacketType;
enum {
outer = Index / DstXprType::InnerSizeAtCompileTime,
inner = Index % DstXprType::InnerSizeAtCompileTime,
SrcAlignment = Kernel::AssignmentTraits::SrcAlignment,
DstAlignment = Kernel::AssignmentTraits::DstAlignment
};
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
kernel.template assignPacketByOuterInner<DstAlignment, SrcAlignment, PacketType>(outer, inner);
enum { NextIndex = Index + unpacket_traits<PacketType>::size };
copy_using_evaluator_innervec_CompleteUnrolling<Kernel, NextIndex, Stop>::run(kernel);
}
};
template<typename Kernel, int Stop>
struct copy_using_evaluator_innervec_CompleteUnrolling<Kernel, Stop, Stop>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel&) { }
};
template<typename Kernel, int Index_, int Stop, int SrcAlignment, int DstAlignment>
struct copy_using_evaluator_innervec_InnerUnrolling
{
typedef typename Kernel::PacketType PacketType;
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel, Index outer)
{
kernel.template assignPacketByOuterInner<DstAlignment, SrcAlignment, PacketType>(outer, Index_);
enum { NextIndex = Index_ + unpacket_traits<PacketType>::size };
copy_using_evaluator_innervec_InnerUnrolling<Kernel, NextIndex, Stop, SrcAlignment, DstAlignment>::run(kernel, outer);
}
};
template<typename Kernel, int Stop, int SrcAlignment, int DstAlignment>
struct copy_using_evaluator_innervec_InnerUnrolling<Kernel, Stop, Stop, SrcAlignment, DstAlignment>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &, Index) { }
};
/***************************************************************************
* Part 3 : implementation of all cases
***************************************************************************/
// dense_assignment_loop is based on assign_impl
template<typename Kernel,
int Traversal = Kernel::AssignmentTraits::Traversal,
int Unrolling = Kernel::AssignmentTraits::Unrolling>
struct dense_assignment_loop;
/************************
***** Special Cases *****
************************/
// Zero-sized assignment is a no-op.
template<typename Kernel, int Unrolling>
struct dense_assignment_loop<Kernel, AllAtOnceTraversal, Unrolling>
{
EIGEN_DEVICE_FUNC static void EIGEN_STRONG_INLINE EIGEN_CONSTEXPR run(Kernel& /*kernel*/)
{
EIGEN_STATIC_ASSERT(int(Kernel::DstEvaluatorType::XprType::SizeAtCompileTime) == 0,
EIGEN_INTERNAL_ERROR_PLEASE_FILE_A_BUG_REPORT)
}
};
/************************
*** Default traversal ***
************************/
template<typename Kernel>
struct dense_assignment_loop<Kernel, DefaultTraversal, NoUnrolling>
{
EIGEN_DEVICE_FUNC static void EIGEN_STRONG_INLINE run(Kernel &kernel)
{
for(Index outer = 0; outer < kernel.outerSize(); ++outer) {
for(Index inner = 0; inner < kernel.innerSize(); ++inner) {
kernel.assignCoeffByOuterInner(outer, inner);
}
}
}
};
template<typename Kernel>
struct dense_assignment_loop<Kernel, DefaultTraversal, CompleteUnrolling>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
copy_using_evaluator_DefaultTraversal_CompleteUnrolling<Kernel, 0, DstXprType::SizeAtCompileTime>::run(kernel);
}
};
template<typename Kernel>
struct dense_assignment_loop<Kernel, DefaultTraversal, InnerUnrolling>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
const Index outerSize = kernel.outerSize();
for(Index outer = 0; outer < outerSize; ++outer)
copy_using_evaluator_DefaultTraversal_InnerUnrolling<Kernel, 0, DstXprType::InnerSizeAtCompileTime>::run(kernel, outer);
}
};
/***************************
*** Linear vectorization ***
***************************/
// The goal of unaligned_dense_assignment_loop is simply to factorize the handling
// of the non vectorizable beginning and ending parts
template <bool IsAligned = false>
struct unaligned_dense_assignment_loop
{
// if IsAligned = true, then do nothing
template <typename Kernel>
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel&, Index, Index) {}
};
template <>
struct unaligned_dense_assignment_loop<false>
{
// MSVC must not inline this functions. If it does, it fails to optimize the
// packet access path.
