blob: 8e9902e1cbb50d3a341a6b402bba9c04888f03b8 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_GENERIC_PACKET_MATH_H
#define EIGEN_GENERIC_PACKET_MATH_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
/** \internal
* \file GenericPacketMath.h
*
* Default implementation for types not supported by the vectorization.
* In practice these functions are provided to make easier the writing
* of generic vectorized code.
*/
#ifndef EIGEN_DEBUG_ALIGNED_LOAD
#define EIGEN_DEBUG_ALIGNED_LOAD
#endif
#ifndef EIGEN_DEBUG_UNALIGNED_LOAD
#define EIGEN_DEBUG_UNALIGNED_LOAD
#endif
#ifndef EIGEN_DEBUG_ALIGNED_STORE
#define EIGEN_DEBUG_ALIGNED_STORE
#endif
#ifndef EIGEN_DEBUG_UNALIGNED_STORE
#define EIGEN_DEBUG_UNALIGNED_STORE
#endif
struct default_packet_traits
{
enum {
HasAdd = 1,
HasSub = 1,
HasShift = 1,
HasMul = 1,
HasNegate = 1,
HasAbs = 1,
HasArg = 0,
HasAbs2 = 1,
HasAbsDiff = 0,
HasMin = 1,
HasMax = 1,
HasConj = 1,
HasSetLinear = 1,
HasSign = 1,
HasBlend = 0,
// This flag is used to indicate whether packet comparison is supported.
// pcmp_eq, pcmp_lt and pcmp_le should be defined for it to be true.
HasCmp = 0,
HasDiv = 0,
HasReciprocal = 0,
HasSqrt = 0,
HasRsqrt = 0,
HasExp = 0,
HasExpm1 = 0,
HasLog = 0,
HasLog1p = 0,
HasLog10 = 0,
HasPow = 0,
HasSin = 0,
HasCos = 0,
HasTan = 0,
HasASin = 0,
HasACos = 0,
HasATan = 0,
HasATanh = 0,
HasSinh = 0,
HasCosh = 0,
HasTanh = 0,
HasLGamma = 0,
HasDiGamma = 0,
HasZeta = 0,
HasPolygamma = 0,
HasErf = 0,
HasErfc = 0,
HasNdtri = 0,
HasBessel = 0,
HasIGamma = 0,
HasIGammaDerA = 0,
HasGammaSampleDerAlpha = 0,
HasIGammac = 0,
HasBetaInc = 0,
HasRound = 0,
HasRint = 0,
HasFloor = 0,
HasCeil = 0
};
};
template<typename T> struct packet_traits : default_packet_traits
{
typedef T type;
typedef T half;
enum {
Vectorizable = 0,
size = 1,
AlignedOnScalar = 0,
};
enum {
HasAdd = 0,
HasSub = 0,
HasMul = 0,
HasNegate = 0,
HasAbs = 0,
HasAbs2 = 0,
HasMin = 0,
HasMax = 0,
HasConj = 0,
HasSetLinear = 0
};
};
template<typename T> struct packet_traits<const T> : packet_traits<T> { };
template<typename T> struct unpacket_traits
{
typedef T type;
typedef T half;
enum
{
size = 1,
alignment = 1,
vectorizable = false,
masked_load_available=false,
masked_store_available=false
};
};
template<typename T> struct unpacket_traits<const T> : unpacket_traits<T> { };
/** \internal A convenience utility for determining if the type is a scalar.
* This is used to enable some generic packet implementations.
*/
template <typename Packet>
struct is_scalar {
using Scalar = typename unpacket_traits<Packet>::type;
enum { value = internal::is_same<Packet, Scalar>::value };
};
// automatically and succinctly define combinations of pcast<SrcPacket,TgtPacket> when
// 1) the packets are the same type, or
// 2) the packets differ only in sign.
// In both of these cases, preinterpret (bit_cast) is equivalent to pcast (static_cast)
template <typename SrcPacket, typename TgtPacket,
bool Scalar = is_scalar<SrcPacket>::value && is_scalar<TgtPacket>::value>
struct is_degenerate_helper : is_same<SrcPacket, TgtPacket> {};
template <>
struct is_degenerate_helper<int8_t, uint8_t, true> : std::true_type {};
template <>
struct is_degenerate_helper<int16_t, uint16_t, true> : std::true_type {};
template <>
struct is_degenerate_helper<int32_t, uint32_t, true> : std::true_type {};
template <>
struct is_degenerate_helper<int64_t, uint64_t, true> : std::true_type {};
template <typename SrcPacket, typename TgtPacket>
struct is_degenerate_helper<SrcPacket, TgtPacket, false> {
using SrcScalar = typename unpacket_traits<SrcPacket>::type;
static constexpr int SrcSize = unpacket_traits<SrcPacket>::size;
using TgtScalar = typename unpacket_traits<TgtPacket>::type;
static constexpr int TgtSize = unpacket_traits<TgtPacket>::size;
static constexpr bool value = is_degenerate_helper<SrcScalar, TgtScalar, true>::value && (SrcSize == TgtSize);
};
// is_degenerate<T1,T2>::value == is_degenerate<T2,T1>::value
template <typename SrcPacket, typename TgtPacket>
struct is_degenerate {
static constexpr bool value =
is_degenerate_helper<SrcPacket, TgtPacket>::value || is_degenerate_helper<TgtPacket, SrcPacket>::value;
};
template <typename Packet>
struct is_half {
using Scalar = typename unpacket_traits<Packet>::type;
static constexpr int Size = unpacket_traits<Packet>::size;
using DefaultPacket = typename packet_traits<Scalar>::type;
static constexpr int DefaultSize = unpacket_traits<DefaultPacket>::size;
static constexpr bool value = Size < DefaultSize;
};
template <typename Src, typename Tgt>
struct type_casting_traits {
enum {
VectorizedCast =
is_degenerate<Src, Tgt>::value && packet_traits<Src>::Vectorizable && packet_traits<Tgt>::Vectorizable,
SrcCoeffRatio = 1,
TgtCoeffRatio = 1
};
};
// provides a succint template to define vectorized casting traits with respect to the largest accessible packet types
template <typename Src, typename Tgt>
struct vectorized_type_casting_traits {
enum : int {
DefaultSrcPacketSize = packet_traits<Src>::size,
DefaultTgtPacketSize = packet_traits<Tgt>::size,
VectorizedCast = 1,
SrcCoeffRatio = plain_enum_max(DefaultTgtPacketSize / DefaultSrcPacketSize, 1),
TgtCoeffRatio = plain_enum_max(DefaultSrcPacketSize / DefaultTgtPacketSize, 1)
};
};
/** \internal Wrapper to ensure that multiple packet types can map to the same
same underlying vector type. */
template<typename T, int unique_id = 0>
struct eigen_packet_wrapper
{
EIGEN_ALWAYS_INLINE operator T&() { return m_val; }
EIGEN_ALWAYS_INLINE operator const T&() const { return m_val; }
