| /* dladiv.f -- translated by f2c (version 20061008). |
| You must link the resulting object file with libf2c: |
| on Microsoft Windows system, link with libf2c.lib; |
| on Linux or Unix systems, link with .../path/to/libf2c.a -lm |
| or, if you install libf2c.a in a standard place, with -lf2c -lm |
| -- in that order, at the end of the command line, as in |
| cc *.o -lf2c -lm |
| Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., |
| |
| http://www.netlib.org/f2c/libf2c.zip |
| */ |
| |
| #include "f2c.h" |
| #include "blaswrap.h" |
| |
| /* Subroutine */ int dladiv_(doublereal *a, doublereal *b, doublereal *c__, |
| doublereal *d__, doublereal *p, doublereal *q) |
| { |
| doublereal e, f; |
| |
| |
| /* -- LAPACK auxiliary routine (version 3.2) -- */ |
| /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ |
| /* November 2006 */ |
| |
| /* .. Scalar Arguments .. */ |
| /* .. */ |
| |
| /* Purpose */ |
| /* ======= */ |
| |
| /* DLADIV performs complex division in real arithmetic */ |
| |
| /* a + i*b */ |
| /* p + i*q = --------- */ |
| /* c + i*d */ |
| |
| /* The algorithm is due to Robert L. Smith and can be found */ |
| /* in D. Knuth, The art of Computer Programming, Vol.2, p.195 */ |
| |
| /* Arguments */ |
| /* ========= */ |
| |
| /* A (input) DOUBLE PRECISION */ |
| /* B (input) DOUBLE PRECISION */ |
| /* C (input) DOUBLE PRECISION */ |
| /* D (input) DOUBLE PRECISION */ |
| /* The scalars a, b, c, and d in the above expression. */ |
| |
| /* P (output) DOUBLE PRECISION */ |
| /* Q (output) DOUBLE PRECISION */ |
| /* The scalars p and q in the above expression. */ |
| |
| /* ===================================================================== */ |
| |
| /* .. Local Scalars .. */ |
| /* .. */ |
| /* .. Intrinsic Functions .. */ |
| /* .. */ |
| /* .. Executable Statements .. */ |
| |
| if (abs(*d__) < abs(*c__)) { |
| e = *d__ / *c__; |
| f = *c__ + *d__ * e; |
| *p = (*a + *b * e) / f; |
| *q = (*b - *a * e) / f; |
| } else { |
| e = *c__ / *d__; |
| f = *d__ + *c__ * e; |
| *p = (*b + *a * e) / f; |
| *q = (-(*a) + *b * e) / f; |
| } |
| |
| return 0; |
| |
| /* End of DLADIV */ |
| |
| } /* dladiv_ */ |