| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_SOLVERBASE_H |
| #define EIGEN_SOLVERBASE_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| template<typename Derived> |
| struct solve_assertion { |
| template<bool Transpose_, typename Rhs> |
| static void run(const Derived& solver, const Rhs& b) { solver.template _check_solve_assertion<Transpose_>(b); } |
| }; |
| |
| template<typename Derived> |
| struct solve_assertion<Transpose<Derived> > |
| { |
| typedef Transpose<Derived> type; |
| |
| template<bool Transpose_, typename Rhs> |
| static void run(const type& transpose, const Rhs& b) |
| { |
| internal::solve_assertion<internal::remove_all_t<Derived>>::template run<true>(transpose.nestedExpression(), b); |
| } |
| }; |
| |
| template<typename Scalar, typename Derived> |
| struct solve_assertion<CwiseUnaryOp<Eigen::internal::scalar_conjugate_op<Scalar>, const Transpose<Derived> > > |
| { |
| typedef CwiseUnaryOp<Eigen::internal::scalar_conjugate_op<Scalar>, const Transpose<Derived> > type; |
| |
| template<bool Transpose_, typename Rhs> |
| static void run(const type& adjoint, const Rhs& b) |
| { |
| internal::solve_assertion<internal::remove_all_t<Transpose<Derived> >>::template run<true>(adjoint.nestedExpression(), b); |
| } |
| }; |
| } // end namespace internal |
| |
| /** \class SolverBase |
| * \brief A base class for matrix decomposition and solvers |
| * |
| * \tparam Derived the actual type of the decomposition/solver. |
| * |
| * Any matrix decomposition inheriting this base class provide the following API: |
| * |
| * \code |
| * MatrixType A, b, x; |
| * DecompositionType dec(A); |
| * x = dec.solve(b); // solve A * x = b |
| * x = dec.transpose().solve(b); // solve A^T * x = b |
| * x = dec.adjoint().solve(b); // solve A' * x = b |
| * \endcode |
| * |
| * \warning Currently, any other usage of transpose() and adjoint() are not supported and will produce compilation errors. |
| * |
| * \sa class PartialPivLU, class FullPivLU, class HouseholderQR, class ColPivHouseholderQR, class FullPivHouseholderQR, class CompleteOrthogonalDecomposition, class LLT, class LDLT, class SVDBase |
| */ |
| template<typename Derived> |
| class SolverBase : public EigenBase<Derived> |
| { |
| public: |
| |
| typedef EigenBase<Derived> Base; |
| typedef typename internal::traits<Derived>::Scalar Scalar; |
| typedef Scalar CoeffReturnType; |
| |
| template<typename Derived_> |
| friend struct internal::solve_assertion; |
| |
| enum { |
| RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime, |
| ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime, |
| SizeAtCompileTime = (internal::size_of_xpr_at_compile_time<Derived>::ret), |
| MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime, |
| MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime, |
| MaxSizeAtCompileTime = internal::size_at_compile_time(internal::traits<Derived>::MaxRowsAtCompileTime, |
| internal::traits<Derived>::MaxColsAtCompileTime), |
| IsVectorAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime == 1 |
| || internal::traits<Derived>::MaxColsAtCompileTime == 1, |
| NumDimensions = int(MaxSizeAtCompileTime) == 1 ? 0 : bool(IsVectorAtCompileTime) ? 1 : 2 |
| }; |
| |
| /** Default constructor */ |
| SolverBase() |
| {} |
| |
| ~SolverBase() |
| {} |
| |
| using Base::derived; |
| |
| /** \returns an expression of the solution x of \f$ A x = b \f$ using the current decomposition of A. |
| */ |
| template<typename Rhs> |
| inline const Solve<Derived, Rhs> |
| solve(const MatrixBase<Rhs>& b) const |
| { |
| internal::solve_assertion<internal::remove_all_t<Derived>>::template run<false>(derived(), b); |
| return Solve<Derived, Rhs>(derived(), b.derived()); |
| } |
| |
| /** \internal the return type of transpose() */ |
| typedef Transpose<const Derived> ConstTransposeReturnType; |
| /** \returns an expression of the transposed of the factored matrix. |
| * |
| * A typical usage is to solve for the transposed problem A^T x = b: |
| * \code x = dec.transpose().solve(b); \endcode |
| * |
| * \sa adjoint(), solve() |
| */ |
| inline const ConstTransposeReturnType transpose() const |
| { |
| return ConstTransposeReturnType(derived()); |
| } |
| |
| /** \internal the return type of adjoint() */ |
| typedef std::conditional_t<NumTraits<Scalar>::IsComplex, |
| CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, const ConstTransposeReturnType>, |
| const ConstTransposeReturnType |
| > AdjointReturnType; |
| /** \returns an expression of the adjoint of the factored matrix |
| * |
| * A typical usage is to solve for the adjoint problem A' x = b: |
| * \code x = dec.adjoint().solve(b); \endcode |
| * |
| * For real scalar types, this function is equivalent to transpose(). |
| * |
| * \sa transpose(), solve() |
| */ |
| inline const AdjointReturnType adjoint() const |
| { |
| return AdjointReturnType(derived().transpose()); |
| } |
| |
| protected: |
| |
| template<bool Transpose_, typename Rhs> |
| void _check_solve_assertion(const Rhs& b) const { |
| EIGEN_ONLY_USED_FOR_DEBUG(b); |
| eigen_assert(derived().m_isInitialized && "Solver is not initialized."); |
| eigen_assert((Transpose_?derived().cols():derived().rows())==b.rows() && "SolverBase::solve(): invalid number of rows of the right hand side matrix b"); |
| } |
| }; |
| |
| namespace internal { |
| |
| template<typename Derived> |
| struct generic_xpr_base<Derived, MatrixXpr, SolverStorage> |
| { |
| typedef SolverBase<Derived> type; |
| |
| }; |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_SOLVERBASE_H |