| /* Non-Negagive Least Squares Algorithm for Eigen. |
| * |
| * Copyright (C) 2021 Essex Edwards, <essex.edwards@gmail.com> |
| * Copyright (C) 2013 Hannes Matuschek, hannes.matuschek at uni-potsdam.de |
| * |
| * This Source Code Form is subject to the terms of the Mozilla |
| * Public License v. 2.0. If a copy of the MPL was not distributed |
| * with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| */ |
| |
| /** \defgroup nnls Non-Negative Least Squares (NNLS) Module |
| * This module provides a single class @c Eigen::NNLS implementing the NNLS algorithm. |
| * The algorithm is described in "SOLVING LEAST SQUARES PROBLEMS", by Charles L. Lawson and |
| * Richard J. Hanson, Prentice-Hall, 1974 and solves optimization problems of the form |
| * |
| * \f[ \min \left\Vert Ax-b\right\Vert_2^2\quad s.t.\, x\ge 0\,.\f] |
| * |
| * The algorithm solves the constrained least-squares problem above by iteratively improving |
| * an estimate of which constraints are active (elements of \f$x\f$ equal to zero) |
| * and which constraints are inactive (elements of \f$x\f$ greater than zero). |
| * Each iteration, an unconstrained linear least-squares problem solves for the |
| * components of \f$x\f$ in the (estimated) inactive set and the sets are updated. |
| * The unconstrained problem minimizes \f$\left\Vert A^Nx^N-b\right\Vert_2^2\f$, |
| * where \f$A^N\f$ is a matrix formed by selecting all columns of A which are |
| * in the inactive set \f$N\f$. |
| * |
| */ |
| |
| #ifndef EIGEN_NNLS_H |
| #define EIGEN_NNLS_H |
| |
| #include "../../Eigen/Core" |
| #include "../../Eigen/QR" |
| |
| #include <limits> |
| |
| namespace Eigen { |
| |
| /** \ingroup nnls |
| * \class NNLS |
| * \brief Implementation of the Non-Negative Least Squares (NNLS) algorithm. |
| * \tparam MatrixType The type of the system matrix \f$A\f$. |
| * |
| * This class implements the NNLS algorithm as described in "SOLVING LEAST SQUARES PROBLEMS", |
| * Charles L. Lawson and Richard J. Hanson, Prentice-Hall, 1974. This algorithm solves a least |
| * squares problem iteratively and ensures that the solution is non-negative. I.e. |
| * |
| * \f[ \min \left\Vert Ax-b\right\Vert_2^2\quad s.t.\, x\ge 0 \f] |
| * |
| * The algorithm solves the constrained least-squares problem above by iteratively improving |
| * an estimate of which constraints are active (elements of \f$x\f$ equal to zero) |
| * and which constraints are inactive (elements of \f$x\f$ greater than zero). |
| * Each iteration, an unconstrained linear least-squares problem solves for the |
| * components of \f$x\f$ in the (estimated) inactive set and the sets are updated. |
| * The unconstrained problem minimizes \f$\left\Vert A^Nx^N-b\right\Vert_2^2\f$, |
| * where \f$A^N\f$ is a matrix formed by selecting all columns of A which are |
| * in the inactive set \f$N\f$. |
| * |
| * See <a href="https://en.wikipedia.org/wiki/Non-negative_least_squares">the |
| * wikipedia page on non-negative least squares</a> for more background information. |
| * |
| * \note Please note that it is possible to construct an NNLS problem for which the |
| * algorithm does not converge. In practice these cases are extremely rare. |
| */ |
| template <class MatrixType_> |
| class NNLS { |
| public: |
| typedef MatrixType_ MatrixType; |
| |
| enum { |
| RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| Options = MatrixType::Options, |
| MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
| }; |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef typename MatrixType::Index Index; |
| |