EIGEN_ALWAYS_INLINE eigen_packet_wrapper() = default;
EIGEN_ALWAYS_INLINE eigen_packet_wrapper(const T &v) : m_val(v) {}
EIGEN_ALWAYS_INLINE eigen_packet_wrapper& operator=(const T &v) {
m_val = v;
return *this;
}
T m_val;
};
template <typename Target, typename Packet, bool IsSame = is_same<Target, Packet>::value>
struct preinterpret_generic;
template <typename Target, typename Packet>
struct preinterpret_generic<Target, Packet, false> {
// the packets are not the same, attempt scalar bit_cast
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Target run(const Packet& a) {
return numext::bit_cast<Target, Packet>(a);
}
};
template <typename Packet>
struct preinterpret_generic<Packet, Packet, true> {
// the packets are the same type: do nothing
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run(const Packet& a) { return a; }
};
/** \internal \returns reinterpret_cast<Target>(a) */
template <typename Target, typename Packet>
EIGEN_DEVICE_FUNC inline Target preinterpret(const Packet& a) {
return preinterpret_generic<Target, Packet>::run(a);
}
template <typename SrcPacket, typename TgtPacket, bool Degenerate = is_degenerate<SrcPacket, TgtPacket>::value, bool TgtIsHalf = is_half<TgtPacket>::value>
struct pcast_generic;
template <typename SrcPacket, typename TgtPacket>
struct pcast_generic<SrcPacket, TgtPacket, false, false> {
// the packets are not degenerate: attempt scalar static_cast
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket run(const SrcPacket& a) {
return cast_impl<SrcPacket, TgtPacket>::run(a);
}
};
template <typename Packet>
struct pcast_generic<Packet, Packet, true, false> {
// the packets are the same: do nothing
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run(const Packet& a) { return a; }
};
template <typename SrcPacket, typename TgtPacket, bool TgtIsHalf>
struct pcast_generic<SrcPacket, TgtPacket, true, TgtIsHalf> {
// the packets are degenerate: preinterpret is equivalent to pcast
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket run(const SrcPacket& a) { return preinterpret<TgtPacket>(a); }
};
/** \internal \returns static_cast<TgtType>(a) (coeff-wise) */
template <typename SrcPacket, typename TgtPacket>
EIGEN_DEVICE_FUNC inline TgtPacket pcast(const SrcPacket& a) {
return pcast_generic<SrcPacket, TgtPacket>::run(a);
}
template <typename SrcPacket, typename TgtPacket>
EIGEN_DEVICE_FUNC inline TgtPacket pcast(const SrcPacket& a, const SrcPacket& b) {
return pcast_generic<SrcPacket, TgtPacket>::run(a, b);
}
template <typename SrcPacket, typename TgtPacket>
EIGEN_DEVICE_FUNC inline TgtPacket pcast(const SrcPacket& a, const SrcPacket& b, const SrcPacket& c,
const SrcPacket& d) {
return pcast_generic<SrcPacket, TgtPacket>::run(a, b, c, d);
}
template <typename SrcPacket, typename TgtPacket>
EIGEN_DEVICE_FUNC inline TgtPacket pcast(const SrcPacket& a, const SrcPacket& b, const SrcPacket& c, const SrcPacket& d,
const SrcPacket& e, const SrcPacket& f, const SrcPacket& g,
const SrcPacket& h) {
return pcast_generic<SrcPacket, TgtPacket>::run(a, b, c, d, e, f, g, h);
}
template <typename SrcPacket, typename TgtPacket>
struct pcast_generic<SrcPacket, TgtPacket, false, true> {
// TgtPacket is a half packet of some other type
// perform cast and truncate result
using DefaultTgtPacket = typename is_half<TgtPacket>::DefaultPacket;
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket run(const SrcPacket& a) {
return preinterpret<TgtPacket>(pcast<SrcPacket, DefaultTgtPacket>(a));
}
};
/** \internal \returns a + b (coeff-wise) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
padd(const Packet& a, const Packet& b) { return a+b; }
// Avoid compiler warning for boolean algebra.
template<> EIGEN_DEVICE_FUNC inline bool
padd(const bool& a, const bool& b) { return a || b; }
/** \internal \returns a packet version of \a *from, (un-aligned masked add)
* There is no generic implementation. We only have implementations for specialized
* cases. Generic case should not be called.
*/
template<typename Packet> EIGEN_DEVICE_FUNC inline
std::enable_if_t<unpacket_traits<Packet>::masked_fpops_available, Packet>
padd(const Packet& a, const Packet& b, typename unpacket_traits<Packet>::mask_t umask);
/** \internal \returns a - b (coeff-wise) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
psub(const Packet& a, const Packet& b) { return a-b; }
/** \internal \returns -a (coeff-wise) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pnegate(const Packet& a) { return -a; }
template<> EIGEN_DEVICE_FUNC inline bool
pnegate(const bool& a) { return !a; }
/** \internal \returns conj(a) (coeff-wise) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pconj(const Packet& a) { return numext::conj(a); }
/** \internal \returns a * b (coeff-wise) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pmul(const Packet& a, const Packet& b) { return a*b; }
// Avoid compiler warning for boolean algebra.
template<> EIGEN_DEVICE_FUNC inline bool
pmul(const bool& a, const bool& b) { return a && b; }
/** \internal \returns a / b (coeff-wise) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pdiv(const Packet& a, const Packet& b) { return a/b; }
// In the generic case, memset to all one bits.
template<typename Packet, typename EnableIf = void>
struct ptrue_impl {
static EIGEN_DEVICE_FUNC inline Packet run(const Packet& /*a*/){
Packet b;
memset(static_cast<void*>(&b), 0xff, sizeof(Packet));
return b;
}
};
// For non-trivial scalars, set to Scalar(1) (i.e. a non-zero value).