// FIXME check which version exhibits this issue
#if EIGEN_COMP_MSVC
template <typename Kernel>
static EIGEN_DONT_INLINE void run(Kernel &kernel,
Index start,
Index end)
#else
template <typename Kernel>
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel &kernel,
Index start,
Index end)
#endif
{
for (Index index = start; index < end; ++index)
kernel.assignCoeff(index);
}
};
template <typename Kernel, int Index, int Stop>
struct copy_using_evaluator_linearvec_CompleteUnrolling {
// FIXME: this is not very clean, perhaps this information should be provided by the kernel?
typedef typename Kernel::DstEvaluatorType DstEvaluatorType;
typedef typename DstEvaluatorType::XprType DstXprType;
typedef typename Kernel::PacketType PacketType;
enum {
SrcAlignment = Kernel::AssignmentTraits::SrcAlignment,
DstAlignment = Kernel::AssignmentTraits::DstAlignment
};
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel& kernel) {
kernel.template assignPacket<DstAlignment, SrcAlignment, PacketType>(Index);
enum { NextIndex = Index + unpacket_traits<PacketType>::size };
copy_using_evaluator_linearvec_CompleteUnrolling<Kernel, NextIndex, Stop>::run(kernel);
}
};
template <typename Kernel, int Stop>
struct copy_using_evaluator_linearvec_CompleteUnrolling<Kernel, Stop, Stop> {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel&) {}
};
template<typename Kernel>
struct dense_assignment_loop<Kernel, LinearVectorizedTraversal, NoUnrolling>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel &kernel)
{
const Index size = kernel.size();
typedef typename Kernel::Scalar Scalar;
typedef typename Kernel::PacketType PacketType;
enum {
requestedAlignment = Kernel::AssignmentTraits::LinearRequiredAlignment,
packetSize = unpacket_traits<PacketType>::size,
dstIsAligned = int(Kernel::AssignmentTraits::DstAlignment)>=int(requestedAlignment),
dstAlignment = packet_traits<Scalar>::AlignedOnScalar ? int(requestedAlignment)
: int(Kernel::AssignmentTraits::DstAlignment),
srcAlignment = Kernel::AssignmentTraits::JointAlignment
};
const Index alignedStart = dstIsAligned ? 0 : internal::first_aligned<requestedAlignment>(kernel.dstDataPtr(), size);
const Index alignedEnd = alignedStart + ((size-alignedStart)/packetSize)*packetSize;
unaligned_dense_assignment_loop<dstIsAligned!=0>::run(kernel, 0, alignedStart);
for(Index index = alignedStart; index < alignedEnd; index += packetSize)
kernel.template assignPacket<dstAlignment, srcAlignment, PacketType>(index);
unaligned_dense_assignment_loop<>::run(kernel, alignedEnd, size);
}
};
template<typename Kernel>
struct dense_assignment_loop<Kernel, LinearVectorizedTraversal, CompleteUnrolling>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel &kernel)
{
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
typedef typename Kernel::PacketType PacketType;
enum { size = DstXprType::SizeAtCompileTime,
packetSize =unpacket_traits<PacketType>::size,
alignedSize = (int(size)/packetSize)*packetSize };
copy_using_evaluator_linearvec_CompleteUnrolling<Kernel, 0, alignedSize>::run(kernel);
copy_using_evaluator_LinearTraversal_CompleteUnrolling<Kernel, alignedSize, size>::run(kernel);
}
};
/**************************
*** Inner vectorization ***
**************************/
template<typename Kernel>
struct dense_assignment_loop<Kernel, InnerVectorizedTraversal, NoUnrolling>
{
typedef typename Kernel::PacketType PacketType;
enum {
SrcAlignment = Kernel::AssignmentTraits::SrcAlignment,
DstAlignment = Kernel::AssignmentTraits::DstAlignment
};
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel &kernel)
{
const Index innerSize = kernel.innerSize();
const Index outerSize = kernel.outerSize();
const Index packetSize = unpacket_traits<PacketType>::size;
for(Index outer = 0; outer < outerSize; ++outer)
for(Index inner = 0; inner < innerSize; inner+=packetSize)
kernel.template assignPacketByOuterInner<DstAlignment, SrcAlignment, PacketType>(outer, inner);
}
};
template<typename Kernel>
struct dense_assignment_loop<Kernel, InnerVectorizedTraversal, CompleteUnrolling>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
copy_using_evaluator_innervec_CompleteUnrolling<Kernel, 0, DstXprType::SizeAtCompileTime>::run(kernel);
}
};
template<typename Kernel>
struct dense_assignment_loop<Kernel, InnerVectorizedTraversal, InnerUnrolling>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