| /** Type of a row vector of the system matrix \f$A\f$. */ |
| typedef Matrix<Scalar, ColsAtCompileTime, 1> SolutionVectorType; |
| /** Type of a column vector of the system matrix \f$A\f$. */ |
| typedef Matrix<Scalar, RowsAtCompileTime, 1> RhsVectorType; |
| typedef Matrix<Index, ColsAtCompileTime, 1> IndicesType; |
| |
| /** */ |
| NNLS(); |
| |
| /** \brief Constructs a NNLS sovler and initializes it with the given system matrix @c A. |
| * \param A Specifies the system matrix. |
| * \param max_iter Specifies the maximum number of iterations to solve the system. |
| * \param tol Specifies the precision of the optimum. |
| * This is an absolute tolerance on the gradient of the Lagrangian, \f$A^T(Ax-b)-\lambda\f$ |
| * (with Lagrange multipliers \f$\lambda\f$). |
| */ |
| NNLS(const MatrixType &A, Index max_iter = -1, Scalar tol = NumTraits<Scalar>::dummy_precision()); |
| |
| /** Initializes the solver with the matrix \a A for further solving NNLS problems. |
| * |
| * This function mostly initializes/computes the preconditioner. In the future |
| * we might, for instance, implement column reordering for faster matrix vector products. |
| */ |
| template <typename MatrixDerived> |
| NNLS<MatrixType> &compute(const EigenBase<MatrixDerived> &A); |
| |
| /** \brief Solves the NNLS problem. |
| * |
| * The dimension of @c b must be equal to the number of rows of @c A, given to the constructor. |
| * |
| * \returns The approximate solution vector \f$ x \f$. Use info() to determine if the solve was a success or not. |
| * \sa info() |
| */ |
| const SolutionVectorType &solve(const RhsVectorType &b); |
| |
| /** \brief Returns the solution if a problem was solved. |
| * If not, an uninitialized vector may be returned. */ |
| const SolutionVectorType &x() const { return x_; } |
| |
| /** \returns the tolerance threshold used by the stopping criteria. |
| * \sa setTolerance() |
| */ |
| Scalar tolerance() const { return tolerance_; } |
| |
| /** Sets the tolerance threshold used by the stopping criteria. |
| * |
| * This is an absolute tolerance on the gradient of the Lagrangian, \f$A^T(Ax-b)-\lambda\f$ |
| * (with Lagrange multipliers \f$\lambda\f$). |
| */ |
| NNLS<MatrixType> &setTolerance(const Scalar &tolerance) { |
| tolerance_ = tolerance; |
| return *this; |
| } |
| |
| /** \returns the max number of iterations. |
| * It is either the value set by setMaxIterations or, by default, twice the number of columns of the matrix. |
| */ |
| Index maxIterations() const { return max_iter_ < 0 ? 2 * A_.cols() : max_iter_; } |
| |
| /** Sets the max number of iterations. |
| * Default is twice the number of columns of the matrix. |
| * The algorithm requires at least k iterations to produce a solution vector with k non-zero entries. |
| */ |
| NNLS<MatrixType> &setMaxIterations(Index maxIters) { |
| max_iter_ = maxIters; |
| return *this; |
| } |
| |
| /** \returns the number of iterations (least-squares solves) performed during the last solve */ |
| Index iterations() const { return iterations_; } |
| |
| /** \returns Success if the iterations converged, and an error values otherwise. */ |
| ComputationInfo info() const { return info_; } |
| |
| private: |
| /** \internal Adds the given index @c idx to the inactive set N and updates the QR decomposition of \f$A^N\f$. */ |
| void moveToInactiveSet_(Index idx); |
| |
| /** \internal Removes the given index idx from the inactive set N and updates the QR decomposition of \f$A^N\f$. */ |
| void moveToActiveSet_(Index idx); |
| |
| /** \internal Solves the least-squares problem \f$\left\Vert y-A^Nx\right\Vert_2^2\f$. */ |