// Although this is technically not a valid bitmask, the scalar path for pselect
// uses a comparison to zero, so this should still work in most cases. We don't
// have another option, since the scalar type requires initialization.
template<typename T>
struct ptrue_impl<T,
std::enable_if_t<is_scalar<T>::value && NumTraits<T>::RequireInitialization> > {
static EIGEN_DEVICE_FUNC inline T run(const T& /*a*/){
return T(1);
}
};
/** \internal \returns one bits. */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
ptrue(const Packet& a) {
return ptrue_impl<Packet>::run(a);
}
// In the general case, memset to zero.
template<typename Packet, typename EnableIf = void>
struct pzero_impl {
static EIGEN_DEVICE_FUNC inline Packet run(const Packet& /*a*/) {
Packet b;
memset(static_cast<void*>(&b), 0x00, sizeof(Packet));
return b;
}
};
// For scalars, explicitly set to Scalar(0), since the underlying representation
// for zero may not consist of all-zero bits.
template<typename T>
struct pzero_impl<T,
std::enable_if_t<is_scalar<T>::value>> {
static EIGEN_DEVICE_FUNC inline T run(const T& /*a*/) {
return T(0);
}
};
/** \internal \returns packet of zeros */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pzero(const Packet& a) {
return pzero_impl<Packet>::run(a);
}
/** \internal \returns a <= b as a bit mask */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pcmp_le(const Packet& a, const Packet& b) { return a<=b ? ptrue(a) : pzero(a); }
/** \internal \returns a < b as a bit mask */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pcmp_lt(const Packet& a, const Packet& b) { return a<b ? ptrue(a) : pzero(a); }
/** \internal \returns a == b as a bit mask */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pcmp_eq(const Packet& a, const Packet& b) { return a==b ? ptrue(a) : pzero(a); }
/** \internal \returns a < b or a==NaN or b==NaN as a bit mask */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pcmp_lt_or_nan(const Packet& a, const Packet& b) { return a>=b ? pzero(a) : ptrue(a); }
template<typename T>
struct bit_and {
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR EIGEN_ALWAYS_INLINE T operator()(const T& a, const T& b) const {
return a & b;
}
};
template<typename T>
struct bit_or {
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR EIGEN_ALWAYS_INLINE T operator()(const T& a, const T& b) const {
return a | b;
}
};
template<typename T>
struct bit_xor {
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR EIGEN_ALWAYS_INLINE T operator()(const T& a, const T& b) const {
return a ^ b;
}
};
template<typename T>
struct bit_not {
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR EIGEN_ALWAYS_INLINE T operator()(const T& a) const {
return ~a;
}
};
// Use operators &, |, ^, ~.
template<typename T>
struct operator_bitwise_helper {
EIGEN_DEVICE_FUNC static inline T bitwise_and(const T& a, const T& b) { return bit_and<T>()(a, b); }
EIGEN_DEVICE_FUNC static inline T bitwise_or(const T& a, const T& b) { return bit_or<T>()(a, b); }
EIGEN_DEVICE_FUNC static inline T bitwise_xor(const T& a, const T& b) { return bit_xor<T>()(a, b); }
EIGEN_DEVICE_FUNC static inline T bitwise_not(const T& a) { return bit_not<T>()(a); }
};
// Apply binary operations byte-by-byte
template<typename T>
struct bytewise_bitwise_helper {
EIGEN_DEVICE_FUNC static inline T bitwise_and(const T& a, const T& b) {
return binary(a, b, bit_and<unsigned char>());
}
EIGEN_DEVICE_FUNC static inline T bitwise_or(const T& a, const T& b) {
return binary(a, b, bit_or<unsigned char>());
}
EIGEN_DEVICE_FUNC static inline T bitwise_xor(const T& a, const T& b) {
return binary(a, b, bit_xor<unsigned char>());
}
EIGEN_DEVICE_FUNC static inline T bitwise_not(const T& a) {
return unary(a,bit_not<unsigned char>());
}
private:
template<typename Op>
EIGEN_DEVICE_FUNC static inline T unary(const T& a, Op op) {
const unsigned char* a_ptr = reinterpret_cast<const unsigned char*>(&a);
T c;
unsigned char* c_ptr = reinterpret_cast<unsigned char*>(&c);
for (size_t i = 0; i < sizeof(T); ++i) {
*c_ptr++ = op(*a_ptr++);
}
return c;
}
template<typename Op>
EIGEN_DEVICE_FUNC static inline T binary(const T& a, const T& b, Op op) {
const unsigned char* a_ptr = reinterpret_cast<const unsigned char*>(&a);
const unsigned char* b_ptr = reinterpret_cast<const unsigned char*>(&b);
T c;
unsigned char* c_ptr = reinterpret_cast<unsigned char*>(&c);
for (size_t i = 0; i < sizeof(T); ++i) {
*c_ptr++ = op(*a_ptr++, *b_ptr++);
}
return c;
}
};
// In the general case, use byte-by-byte manipulation.
template<typename T, typename EnableIf = void>
struct bitwise_helper : public bytewise_bitwise_helper<T> {};
// For integers or non-trivial scalars, use binary operators.
template<typename T>
struct bitwise_helper<T,
typename std::enable_if_t<
is_scalar<T>::value && (NumTraits<T>::IsInteger || NumTraits<T>::RequireInitialization)>
> : public operator_bitwise_helper<T> {};
/** \internal \returns the bitwise and of \a a and \a b */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pand(const Packet& a, const Packet& b) {
return bitwise_helper<Packet>::bitwise_and(a, b);
}
/** \internal \returns the bitwise or of \a a and \a b */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
por(const Packet& a, const Packet& b) {
return bitwise_helper<Packet>::bitwise_or(a, b);
}
/** \internal \returns the bitwise xor of \a a and \a b */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pxor(const Packet& a, const Packet& b) {
return bitwise_helper<Packet>::bitwise_xor(a, b);
}
/** \internal \returns the bitwise not of \a a */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pnot(const Packet& a) {
return bitwise_helper<Packet>::bitwise_not(a);
}
/** \internal \returns the bitwise and of \a a and not \a b */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pandnot(const Packet& a, const Packet& b) { return pand(a, pnot(b)); }
/** \internal \returns isnan(a) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pisnan(const Packet& a) {
return pandnot(ptrue(a), pcmp_eq(a, a));
}
// In the general case, use bitwise select.
template<typename Packet, typename EnableIf = void>
struct pselect_impl {
static EIGEN_DEVICE_FUNC inline Packet run(const Packet& mask, const Packet& a, const Packet& b) {
return por(pand(a,mask),pandnot(b,mask));
}
};
// For scalars, use ternary select.