typedef typename Kernel::AssignmentTraits Traits;
const Index outerSize = kernel.outerSize();
for(Index outer = 0; outer < outerSize; ++outer)
copy_using_evaluator_innervec_InnerUnrolling<Kernel, 0, DstXprType::InnerSizeAtCompileTime,
Traits::SrcAlignment, Traits::DstAlignment>::run(kernel, outer);
}
};
/***********************
*** Linear traversal ***
***********************/
template<typename Kernel>
struct dense_assignment_loop<Kernel, LinearTraversal, NoUnrolling>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel &kernel)
{
const Index size = kernel.size();
for(Index i = 0; i < size; ++i)
kernel.assignCoeff(i);
}
};
template<typename Kernel>
struct dense_assignment_loop<Kernel, LinearTraversal, CompleteUnrolling>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel &kernel)
{
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
copy_using_evaluator_LinearTraversal_CompleteUnrolling<Kernel, 0, DstXprType::SizeAtCompileTime>::run(kernel);
}
};
/**************************
*** Slice vectorization ***
***************************/
template<typename Kernel>
struct dense_assignment_loop<Kernel, SliceVectorizedTraversal, NoUnrolling>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel &kernel)
{
typedef typename Kernel::Scalar Scalar;
typedef typename Kernel::PacketType PacketType;
enum {
packetSize = unpacket_traits<PacketType>::size,
requestedAlignment = int(Kernel::AssignmentTraits::InnerRequiredAlignment),
alignable = packet_traits<Scalar>::AlignedOnScalar || int(Kernel::AssignmentTraits::DstAlignment)>=sizeof(Scalar),
dstIsAligned = int(Kernel::AssignmentTraits::DstAlignment)>=int(requestedAlignment),
dstAlignment = alignable ? int(requestedAlignment)
: int(Kernel::AssignmentTraits::DstAlignment)
};
const Scalar *dst_ptr = kernel.dstDataPtr();
if((!bool(dstIsAligned)) && (std::uintptr_t(dst_ptr) % sizeof(Scalar))>0)
{
// the pointer is not aligned-on scalar, so alignment is not possible
return dense_assignment_loop<Kernel,DefaultTraversal,NoUnrolling>::run(kernel);
}
const Index packetAlignedMask = packetSize - 1;
const Index innerSize = kernel.innerSize();
const Index outerSize = kernel.outerSize();
const Index alignedStep = alignable ? (packetSize - kernel.outerStride() % packetSize) & packetAlignedMask : 0;
Index alignedStart = ((!alignable) || bool(dstIsAligned)) ? 0 : internal::first_aligned<requestedAlignment>(dst_ptr, innerSize);
for(Index outer = 0; outer < outerSize; ++outer)
{
const Index alignedEnd = alignedStart + ((innerSize-alignedStart) & ~packetAlignedMask);
// do the non-vectorizable part of the assignment
for(Index inner = 0; inner<alignedStart ; ++inner)
kernel.assignCoeffByOuterInner(outer, inner);
// do the vectorizable part of the assignment
for(Index inner = alignedStart; inner<alignedEnd; inner+=packetSize)
kernel.template assignPacketByOuterInner<dstAlignment, Unaligned, PacketType>(outer, inner);
// do the non-vectorizable part of the assignment
for(Index inner = alignedEnd; inner<innerSize ; ++inner)
kernel.assignCoeffByOuterInner(outer, inner);
alignedStart = numext::mini((alignedStart+alignedStep)%packetSize, innerSize);
}
}
};
#if EIGEN_UNALIGNED_VECTORIZE
template<typename Kernel>
struct dense_assignment_loop<Kernel, SliceVectorizedTraversal, InnerUnrolling>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel &kernel)
{
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
typedef typename Kernel::PacketType PacketType;
enum { innerSize = DstXprType::InnerSizeAtCompileTime,
packetSize =unpacket_traits<PacketType>::size,
vectorizableSize = (int(innerSize) / int(packetSize)) * int(packetSize),
size = DstXprType::SizeAtCompileTime };
for(Index outer = 0; outer < kernel.outerSize(); ++outer)
{
copy_using_evaluator_innervec_InnerUnrolling<Kernel, 0, vectorizableSize, 0, 0>::run(kernel, outer);
copy_using_evaluator_DefaultTraversal_InnerUnrolling<Kernel, vectorizableSize, innerSize>::run(kernel, outer);
}
}
};
#endif
/***************************************************************************
* Part 4 : Generic dense assignment kernel
***************************************************************************/
// This class generalize the assignment of a coefficient (or packet) from one dense evaluator
// to another dense writable evaluator.
