| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com) |
| // Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_MATHFUNCTIONSIMPL_H |
| #define EIGEN_MATHFUNCTIONSIMPL_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| /** \internal Fast reciprocal using Newton-Raphson's method. |
| |
| Preconditions: |
| 1. The starting guess provided in approx_a_recip must have at least half |
| the leading mantissa bits in the correct result, such that a single |
| Newton-Raphson step is sufficient to get within 1-2 ulps of the currect |
| result. |
| 2. If a is zero, approx_a_recip must be infinite with the same sign as a. |
| 3. If a is infinite, approx_a_recip must be zero with the same sign as a. |
| |
| If the preconditions are satisfied, which they are for for the _*_rcp_ps |
| instructions on x86, the result has a maximum relative error of 2 ulps, |
| and correctly handles reciprocals of zero, infinity, and NaN. |
| */ |
| template <typename Packet, int Steps> |
| struct generic_reciprocal_newton_step { |
| static_assert(Steps > 0, "Steps must be at least 1."); |
| EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Packet |
| run(const Packet& a, const Packet& approx_a_recip) { |
| using Scalar = typename unpacket_traits<Packet>::type; |
| const Packet two = pset1<Packet>(Scalar(2)); |
| // Refine the approximation using one Newton-Raphson step: |
| // x_{i} = x_{i-1} * (2 - a * x_{i-1}) |
| const Packet x = |
| generic_reciprocal_newton_step<Packet,Steps - 1>::run(a, approx_a_recip); |
| const Packet tmp = pnmadd(a, x, two); |
| // If tmp is NaN, it means that a is either +/-0 or +/-Inf. |
| // In this case return the approximation directly. |
| const Packet is_not_nan = pcmp_eq(tmp, tmp); |
| return pselect(is_not_nan, pmul(x, tmp), x); |
| } |
| }; |
| |
| template<typename Packet> |
| struct generic_reciprocal_newton_step<Packet, 0> { |
| EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Packet |
| run(const Packet& /*unused*/, const Packet& approx_rsqrt) { |
| return approx_rsqrt; |
| } |
| }; |
| |
| |
| /** \internal Fast reciprocal sqrt using Newton-Raphson's method. |
| |
| Preconditions: |
| 1. The starting guess provided in approx_a_recip must have at least half |
| the leading mantissa bits in the correct result, such that a single |
| Newton-Raphson step is sufficient to get within 1-2 ulps of the currect |
| result. |
| 2. If a is zero, approx_a_recip must be infinite with the same sign as a. |
| 3. If a is infinite, approx_a_recip must be zero with the same sign as a. |
| |
| If the preconditions are satisfied, which they are for for the _*_rcp_ps |
| instructions on x86, the result has a maximum relative error of 2 ulps, |
| and correctly handles zero, infinity, and NaN. Positive denormals are |
| treated as zero. |
| */ |
| template <typename Packet, int Steps> |
| struct generic_rsqrt_newton_step { |
| static_assert(Steps > 0, "Steps must be at least 1."); |
| using Scalar = typename unpacket_traits<Packet>::type; |
| EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Packet |
| run(const Packet& a, const Packet& approx_rsqrt) { |
| constexpr Scalar kMinusHalf = Scalar(-1)/Scalar(2); |
| const Packet cst_minus_half = pset1<Packet>(kMinusHalf); |
| const Packet cst_minus_one = pset1<Packet>(Scalar(-1)); |
| |