template<typename Packet>
struct pselect_impl<Packet,
std::enable_if_t<is_scalar<Packet>::value> > {
static EIGEN_DEVICE_FUNC inline Packet run(const Packet& mask, const Packet& a, const Packet& b) {
return numext::equal_strict(mask, Packet(0)) ? b : a;
}
};
/** \internal \returns \a or \b for each field in packet according to \mask */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pselect(const Packet& mask, const Packet& a, const Packet& b) {
return pselect_impl<Packet>::run(mask, a, b);
}
template<> EIGEN_DEVICE_FUNC inline bool pselect<bool>(
const bool& cond, const bool& a, const bool& b) {
return cond ? a : b;
}
/** \internal \returns the min or of \a a and \a b (coeff-wise)
If either \a a or \a b are NaN, the result is implementation defined. */
template<int NaNPropagation>
struct pminmax_impl {
template <typename Packet, typename Op>
static EIGEN_DEVICE_FUNC inline Packet run(const Packet& a, const Packet& b, Op op) {
return op(a,b);
}
};
/** \internal \returns the min or max of \a a and \a b (coeff-wise)
If either \a a or \a b are NaN, NaN is returned. */
template<>
struct pminmax_impl<PropagateNaN> {
template <typename Packet, typename Op>
static EIGEN_DEVICE_FUNC inline Packet run(const Packet& a, const Packet& b, Op op) {
Packet not_nan_mask_a = pcmp_eq(a, a);
Packet not_nan_mask_b = pcmp_eq(b, b);
return pselect(not_nan_mask_a,
pselect(not_nan_mask_b, op(a, b), b),
a);
}
};
/** \internal \returns the min or max of \a a and \a b (coeff-wise)
If both \a a and \a b are NaN, NaN is returned.
Equivalent to std::fmin(a, b). */
template<>
struct pminmax_impl<PropagateNumbers> {
template <typename Packet, typename Op>
static EIGEN_DEVICE_FUNC inline Packet run(const Packet& a, const Packet& b, Op op) {
Packet not_nan_mask_a = pcmp_eq(a, a);
Packet not_nan_mask_b = pcmp_eq(b, b);
return pselect(not_nan_mask_a,
pselect(not_nan_mask_b, op(a, b), a),
b);
}
};
#ifndef SYCL_DEVICE_ONLY
#define EIGEN_BINARY_OP_NAN_PROPAGATION(Type, Func) Func
#else
#define EIGEN_BINARY_OP_NAN_PROPAGATION(Type, Func) \
[](const Type& a, const Type& b) { \
return Func(a, b);}
#endif
/** \internal \returns the min of \a a and \a b (coeff-wise).
If \a a or \b b is NaN, the return value is implementation defined. */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pmin(const Packet& a, const Packet& b) { return numext::mini(a,b); }
/** \internal \returns the min of \a a and \a b (coeff-wise).
NaNPropagation determines the NaN propagation semantics. */
template <int NaNPropagation, typename Packet>
EIGEN_DEVICE_FUNC inline Packet pmin(const Packet& a, const Packet& b) {
return pminmax_impl<NaNPropagation>::run(a, b, EIGEN_BINARY_OP_NAN_PROPAGATION(Packet, (pmin<Packet>)));
}
/** \internal \returns the max of \a a and \a b (coeff-wise)
If \a a or \b b is NaN, the return value is implementation defined. */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pmax(const Packet& a, const Packet& b) { return numext::maxi(a, b); }
/** \internal \returns the max of \a a and \a b (coeff-wise).
NaNPropagation determines the NaN propagation semantics. */
template <int NaNPropagation, typename Packet>
EIGEN_DEVICE_FUNC inline Packet pmax(const Packet& a, const Packet& b) {
return pminmax_impl<NaNPropagation>::run(a, b, EIGEN_BINARY_OP_NAN_PROPAGATION(Packet,(pmax<Packet>)));
}
/** \internal \returns the absolute value of \a a */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pabs(const Packet& a) { return numext::abs(a); }
template<> EIGEN_DEVICE_FUNC inline unsigned int
pabs(const unsigned int& a) { return a; }
template<> EIGEN_DEVICE_FUNC inline unsigned long
pabs(const unsigned long& a) { return a; }
template<> EIGEN_DEVICE_FUNC inline unsigned long long
pabs(const unsigned long long& a) { return a; }
/** \internal \returns the addsub value of \a a,b */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
paddsub(const Packet& a, const Packet& b) {
return pselect(peven_mask(a), padd(a, b), psub(a, b));
}
/** \internal \returns the phase angle of \a a */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
parg(const Packet& a) { using numext::arg; return arg(a); }
/** \internal \returns \a a arithmetically shifted by N bits to the right */
template<int N> EIGEN_DEVICE_FUNC inline int
parithmetic_shift_right(const int& a) { return a >> N; }
template<int N> EIGEN_DEVICE_FUNC inline long int
parithmetic_shift_right(const long int& a) { return a >> N; }
/** \internal \returns \a a logically shifted by N bits to the right */
template<int N> EIGEN_DEVICE_FUNC inline int
plogical_shift_right(const int& a) { return static_cast<int>(static_cast<unsigned int>(a) >> N); }
template<int N> EIGEN_DEVICE_FUNC inline long int
plogical_shift_right(const long int& a) { return static_cast<long>(static_cast<unsigned long>(a) >> N); }
/** \internal \returns \a a shifted by N bits to the left */
template<int N> EIGEN_DEVICE_FUNC inline int
plogical_shift_left(const int& a) { return a << N; }
template<int N> EIGEN_DEVICE_FUNC inline long int
plogical_shift_left(const long int& a) { return a << N; }
/** \internal \returns the significant and exponent of the underlying floating point numbers
* See https://en.cppreference.com/w/cpp/numeric/math/frexp
*/
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet pfrexp(const Packet& a, Packet& exponent) {
int exp;
EIGEN_USING_STD(frexp);
Packet result = static_cast<Packet>(frexp(a, &exp));
exponent = static_cast<Packet>(exp);
return result;
}
/** \internal \returns a * 2^((int)exponent)
* See https://en.cppreference.com/w/cpp/numeric/math/ldexp
*/
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pldexp(const Packet &a, const Packet &exponent) {
EIGEN_USING_STD(ldexp)
return static_cast<Packet>(ldexp(a, static_cast<int>(exponent)));
}
/** \internal \returns the min of \a a and \a b (coeff-wise) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pabsdiff(const Packet& a, const Packet& b) { return pselect(pcmp_lt(a, b), psub(b, a), psub(a, b)); }
/** \internal \returns a packet version of \a *from, from must be properly aligned */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pload(const typename unpacket_traits<Packet>::type* from) { return *from; }
/** \internal \returns n elements of a packet version of \a *from, from must be properly aligned
* offset indicates the starting element in which to load and
* offset + n <= unpacket_traits::size
* All elements before offset and after the last element loaded will initialized with zero */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pload_partial(const typename unpacket_traits<Packet>::type* from, const Index n, const Index offset = 0)
{
const Index packet_size = unpacket_traits<Packet>::size;
eigen_assert(n + offset <= packet_size && "number of elements plus offset will read past end of packet");
typedef typename unpacket_traits<Packet>::type Scalar;
EIGEN_ALIGN_MAX Scalar elements[packet_size] = { Scalar(0) };
for (Index i = offset; i < numext::mini(n+offset,packet_size); i++) {
elements[i] = from[i-offset];
}
return pload<Packet>(elements);
}
/** \internal \returns a packet version of \a *from, (un-aligned load) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
ploadu(const typename unpacket_traits<Packet>::type* from) { return *from; }
/** \internal \returns n elements of a packet version of \a *from, (un-aligned load)
* All elements after the last element loaded will initialized with zero */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
ploadu_partial(const typename unpacket_traits<Packet>::type* from, const Index n, const Index offset = 0)
{
const Index packet_size = unpacket_traits<Packet>::size;
eigen_assert(n + offset <= packet_size && "number of elements plus offset will read past end of packet");
typedef typename unpacket_traits<Packet>::type Scalar;
EIGEN_ALIGN_MAX Scalar elements[packet_size] = { Scalar(0) };
for (Index i = offset; i < numext::mini(n+offset,packet_size); i++) {
elements[i] = from[i-offset];
}
return pload<Packet>(elements);
}
/** \internal \returns a packet version of \a *from, (un-aligned masked load)
* There is no generic implementation. We only have implementations for specialized
* cases. Generic case should not be called.