// It is parametrized by the two evaluators, and the actual assignment functor.
// This abstraction level permits to keep the evaluation loops as simple and as generic as possible.
// One can customize the assignment using this generic dense_assignment_kernel with different
// functors, or by completely overloading it, by-passing a functor.
template<typename DstEvaluatorTypeT, typename SrcEvaluatorTypeT, typename Functor, int Version = Specialized>
class generic_dense_assignment_kernel
{
protected:
typedef typename DstEvaluatorTypeT::XprType DstXprType;
typedef typename SrcEvaluatorTypeT::XprType SrcXprType;
public:
typedef DstEvaluatorTypeT DstEvaluatorType;
typedef SrcEvaluatorTypeT SrcEvaluatorType;
typedef typename DstEvaluatorType::Scalar Scalar;
typedef copy_using_evaluator_traits<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor> AssignmentTraits;
typedef typename AssignmentTraits::PacketType PacketType;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
generic_dense_assignment_kernel(DstEvaluatorType &dst, const SrcEvaluatorType &src, const Functor &func, DstXprType& dstExpr)
: m_dst(dst), m_src(src), m_functor(func), m_dstExpr(dstExpr)
{
#ifdef EIGEN_DEBUG_ASSIGN
AssignmentTraits::debug();
#endif
}
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index size() const EIGEN_NOEXCEPT { return m_dstExpr.size(); }
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index innerSize() const EIGEN_NOEXCEPT { return m_dstExpr.innerSize(); }
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index outerSize() const EIGEN_NOEXCEPT { return m_dstExpr.outerSize(); }
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_dstExpr.rows(); }
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_dstExpr.cols(); }
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index outerStride() const EIGEN_NOEXCEPT { return m_dstExpr.outerStride(); }
EIGEN_DEVICE_FUNC DstEvaluatorType& dstEvaluator() EIGEN_NOEXCEPT { return m_dst; }
EIGEN_DEVICE_FUNC const SrcEvaluatorType& srcEvaluator() const EIGEN_NOEXCEPT { return m_src; }
/// Assign src(row,col) to dst(row,col) through the assignment functor.