| Packet inv_sqrt = approx_rsqrt; |
| for (int step = 0; step < Steps; ++step) { |
| // Refine the approximation using one Newton-Raphson step: |
| // h_n = (x * inv_sqrt) * inv_sqrt - 1 (so that h_n is nearly 0). |
| // inv_sqrt = inv_sqrt - 0.5 * inv_sqrt * h_n |
| Packet r2 = pmul(a, inv_sqrt); |
| Packet half_r = pmul(inv_sqrt, cst_minus_half); |
| Packet h_n = pmadd(r2, inv_sqrt, cst_minus_one); |
| inv_sqrt = pmadd(half_r, h_n, inv_sqrt); |
| } |
| |
| // If x is NaN, then either: |
| // 1) the input is NaN |
| // 2) zero and infinity were multiplied |
| // In either of these cases, return approx_rsqrt |
| return pselect(pisnan(inv_sqrt), approx_rsqrt, inv_sqrt); |
| } |
| }; |
| |
| template<typename Packet> |
| struct generic_rsqrt_newton_step<Packet, 0> { |
| EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Packet |
| run(const Packet& /*unused*/, const Packet& approx_rsqrt) { |
| return approx_rsqrt; |
| } |
| }; |
| |
| /** \internal Fast sqrt using Newton-Raphson's method. |
| |
| Preconditions: |
| 1. The starting guess for the reciprocal sqrt provided in approx_rsqrt must |
| have at least half the leading mantissa bits in the correct result, such |
| that a single Newton-Raphson step is sufficient to get within 1-2 ulps of |
| the currect result. |
| 2. If a is zero, approx_rsqrt must be infinite. |
| 3. If a is infinite, approx_rsqrt must be zero. |
| |
| If the preconditions are satisfied, which they are for for the _*_rsqrt_ps |
| instructions on x86, the result has a maximum relative error of 2 ulps, |
| and correctly handles zero and infinity, and NaN. Positive denormal inputs |
| are treated as zero. |
| */ |
| template <typename Packet, int Steps=1> |
| struct generic_sqrt_newton_step { |
| static_assert(Steps > 0, "Steps must be at least 1."); |
| |
| EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Packet |
| run(const Packet& a, const Packet& approx_rsqrt) { |
| using Scalar = typename unpacket_traits<Packet>::type; |
| const Packet one_point_five = pset1<Packet>(Scalar(1.5)); |
| const Packet minus_half = pset1<Packet>(Scalar(-0.5)); |
| // If a is inf or zero, return a directly. |
| const Packet inf_mask = pcmp_eq(a, pset1<Packet>(NumTraits<Scalar>::infinity())); |
| const Packet return_a = por(pcmp_eq(a, pzero(a)), inf_mask); |
| // Do a single step of Newton's iteration for reciprocal square root: |
| // x_{n+1} = x_n * (1.5 + (-0.5 * x_n) * (a * x_n))). |
| // The Newton's step is computed this way to avoid over/under-flows. |
| Packet rsqrt = pmul(approx_rsqrt, pmadd(pmul(minus_half, approx_rsqrt), pmul(a, approx_rsqrt), one_point_five)); |
| for (int step = 1; step < Steps; ++step) { |
| rsqrt = pmul(rsqrt, pmadd(pmul(minus_half, rsqrt), pmul(a, rsqrt), one_point_five)); |
| } |
| |
| // Return sqrt(x) = x * rsqrt(x) for non-zero finite positive arguments. |
| // Return a itself for 0 or +inf, NaN for negative arguments. |
| return pselect(return_a, a, pmul(a, rsqrt)); |
| } |
| }; |
| |
| /** \internal \returns the hyperbolic tan of \a a (coeff-wise) |
| Doesn't do anything fancy, just a 13/6-degree rational interpolant which |
| is accurate up to a couple of ulps in the (approximate) range [-8, 8], |
| outside of which tanh(x) = +/-1 in single precision. The input is clamped |
| to the range [-c, c]. The value c is chosen as the smallest value where |