*/
template<typename Packet> EIGEN_DEVICE_FUNC inline
std::enable_if_t<unpacket_traits<Packet>::masked_load_available, Packet>
ploadu(const typename unpacket_traits<Packet>::type* from, typename unpacket_traits<Packet>::mask_t umask);
/** \internal \returns a packet with constant coefficients \a a, e.g.: (a,a,a,a) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pset1(const typename unpacket_traits<Packet>::type& a) { return a; }
/** \internal \returns a packet with constant coefficients set from bits */
template<typename Packet,typename BitsType> EIGEN_DEVICE_FUNC inline Packet
pset1frombits(BitsType a);
/** \internal \returns a packet with constant coefficients \a a[0], e.g.: (a[0],a[0],a[0],a[0]) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pload1(const typename unpacket_traits<Packet>::type *a) { return pset1<Packet>(*a); }
/** \internal \returns a packet with elements of \a *from duplicated.
* For instance, for a packet of 8 elements, 4 scalars will be read from \a *from and
* duplicated to form: {from[0],from[0],from[1],from[1],from[2],from[2],from[3],from[3]}
* Currently, this function is only used for scalar * complex products.
*/
template<typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet
ploaddup(const typename unpacket_traits<Packet>::type* from) { return *from; }
/** \internal \returns a packet with elements of \a *from quadrupled.
* For instance, for a packet of 8 elements, 2 scalars will be read from \a *from and
* replicated to form: {from[0],from[0],from[0],from[0],from[1],from[1],from[1],from[1]}
* Currently, this function is only used in matrix products.
* For packet-size smaller or equal to 4, this function is equivalent to pload1
*/
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
ploadquad(const typename unpacket_traits<Packet>::type* from)
{ return pload1<Packet>(from); }
/** \internal equivalent to
* \code
* a0 = pload1(a+0);
* a1 = pload1(a+1);
* a2 = pload1(a+2);
* a3 = pload1(a+3);
* \endcode
* \sa pset1, pload1, ploaddup, pbroadcast2
*/
template<typename Packet> EIGEN_DEVICE_FUNC
inline void pbroadcast4(const typename unpacket_traits<Packet>::type *a,
Packet& a0, Packet& a1, Packet& a2, Packet& a3)
{
a0 = pload1<Packet>(a+0);
a1 = pload1<Packet>(a+1);
a2 = pload1<Packet>(a+2);
a3 = pload1<Packet>(a+3);
}
/** \internal equivalent to
* \code
* a0 = pload1(a+0);
* a1 = pload1(a+1);
* \endcode
* \sa pset1, pload1, ploaddup, pbroadcast4
*/
template<typename Packet> EIGEN_DEVICE_FUNC
inline void pbroadcast2(const typename unpacket_traits<Packet>::type *a,
Packet& a0, Packet& a1)
{
a0 = pload1<Packet>(a+0);
a1 = pload1<Packet>(a+1);
}
/** \internal \brief Returns a packet with coefficients (a,a+1,...,a+packet_size-1). */
template<typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet
plset(const typename unpacket_traits<Packet>::type& a) { return a; }
/** \internal \returns a packet with constant coefficients \a a, e.g.: (x, 0, x, 0),
where x is the value of all 1-bits. */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
peven_mask(const Packet& /*a*/) {
typedef typename unpacket_traits<Packet>::type Scalar;
const size_t n = unpacket_traits<Packet>::size;
EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) Scalar elements[n];
for(size_t i = 0; i < n; ++i) {
memset(elements+i, ((i & 1) == 0 ? 0xff : 0), sizeof(Scalar));
}
return ploadu<Packet>(elements);
}
/** \internal copy the packet \a from to \a *to, \a to must be properly aligned */
template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline void pstore(Scalar* to, const Packet& from)
{ (*to) = from; }
/** \internal copy n elements of the packet \a from to \a *to, \a to must be properly aligned
* offset indicates the starting element in which to store and
* offset + n <= unpacket_traits::size */
template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline void pstore_partial(Scalar* to, const Packet& from, const Index n, const Index offset = 0)
{
const Index packet_size = unpacket_traits<Packet>::size;
eigen_assert(n + offset <= packet_size && "number of elements plus offset will write past end of packet");
EIGEN_ALIGN_MAX Scalar elements[packet_size];
pstore<Scalar>(elements, from);
for (Index i = 0; i < numext::mini(n,packet_size-offset); i++) {
to[i] = elements[i + offset];
}
}
/** \internal copy the packet \a from to \a *to, (un-aligned store) */
template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline void pstoreu(Scalar* to, const Packet& from)
{ (*to) = from; }
/** \internal copy n elements of the packet \a from to \a *to, (un-aligned store) */
template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline void pstoreu_partial(Scalar* to, const Packet& from, const Index n, const Index offset = 0)
{
const Index packet_size = unpacket_traits<Packet>::size;
eigen_assert(n + offset <= packet_size && "number of elements plus offset will write past end of packet");
EIGEN_ALIGN_MAX Scalar elements[packet_size];
pstore<Scalar>(elements, from);
for (Index i = 0; i < numext::mini(n,packet_size-offset); i++) {
to[i] = elements[i + offset];
}
}
/** \internal copy the packet \a from to \a *to, (un-aligned store with a mask)
* There is no generic implementation. We only have implementations for specialized
* cases. Generic case should not be called.