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(Index row, Index col)
{
m_functor.assignCoeff(m_dst.coeffRef(row,col), m_src.coeff(row,col));
}
/// \sa assignCoeff(Index,Index)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(Index index)
{
m_functor.assignCoeff(m_dst.coeffRef(index), m_src.coeff(index));
}
/// \sa assignCoeff(Index,Index)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeffByOuterInner(Index outer, Index inner)
{
Index row = rowIndexByOuterInner(outer, inner);
Index col = colIndexByOuterInner(outer, inner);
assignCoeff(row, col);
}
template<int StoreMode, int LoadMode, typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignPacket(Index row, Index col)
{
m_functor.template assignPacket<StoreMode>(&m_dst.coeffRef(row,col), m_src.template packet<LoadMode,Packet>(row,col));
}
template<int StoreMode, int LoadMode, typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignPacket(Index index)
{
m_functor.template assignPacket<StoreMode>(&m_dst.coeffRef(index), m_src.template packet<LoadMode,Packet>(index));
}
template<int StoreMode, int LoadMode, typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignPacketByOuterInner(Index outer, Index inner)
{
Index row = rowIndexByOuterInner(outer, inner);
Index col = colIndexByOuterInner(outer, inner);
assignPacket<StoreMode,LoadMode,Packet>(row, col);
}
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Index rowIndexByOuterInner(Index outer, Index inner)
{
typedef typename DstEvaluatorType::ExpressionTraits Traits;
return int(Traits::RowsAtCompileTime) == 1 ? 0
: int(Traits::ColsAtCompileTime) == 1 ? inner
: int(DstEvaluatorType::Flags)&RowMajorBit ? outer
: inner;
}
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Index colIndexByOuterInner(Index outer, Index inner)
{
typedef typename DstEvaluatorType::ExpressionTraits Traits;
return int(Traits::ColsAtCompileTime) == 1 ? 0
: int(Traits::RowsAtCompileTime) == 1 ? inner
: int(DstEvaluatorType::Flags)&RowMajorBit ? inner
: outer;
}
EIGEN_DEVICE_FUNC const Scalar* dstDataPtr() const
{
return m_dstExpr.data();
}
protected:
DstEvaluatorType& m_dst;
const SrcEvaluatorType& m_src;
const Functor &m_functor;
// TODO find a way to avoid the needs of the original expression
DstXprType& m_dstExpr;
};
// Special kernel used when computing small products whose operands have dynamic dimensions. It ensures that the
// PacketSize used is no larger than 4, thereby increasing the chance that vectorized instructions will be used
// when computing the product.
template<typename DstEvaluatorTypeT, typename SrcEvaluatorTypeT, typename Functor>
class restricted_packet_dense_assignment_kernel : public generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, BuiltIn>
{
protected:
typedef generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, BuiltIn> Base;
public:
typedef typename Base::Scalar Scalar;
typedef typename Base::DstXprType DstXprType;
typedef copy_using_evaluator_traits<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, 4> AssignmentTraits;
typedef typename AssignmentTraits::PacketType PacketType;
EIGEN_DEVICE_FUNC restricted_packet_dense_assignment_kernel(DstEvaluatorTypeT &dst, const SrcEvaluatorTypeT &src, const Functor &func, DstXprType& dstExpr)
: Base(dst, src, func, dstExpr)
{
}
};
/***************************************************************************
* Part 5 : Entry point for dense rectangular assignment
***************************************************************************/
template<typename DstXprType,typename SrcXprType, typename Functor>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void resize_if_allowed(DstXprType &dst, const SrcXprType& src, const Functor &/*func*/)
{
EIGEN_ONLY_USED_FOR_DEBUG(dst);
EIGEN_ONLY_USED_FOR_DEBUG(src);
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
}
template<typename DstXprType,typename SrcXprType, typename T1, typename T2>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void resize_if_allowed(DstXprType &dst, const SrcXprType& src, const internal::assign_op<T1,T2> &/*func*/)
{
Index dstRows = src.rows();
Index dstCols = src.cols();
if(((dst.rows()!=dstRows) || (dst.cols()!=dstCols)))
dst.resize(dstRows, dstCols);
eigen_assert(dst.rows() == dstRows && dst.cols() == dstCols);
}
template<typename DstXprType, typename SrcXprType, typename Functor>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void call_dense_assignment_loop(DstXprType& dst, const SrcXprType& src, const Functor &func)
{
typedef evaluator<DstXprType> DstEvaluatorType;
typedef evaluator<SrcXprType> SrcEvaluatorType;
SrcEvaluatorType srcEvaluator(src);
// NOTE To properly handle A = (A*A.transpose())/s with A rectangular,
// we need to resize the destination after the source evaluator has been created.
resize_if_allowed(dst, src, func);
DstEvaluatorType dstEvaluator(dst);
typedef generic_dense_assignment_kernel<DstEvaluatorType,SrcEvaluatorType,Functor> Kernel;
Kernel kernel(dstEvaluator, srcEvaluator, func, dst.const_cast_derived());
dense_assignment_loop<Kernel>::run(kernel);
}
// Specialization for filling the destination with a constant value.