| the approximation evaluates to exactly 1. In the reange [-0.0004, 0.0004] |
| the approximation tanh(x) ~= x is used for better accuracy as x tends to zero. |
| |
| This implementation works on both scalars and packets. |
| */ |
| template<typename T> |
| T generic_fast_tanh_float(const T& a_x) |
| { |
| // Clamp the inputs to the range [-c, c] |
| #ifdef EIGEN_VECTORIZE_FMA |
| const T plus_clamp = pset1<T>(7.99881172180175781f); |
| const T minus_clamp = pset1<T>(-7.99881172180175781f); |
| #else |
| const T plus_clamp = pset1<T>(7.90531110763549805f); |
| const T minus_clamp = pset1<T>(-7.90531110763549805f); |
| #endif |
| const T tiny = pset1<T>(0.0004f); |
| const T x = pmax(pmin(a_x, plus_clamp), minus_clamp); |
| const T tiny_mask = pcmp_lt(pabs(a_x), tiny); |
| // The monomial coefficients of the numerator polynomial (odd). |
| const T alpha_1 = pset1<T>(4.89352455891786e-03f); |
| const T alpha_3 = pset1<T>(6.37261928875436e-04f); |
| const T alpha_5 = pset1<T>(1.48572235717979e-05f); |
| const T alpha_7 = pset1<T>(5.12229709037114e-08f); |
| const T alpha_9 = pset1<T>(-8.60467152213735e-11f); |
| const T alpha_11 = pset1<T>(2.00018790482477e-13f); |
| const T alpha_13 = pset1<T>(-2.76076847742355e-16f); |
| |
| // The monomial coefficients of the denominator polynomial (even). |
| const T beta_0 = pset1<T>(4.89352518554385e-03f); |
| const T beta_2 = pset1<T>(2.26843463243900e-03f); |
| const T beta_4 = pset1<T>(1.18534705686654e-04f); |
| const T beta_6 = pset1<T>(1.19825839466702e-06f); |
| |
| // Since the polynomials are odd/even, we need x^2. |
| const T x2 = pmul(x, x); |
| |
| // Evaluate the numerator polynomial p. |
| T p = pmadd(x2, alpha_13, alpha_11); |
| p = pmadd(x2, p, alpha_9); |
| p = pmadd(x2, p, alpha_7); |
| p = pmadd(x2, p, alpha_5); |
| p = pmadd(x2, p, alpha_3); |
| p = pmadd(x2, p, alpha_1); |
| p = pmul(x, p); |
| |
| // Evaluate the denominator polynomial q. |
| T q = pmadd(x2, beta_6, beta_4); |
| q = pmadd(x2, q, beta_2); |
| q = pmadd(x2, q, beta_0); |
| |
| // Divide the numerator by the denominator. |
| return pselect(tiny_mask, x, pdiv(p, q)); |
| } |
| |
| template<typename RealScalar> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| RealScalar positive_real_hypot(const RealScalar& x, const RealScalar& y) |
| { |
| // IEEE IEC 6059 special cases. |
| if ((numext::isinf)(x) || (numext::isinf)(y)) |
| return NumTraits<RealScalar>::infinity(); |
| if ((numext::isnan)(x) || (numext::isnan)(y)) |
| return NumTraits<RealScalar>::quiet_NaN(); |
| |
| EIGEN_USING_STD(sqrt); |
| RealScalar p, qp; |
| p = numext::maxi(x,y); |
| if(numext::is_exactly_zero(p)) return RealScalar(0); |
| qp = numext::mini(y,x) / p; |
| return p * sqrt(RealScalar(1) + qp*qp); |
| } |
| |
| template<typename Scalar> |
| struct hypot_impl |
| { |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| static EIGEN_DEVICE_FUNC |
| inline RealScalar run(const Scalar& x, const Scalar& y) |
| { |
| EIGEN_USING_STD(abs); |
| return positive_real_hypot<RealScalar>(abs(x), abs(y)); |
| } |
| }; |
| |
| // Generic complex sqrt implementation that correctly handles corner cases |
| // according to https://en.cppreference.com/w/cpp/numeric/complex/sqrt |
| template<typename T> |
| EIGEN_DEVICE_FUNC std::complex<T> complex_sqrt(const std::complex<T>& z) { |