*/
template<typename Scalar, typename Packet>
EIGEN_DEVICE_FUNC inline
std::enable_if_t<unpacket_traits<Packet>::masked_store_available, void>
pstoreu(Scalar* to, const Packet& from, typename unpacket_traits<Packet>::mask_t umask);
template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline Packet pgather(const Scalar* from, Index /*stride*/)
{ return ploadu<Packet>(from); }
template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline Packet pgather_partial(const Scalar* from, Index stride, const Index n)
{
const Index packet_size = unpacket_traits<Packet>::size;
EIGEN_ALIGN_MAX Scalar elements[packet_size] = { Scalar(0) };
for (Index i = 0; i < numext::mini(n,packet_size); i++) {
elements[i] = from[i*stride];
}
return pload<Packet>(elements);
}
template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline void pscatter(Scalar* to, const Packet& from, Index /*stride*/)
{ pstore(to, from); }
template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline void pscatter_partial(Scalar* to, const Packet& from, Index stride, const Index n)
{
const Index packet_size = unpacket_traits<Packet>::size;
EIGEN_ALIGN_MAX Scalar elements[packet_size];
pstore<Scalar>(elements, from);
for (Index i = 0; i < numext::mini(n,packet_size); i++) {
to[i*stride] = elements[i];
}
}
/** \internal tries to do cache prefetching of \a addr */
template<typename Scalar> EIGEN_DEVICE_FUNC inline void prefetch(const Scalar* addr)
{
#if defined(EIGEN_HIP_DEVICE_COMPILE)
// do nothing
#elif defined(EIGEN_CUDA_ARCH)
#if defined(__LP64__) || EIGEN_OS_WIN64
// 64-bit pointer operand constraint for inlined asm
asm(" prefetch.L1 [ %1 ];" : "=l"(addr) : "l"(addr));
#else
// 32-bit pointer operand constraint for inlined asm
asm(" prefetch.L1 [ %1 ];" : "=r"(addr) : "r"(addr));
#endif
#elif (!EIGEN_COMP_MSVC) && (EIGEN_COMP_GNUC || EIGEN_COMP_CLANG || EIGEN_COMP_ICC)
__builtin_prefetch(addr);
#endif
}
/** \internal \returns the reversed elements of \a a*/
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet preverse(const Packet& a)
{ return a; }
/** \internal \returns \a a with real and imaginary part flipped (for complex type only) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet pcplxflip(const Packet& a)
{
return Packet(numext::imag(a),numext::real(a));
}
/**************************
* Special math functions
***************************/
/** \internal \returns the sine of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet psin(const Packet& a) { EIGEN_USING_STD(sin); return sin(a); }
/** \internal \returns the cosine of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pcos(const Packet& a) { EIGEN_USING_STD(cos); return cos(a); }
/** \internal \returns the tan of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet ptan(const Packet& a) { EIGEN_USING_STD(tan); return tan(a); }
/** \internal \returns the arc sine of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pasin(const Packet& a) { EIGEN_USING_STD(asin); return asin(a); }
/** \internal \returns the arc cosine of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pacos(const Packet& a) { EIGEN_USING_STD(acos); return acos(a); }
/** \internal \returns the hyperbolic sine of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet psinh(const Packet& a) { EIGEN_USING_STD(sinh); return sinh(a); }
/** \internal \returns the hyperbolic cosine of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pcosh(const Packet& a) { EIGEN_USING_STD(cosh); return cosh(a); }
/** \internal \returns the arc tangent of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet patan(const Packet& a) { EIGEN_USING_STD(atan); return atan(a); }
/** \internal \returns the hyperbolic tan of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet ptanh(const Packet& a) { EIGEN_USING_STD(tanh); return tanh(a); }
/** \internal \returns the arc tangent of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet patanh(const Packet& a) { EIGEN_USING_STD(atanh); return atanh(a); }
/** \internal \returns the exp of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pexp(const Packet& a) { EIGEN_USING_STD(exp); return exp(a); }
/** \internal \returns the expm1 of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pexpm1(const Packet& a) { return numext::expm1(a); }
/** \internal \returns the log of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet plog(const Packet& a) { EIGEN_USING_STD(log); return log(a); }
/** \internal \returns the log1p of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet plog1p(const Packet& a) { return numext::log1p(a); }
/** \internal \returns the log10 of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet plog10(const Packet& a) { EIGEN_USING_STD(log10); return log10(a); }
/** \internal \returns the log10 of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet plog2(const Packet& a) {
typedef typename internal::unpacket_traits<Packet>::type Scalar;
return pmul(pset1<Packet>(Scalar(EIGEN_LOG2E)), plog(a));
}
/** \internal \returns the square-root of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet psqrt(const Packet& a) { return numext::sqrt(a); }
/** \internal \returns the rounded value of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pround(const Packet& a) { using numext::round; return round(a); }
/** \internal \returns the floor of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pfloor(const Packet& a) { using numext::floor; return floor(a); }
/** \internal \returns the rounded value of \a a (coeff-wise) with current
* rounding mode */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet print(const Packet& a) { using numext::rint; return rint(a); }
/** \internal \returns the ceil of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pceil(const Packet& a) { using numext::ceil; return ceil(a); }
template<typename Packet, typename EnableIf = void>
struct psign_impl {
static EIGEN_DEVICE_FUNC inline Packet run(const Packet& a) {
return numext::sign(a);
}
};
/** \internal \returns the sign of \a a (coeff-wise) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
psign(const Packet& a) {
return psign_impl<Packet>::run(a);
}
template<> EIGEN_DEVICE_FUNC inline bool
psign(const bool& a) {
return a;
}
/** \internal \returns the first element of a packet */
template<typename Packet>
EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type
pfirst(const Packet& a)
{ return a; }
/** \internal \returns the sum of the elements of upper and lower half of \a a if \a a is larger than 4.