#ifndef EIGEN_GPU_COMPILE_PHASE
template<typename DstXprType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void call_dense_assignment_loop(DstXprType& dst, const Eigen::CwiseNullaryOp<Eigen::internal::scalar_constant_op<typename DstXprType::Scalar>, DstXprType>& src, const internal::assign_op<typename DstXprType::Scalar,typename DstXprType::Scalar>& func)
{
resize_if_allowed(dst, src, func);
std::fill_n(dst.data(), dst.size(), src.functor()());
}
#endif
template<typename DstXprType, typename SrcXprType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void call_dense_assignment_loop(DstXprType& dst, const SrcXprType& src)
{
call_dense_assignment_loop(dst, src, internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>());
}
/***************************************************************************
* Part 6 : Generic assignment
***************************************************************************/
// Based on the respective shapes of the destination and source,
// the class AssignmentKind determine the kind of assignment mechanism.
// AssignmentKind must define a Kind typedef.
template<typename DstShape, typename SrcShape> struct AssignmentKind;
// Assignment kind defined in this file:
struct Dense2Dense {};
struct EigenBase2EigenBase {};
template<typename,typename> struct AssignmentKind { typedef EigenBase2EigenBase Kind; };
template<> struct AssignmentKind<DenseShape,DenseShape> { typedef Dense2Dense Kind; };
// This is the main assignment class
template< typename DstXprType, typename SrcXprType, typename Functor,
typename Kind = typename AssignmentKind< typename evaluator_traits<DstXprType>::Shape , typename evaluator_traits<SrcXprType>::Shape >::Kind,
typename EnableIf = void>
struct Assignment;
// The only purpose of this call_assignment() function is to deal with noalias() / "assume-aliasing" and automatic transposition.
// Indeed, I (Gael) think that this concept of "assume-aliasing" was a mistake, and it makes thing quite complicated.
// So this intermediate function removes everything related to "assume-aliasing" such that Assignment
// does not has to bother about these annoying details.
template<typename Dst, typename Src>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void call_assignment(Dst& dst, const Src& src)
{
call_assignment(dst, src, internal::assign_op<typename Dst::Scalar,typename Src::Scalar>());
}
template<typename Dst, typename Src>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void call_assignment(const Dst& dst, const Src& src)
{
call_assignment(dst, src, internal::assign_op<typename Dst::Scalar,typename Src::Scalar>());
}
// Deal with "assume-aliasing"
template<typename Dst, typename Src, typename Func>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR
void call_assignment(Dst& dst, const Src& src, const Func& func, std::enable_if_t< evaluator_assume_aliasing<Src>::value, void*> = 0)
{
typename plain_matrix_type<Src>::type tmp(src);
call_assignment_no_alias(dst, tmp, func);
}
template<typename Dst, typename Src, typename Func>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void call_assignment(Dst& dst, const Src& src, const Func& func, std::enable_if_t<!evaluator_assume_aliasing<Src>::value, void*> = 0)
{
call_assignment_no_alias(dst, src, func);
}
// by-pass "assume-aliasing"
// When there is no aliasing, we require that 'dst' has been properly resized
template<typename Dst, template <typename> class StorageBase, typename Src, typename Func>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR
void call_assignment(NoAlias<Dst,StorageBase>& dst, const Src& src, const Func& func)
{
call_assignment_no_alias(dst.expression(), src, func);
}
template<typename Dst, typename Src, typename Func>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR
void call_assignment_no_alias(Dst& dst, const Src& src, const Func& func)
{
enum {
NeedToTranspose = ( (int(Dst::RowsAtCompileTime) == 1 && int(Src::ColsAtCompileTime) == 1)
|| (int(Dst::ColsAtCompileTime) == 1 && int(Src::RowsAtCompileTime) == 1)
) && int(Dst::SizeAtCompileTime) != 1
};
typedef std::conditional_t<NeedToTranspose, Transpose<Dst>, Dst> ActualDstTypeCleaned;
typedef std::conditional_t<NeedToTranspose, Transpose<Dst>, Dst&> ActualDstType;
ActualDstType actualDst(dst);
// TODO check whether this is the right place to perform these checks:
EIGEN_STATIC_ASSERT_LVALUE(Dst)
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(ActualDstTypeCleaned,Src)