| // Computes the principal sqrt of the input. |
| // |
| // For a complex square root of the number x + i*y. We want to find real |
| // numbers u and v such that |
| // (u + i*v)^2 = x + i*y <=> |
| // u^2 - v^2 + i*2*u*v = x + i*v. |
| // By equating the real and imaginary parts we get: |
| // u^2 - v^2 = x |
| // 2*u*v = y. |
| // |
| // For x >= 0, this has the numerically stable solution |
| // u = sqrt(0.5 * (x + sqrt(x^2 + y^2))) |
| // v = y / (2 * u) |
| // and for x < 0, |
| // v = sign(y) * sqrt(0.5 * (-x + sqrt(x^2 + y^2))) |
| // u = y / (2 * v) |
| // |
| // Letting w = sqrt(0.5 * (|x| + |z|)), |
| // if x == 0: u = w, v = sign(y) * w |
| // if x > 0: u = w, v = y / (2 * w) |
| // if x < 0: u = |y| / (2 * w), v = sign(y) * w |
| |
| const T x = numext::real(z); |
| const T y = numext::imag(z); |
| const T zero = T(0); |
| const T w = numext::sqrt(T(0.5) * (numext::abs(x) + numext::hypot(x, y))); |
| |
| return |
| (numext::isinf)(y) ? std::complex<T>(NumTraits<T>::infinity(), y) |
| : numext::is_exactly_zero(x) ? std::complex<T>(w, y < zero ? -w : w) |
| : x > zero ? std::complex<T>(w, y / (2 * w)) |
| : std::complex<T>(numext::abs(y) / (2 * w), y < zero ? -w : w ); |
| } |
| |
| // Generic complex rsqrt implementation. |
| template<typename T> |
| EIGEN_DEVICE_FUNC std::complex<T> complex_rsqrt(const std::complex<T>& z) { |
| // Computes the principal reciprocal sqrt of the input. |
| // |
| // For a complex reciprocal square root of the number z = x + i*y. We want to |
| // find real numbers u and v such that |
| // (u + i*v)^2 = 1 / (x + i*y) <=> |
| // u^2 - v^2 + i*2*u*v = x/|z|^2 - i*v/|z|^2. |
| // By equating the real and imaginary parts we get: |
| // u^2 - v^2 = x/|z|^2 |
| // 2*u*v = y/|z|^2. |
| // |
| // For x >= 0, this has the numerically stable solution |
| // u = sqrt(0.5 * (x + |z|)) / |z| |
| // v = -y / (2 * u * |z|) |
| // and for x < 0, |
| // v = -sign(y) * sqrt(0.5 * (-x + |z|)) / |z| |
| // u = -y / (2 * v * |z|) |
| // |
| // Letting w = sqrt(0.5 * (|x| + |z|)), |
| // if x == 0: u = w / |z|, v = -sign(y) * w / |z| |
| // if x > 0: u = w / |z|, v = -y / (2 * w * |z|) |
| // if x < 0: u = |y| / (2 * w * |z|), v = -sign(y) * w / |z| |
| |
| const T x = numext::real(z); |
| const T y = numext::imag(z); |
| const T zero = T(0); |
| |
| const T abs_z = numext::hypot(x, y); |
| const T w = numext::sqrt(T(0.5) * (numext::abs(x) + abs_z)); |
| const T woz = w / abs_z; |
| // Corner cases consistent with 1/sqrt(z) on gcc/clang. |
| return |
| numext::is_exactly_zero(abs_z) ? std::complex<T>(NumTraits<T>::infinity(), NumTraits<T>::quiet_NaN()) |
| : ((numext::isinf)(x) || (numext::isinf)(y)) ? std::complex<T>(zero, zero) |
| : numext::is_exactly_zero(x) ? std::complex<T>(woz, y < zero ? woz : -woz) |
| : x > zero ? std::complex<T>(woz, -y / (2 * w * abs_z)) |
| : std::complex<T>(numext::abs(y) / (2 * w * abs_z), y < zero ? woz : -woz ); |
| } |
| |
| template<typename T> |
| EIGEN_DEVICE_FUNC std::complex<T> complex_log(const std::complex<T>& z) { |
| // Computes complex log. |
| T a = numext::abs(z); |
| EIGEN_USING_STD(atan2); |
| T b = atan2(z.imag(), z.real()); |
| return std::complex<T>(numext::log(a), b); |
| } |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_MATHFUNCTIONSIMPL_H |