* For a packet {a0, a1, a2, a3, a4, a5, a6, a7}, it returns a half packet {a0+a4, a1+a5, a2+a6, a3+a7}
* For packet-size smaller or equal to 4, this boils down to a noop.
*/
template<typename Packet>
EIGEN_DEVICE_FUNC inline std::conditional_t<(unpacket_traits<Packet>::size%8)==0,typename unpacket_traits<Packet>::half,Packet>
predux_half_dowto4(const Packet& a)
{ return a; }
// Slow generic implementation of Packet reduction.
template <typename Packet, typename Op>
EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type
predux_helper(const Packet& a, Op op) {
typedef typename unpacket_traits<Packet>::type Scalar;
const size_t n = unpacket_traits<Packet>::size;
EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) Scalar elements[n];
pstoreu<Scalar>(elements, a);
for(size_t k = n / 2; k > 0; k /= 2) {
for(size_t i = 0; i < k; ++i) {
elements[i] = op(elements[i], elements[i + k]);
}
}
return elements[0];
}
/** \internal \returns the sum of the elements of \a a*/
template<typename Packet>
EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type
predux(const Packet& a)
{
return a;
}
/** \internal \returns the product of the elements of \a a */
template <typename Packet>
EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_mul(
const Packet& a) {
typedef typename unpacket_traits<Packet>::type Scalar;
return predux_helper(a, EIGEN_BINARY_OP_NAN_PROPAGATION(Scalar, (pmul<Scalar>)));
}
/** \internal \returns the min of the elements of \a a */
template <typename Packet>
EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_min(
const Packet &a) {
typedef typename unpacket_traits<Packet>::type Scalar;
return predux_helper(a, EIGEN_BINARY_OP_NAN_PROPAGATION(Scalar, (pmin<PropagateFast, Scalar>)));
}
template <int NaNPropagation, typename Packet>
EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_min(
const Packet& a) {
typedef typename unpacket_traits<Packet>::type Scalar;
return predux_helper(a, EIGEN_BINARY_OP_NAN_PROPAGATION(Scalar, (pmin<NaNPropagation, Scalar>)));
}
/** \internal \returns the min of the elements of \a a */
template <typename Packet>
EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_max(
const Packet &a) {
typedef typename unpacket_traits<Packet>::type Scalar;
return predux_helper(a, EIGEN_BINARY_OP_NAN_PROPAGATION(Scalar, (pmax<PropagateFast, Scalar>)));
}
template <int NaNPropagation, typename Packet>
EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_max(
const Packet& a) {
typedef typename unpacket_traits<Packet>::type Scalar;
return predux_helper(a, EIGEN_BINARY_OP_NAN_PROPAGATION(Scalar, (pmax<NaNPropagation, Scalar>)));
}
#undef EIGEN_BINARY_OP_NAN_PROPAGATION
/** \internal \returns true if all coeffs of \a a means "true"
* It is supposed to be called on values returned by pcmp_*.
*/
// not needed yet
// template<typename Packet> EIGEN_DEVICE_FUNC inline bool predux_all(const Packet& a)
// { return bool(a); }
/** \internal \returns true if any coeffs of \a a means "true"
* It is supposed to be called on values returned by pcmp_*.
*/
template<typename Packet> EIGEN_DEVICE_FUNC inline bool predux_any(const Packet& a)
{
// Dirty but generic implementation where "true" is assumed to be non 0 and all the sames.
// It is expected that "true" is either:
// - Scalar(1)
// - bits full of ones (NaN for floats),
// - or first bit equals to 1 (1 for ints, smallest denormal for floats).
// For all these cases, taking the sum is just fine, and this boils down to a no-op for scalars.
typedef typename unpacket_traits<Packet>::type Scalar;
return numext::not_equal_strict(predux(a), Scalar(0));
}
/***************************************************************************
* The following functions might not have to be overwritten for vectorized types
***************************************************************************/
// FMA instructions.
/** \internal \returns a * b + c (coeff-wise) */
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet pmadd(const Packet& a, const Packet& b,
const Packet& c) {
return padd(pmul(a, b), c);
}
/** \internal \returns a * b - c (coeff-wise) */
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet pmsub(const Packet& a, const Packet& b,
const Packet& c) {
return psub(pmul(a, b), c);
}
/** \internal \returns -(a * b) + c (coeff-wise) */
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet pnmadd(const Packet& a, const Packet& b,
const Packet& c) {
return padd(pnegate(pmul(a, b)), c);
}
/** \internal \returns -(a * b) - c (coeff-wise) */
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet pnmsub(const Packet& a, const Packet& b,
const Packet& c) {
return psub(pnegate(pmul(a, b)), c);
}
/** \internal copy a packet with constant coefficient \a a (e.g., [a,a,a,a]) to \a *to. \a to must be 16 bytes aligned */
// NOTE: this function must really be templated on the packet type (think about different packet types for the same scalar type)
template<typename Packet>
inline void pstore1(typename unpacket_traits<Packet>::type* to, const typename unpacket_traits<Packet>::type& a)
{
pstore(to, pset1<Packet>(a));
}
/** \internal \returns a packet version of \a *from.
* The pointer \a from must be aligned on a \a Alignment bytes boundary. */
template<typename Packet, int Alignment>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet ploadt(const typename unpacket_traits<Packet>::type* from)
{
if(Alignment >= unpacket_traits<Packet>::alignment)
return pload<Packet>(from);
else
return ploadu<Packet>(from);
}
/** \internal \returns n elements of a packet version of \a *from.
* The pointer \a from must be aligned on a \a Alignment bytes boundary. */
template<typename Packet, int Alignment>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet ploadt_partial(const typename unpacket_traits<Packet>::type* from, const Index n, const Index offset = 0)
{
if(Alignment >= unpacket_traits<Packet>::alignment)
return pload_partial<Packet>(from, n, offset);
else
return ploadu_partial<Packet>(from, n, offset);
}
/** \internal copy the packet \a from to \a *to.
* The pointer \a from must be aligned on a \a Alignment bytes boundary. */
template<typename Scalar, typename Packet, int Alignment>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pstoret(Scalar* to, const Packet& from)
{
if(Alignment >= unpacket_traits<Packet>::alignment)
pstore(to, from);
else
pstoreu(to, from);
}
/** \internal copy n elements of the packet \a from to \a *to.