EIGEN_CHECK_BINARY_COMPATIBILIY(Func,typename ActualDstTypeCleaned::Scalar,typename Src::Scalar);
Assignment<ActualDstTypeCleaned,Src,Func>::run(actualDst, src, func);
}
template<typename Dst, typename Src, typename Func>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void call_restricted_packet_assignment_no_alias(Dst& dst, const Src& src, const Func& func)
{
typedef evaluator<Dst> DstEvaluatorType;
typedef evaluator<Src> SrcEvaluatorType;
typedef restricted_packet_dense_assignment_kernel<DstEvaluatorType,SrcEvaluatorType,Func> Kernel;
EIGEN_STATIC_ASSERT_LVALUE(Dst)
EIGEN_CHECK_BINARY_COMPATIBILIY(Func,typename Dst::Scalar,typename Src::Scalar);
SrcEvaluatorType srcEvaluator(src);
resize_if_allowed(dst, src, func);
DstEvaluatorType dstEvaluator(dst);
Kernel kernel(dstEvaluator, srcEvaluator, func, dst.const_cast_derived());
dense_assignment_loop<Kernel>::run(kernel);
}
template<typename Dst, typename Src>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR
void call_assignment_no_alias(Dst& dst, const Src& src)
{
call_assignment_no_alias(dst, src, internal::assign_op<typename Dst::Scalar,typename Src::Scalar>());
}
template<typename Dst, typename Src, typename Func>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR
void call_assignment_no_alias_no_transpose(Dst& dst, const Src& src, const Func& func)
{
// TODO check whether this is the right place to perform these checks:
EIGEN_STATIC_ASSERT_LVALUE(Dst)
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Dst,Src)
EIGEN_CHECK_BINARY_COMPATIBILIY(Func,typename Dst::Scalar,typename Src::Scalar);
Assignment<Dst,Src,Func>::run(dst, src, func);
}
template<typename Dst, typename Src>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR
void call_assignment_no_alias_no_transpose(Dst& dst, const Src& src)
{
call_assignment_no_alias_no_transpose(dst, src, internal::assign_op<typename Dst::Scalar,typename Src::Scalar>());
}
// forward declaration
template<typename Dst, typename Src> EIGEN_DEVICE_FUNC void check_for_aliasing(const Dst &dst, const Src &src);
// Generic Dense to Dense assignment
// Note that the last template argument "Weak" is needed to make it possible to perform
// both partial specialization+SFINAE without ambiguous specialization
template< typename DstXprType, typename SrcXprType, typename Functor, typename Weak>
struct Assignment<DstXprType, SrcXprType, Functor, Dense2Dense, Weak>
{
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE void run(DstXprType &dst, const SrcXprType &src, const Functor &func)
{
#ifndef EIGEN_NO_DEBUG
internal::check_for_aliasing(dst, src);
#endif
call_dense_assignment_loop(dst, src, func);
}
};
// Generic assignment through evalTo.
// TODO: not sure we have to keep that one, but it helps porting current code to new evaluator mechanism.
// Note that the last template argument "Weak" is needed to make it possible to perform
// both partial specialization+SFINAE without ambiguous specialization
template< typename DstXprType, typename SrcXprType, typename Functor, typename Weak>
struct Assignment<DstXprType, SrcXprType, Functor, EigenBase2EigenBase, Weak>
{
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
{
Index dstRows = src.rows();
Index dstCols = src.cols();
if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
dst.resize(dstRows, dstCols);
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
src.evalTo(dst);
}
// NOTE The following two functions are templated to avoid their instantiation if not needed
// This is needed because some expressions supports evalTo only and/or have 'void' as scalar type.
template<typename SrcScalarType>
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op<typename DstXprType::Scalar,SrcScalarType> &/*func*/)
{
Index dstRows = src.rows();
Index dstCols = src.cols();
if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
dst.resize(dstRows, dstCols);
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
src.addTo(dst);
}
template<typename SrcScalarType>
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op<typename DstXprType::Scalar,SrcScalarType> &/*func*/)
{
Index dstRows = src.rows();
Index dstCols = src.cols();
if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
dst.resize(dstRows, dstCols);
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
src.subTo(dst);
}
};
} // namespace internal
} // end namespace Eigen
#endif // EIGEN_ASSIGN_EVALUATOR_H