* The pointer \a from must be aligned on a \a Alignment bytes boundary. */
template<typename Scalar, typename Packet, int Alignment>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pstoret_partial(Scalar* to, const Packet& from, const Index n, const Index offset = 0)
{
if(Alignment >= unpacket_traits<Packet>::alignment)
pstore_partial(to, from, n, offset);
else
pstoreu_partial(to, from, n, offset);
}
/** \internal \returns a packet version of \a *from.
* Unlike ploadt, ploadt_ro takes advantage of the read-only memory path on the
* hardware if available to speedup the loading of data that won't be modified
* by the current computation.
*/
template<typename Packet, int LoadMode>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet ploadt_ro(const typename unpacket_traits<Packet>::type* from)
{
return ploadt<Packet, LoadMode>(from);
}
/***************************************************************************
* Fast complex products (GCC generates a function call which is very slow)
***************************************************************************/
// Eigen+CUDA does not support complexes.
#if !defined(EIGEN_GPUCC)
template<> inline std::complex<float> pmul(const std::complex<float>& a, const std::complex<float>& b)
{ return std::complex<float>(a.real()*b.real() - a.imag()*b.imag(), a.imag()*b.real() + a.real()*b.imag()); }
template<> inline std::complex<double> pmul(const std::complex<double>& a, const std::complex<double>& b)
{ return std::complex<double>(a.real()*b.real() - a.imag()*b.imag(), a.imag()*b.real() + a.real()*b.imag()); }
#endif
/***************************************************************************
* PacketBlock, that is a collection of N packets where the number of words
* in the packet is a multiple of N.
***************************************************************************/
template <typename Packet,int N=unpacket_traits<Packet>::size> struct PacketBlock {
Packet packet[N];
};
template<typename Packet> EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet,1>& /*kernel*/) {
// Nothing to do in the scalar case, i.e. a 1x1 matrix.
}
/***************************************************************************
* Selector, i.e. vector of N boolean values used to select (i.e. blend)
* words from 2 packets.
***************************************************************************/
template <size_t N> struct Selector {
bool select[N];
};
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pblend(const Selector<unpacket_traits<Packet>::size>& ifPacket, const Packet& thenPacket, const Packet& elsePacket) {
return ifPacket.select[0] ? thenPacket : elsePacket;
}
/** \internal \returns 1 / a (coeff-wise) */
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet preciprocal(const Packet& a) {
using Scalar = typename unpacket_traits<Packet>::type;
return pdiv(pset1<Packet>(Scalar(1)), a);
}
/** \internal \returns the reciprocal square-root of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet prsqrt(const Packet& a) {
return preciprocal<Packet>(psqrt(a));
}
template <typename Packet, bool IsScalar = is_scalar<Packet>::value,
bool IsInteger = NumTraits<typename unpacket_traits<Packet>::type>::IsInteger>
struct psignbit_impl;
template <typename Packet, bool IsInteger>
struct psignbit_impl<Packet, true, IsInteger> {
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static constexpr Packet run(const Packet& a) { return numext::signbit(a); }
};
template <typename Packet>
struct psignbit_impl<Packet, false, false> {
// generic implementation if not specialized in PacketMath.h
// slower than arithmetic shift
typedef typename unpacket_traits<Packet>::type Scalar;
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static Packet run(const Packet& a) {
const Packet cst_pos_one = pset1<Packet>(Scalar(1));
const Packet cst_neg_one = pset1<Packet>(Scalar(-1));
return pcmp_eq(por(pand(a, cst_neg_one), cst_pos_one), cst_neg_one);
}
};
template <typename Packet>
struct psignbit_impl<Packet, false, true> {
// generic implementation for integer packets
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static constexpr Packet run(const Packet& a) { return pcmp_lt(a, pzero(a)); }
};
/** \internal \returns the sign bit of \a a as a bitmask*/
template <typename Packet>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE constexpr Packet
psignbit(const Packet& a) { return psignbit_impl<Packet>::run(a); }
/** \internal \returns the 2-argument arc tangent of \a y and \a x (coeff-wise) */
template <typename Packet, std::enable_if_t<is_scalar<Packet>::value, int> = 0>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet patan2(const Packet& y, const Packet& x) {
return numext::atan2(y, x);
}
/** \internal \returns the 2-argument arc tangent of \a y and \a x (coeff-wise) */
template <typename Packet, std::enable_if_t<!is_scalar<Packet>::value, int> = 0>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet patan2(const Packet& y, const Packet& x) {
typedef typename internal::unpacket_traits<Packet>::type Scalar;
// See https://en.cppreference.com/w/cpp/numeric/math/atan2
// for how corner cases are supposed to be handled according to the
// IEEE floating-point standard (IEC 60559).
const Packet kSignMask = pset1<Packet>(-Scalar(0));
const Packet kZero = pzero(x);
const Packet kOne = pset1<Packet>(Scalar(1));
const Packet kPi = pset1<Packet>(Scalar(EIGEN_PI));
const Packet x_has_signbit = psignbit(x);
const Packet y_signmask = pand(y, kSignMask);
const Packet x_signmask = pand(x, kSignMask);
const Packet result_signmask = pxor(y_signmask, x_signmask);
const Packet shift = por(pand(x_has_signbit, kPi), y_signmask);
const Packet x_and_y_are_same = pcmp_eq(pabs(x), pabs(y));
const Packet x_and_y_are_zero = pcmp_eq(por(x, y), kZero);
Packet arg = pdiv(y, x);
arg = pselect(x_and_y_are_same, por(kOne, result_signmask), arg);
arg = pselect(x_and_y_are_zero, result_signmask, arg);
Packet result = patan(arg);
result = padd(result, shift);
return result;
}
/** \internal \returns the argument of \a a as a complex number */
template <typename Packet, std::enable_if_t<is_scalar<Packet>::value, int> = 0>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet pcarg(const Packet& a) {
return Packet(numext::arg(a));
}
/** \internal \returns the argument of \a a as a complex number */
template <typename Packet, std::enable_if_t<!is_scalar<Packet>::value, int> = 0>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet pcarg(const Packet& a) {
EIGEN_STATIC_ASSERT(NumTraits<typename unpacket_traits<Packet>::type>::IsComplex, THIS METHOD IS FOR COMPLEX TYPES ONLY)
using RealPacket = typename unpacket_traits<Packet>::as_real;
// a // r i r i ...
RealPacket aflip = pcplxflip(a).v; // i r i r ...
RealPacket result = patan2(aflip, a.v); // atan2 crap atan2 crap ...
return (Packet)pand(result, peven_mask(result)); // atan2 0 atan2 0 ...
}
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_GENERIC_PACKET_MATH_H