| void solveInactiveSet_(const RhsVectorType &b); |
| |
| private: |
| typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime> MatrixAtAType; |
| |
| /** \internal Holds the maximum number of iterations for the NNLS algorithm. |
| * @c -1 means to use the default value. */ |
| Index max_iter_; |
| /** \internal Holds the number of iterations. */ |
| Index iterations_; |
| /** \internal Holds success/fail of the last solve. */ |
| ComputationInfo info_; |
| /** \internal Size of the inactive set. */ |
| Index numInactive_; |
| /** \internal Accuracy of the algorithm w.r.t the optimality of the solution (gradient). */ |
| Scalar tolerance_; |
| /** \internal The system matrix, a copy of the one given to the constructor. */ |
| MatrixType A_; |
| /** \internal Precomputed product \f$A^TA\f$. */ |
| MatrixAtAType AtA_; |
| /** \internal Will hold the solution. */ |
| SolutionVectorType x_; |
| /** \internal Will hold the current gradient.\f$A^Tb - A^TAx\f$ */ |
| SolutionVectorType gradient_; |
| /** \internal Will hold the partial solution. */ |
| SolutionVectorType y_; |
| /** \internal Precomputed product \f$A^Tb\f$. */ |
| SolutionVectorType Atb_; |
| /** \internal Holds the current permutation partitioning the active and inactive sets. |
| * The first @c numInactive_ elements form the inactive set and the rest the active set. */ |
| IndicesType index_sets_; |
| /** \internal QR decomposition to solve the (inactive) sub system (together with @c qrCoeffs_). */ |
| MatrixType QR_; |
| /** \internal QR decomposition to solve the (inactive) sub system (together with @c QR_). */ |
| SolutionVectorType qrCoeffs_; |
| /** \internal Some workspace for QR decomposition. */ |
| SolutionVectorType tempSolutionVector_; |
| RhsVectorType tempRhsVector_; |
| }; |
| |
| /* ******************************************************************************************** |
| * Implementation |
| * ******************************************************************************************** */ |
| |
| template <typename MatrixType> |
| NNLS<MatrixType>::NNLS() |
| : max_iter_(-1), |
| iterations_(0), |
| info_(ComputationInfo::InvalidInput), |
| numInactive_(0), |
| tolerance_(NumTraits<Scalar>::dummy_precision()) {} |
| |
| template <typename MatrixType> |
| NNLS<MatrixType>::NNLS(const MatrixType &A, Index max_iter, Scalar tol) : max_iter_(max_iter), tolerance_(tol) { |
| compute(A); |
| } |
| |
| template <typename MatrixType> |
| template <typename MatrixDerived> |
| NNLS<MatrixType> &NNLS<MatrixType>::compute(const EigenBase<MatrixDerived> &A) { |
| // Ensure Scalar type is real. The non-negativity constraint doesn't obviously extend to complex numbers. |
| EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL); |
| |
| // max_iter_: unchanged |
| iterations_ = 0; |
| info_ = ComputationInfo::Success; |
| numInactive_ = 0; |
| // tolerance: unchanged |
| A_ = A.derived(); |
| AtA_.noalias() = A_.transpose() * A_; |
| x_.resize(A_.cols()); |
| gradient_.resize(A_.cols()); |
| y_.resize(A_.cols()); |
| Atb_.resize(A_.cols()); |
| index_sets_.resize(A_.cols()); |
| QR_.resize(A_.rows(), A_.cols()); |
| qrCoeffs_.resize(A_.cols()); |
| tempSolutionVector_.resize(A_.cols()); |
| tempRhsVector_.resize(A_.rows()); |
| |
| return *this; |
| } |
| |
| template <typename MatrixType> |
| const typename NNLS<MatrixType>::SolutionVectorType &NNLS<MatrixType>::solve(const RhsVectorType &b) { |
| // Initialize solver |
| iterations_ = 0; |
| info_ = ComputationInfo::NumericalIssue; |
| x_.setZero(); |
| |
| index_sets_ = IndicesType::LinSpaced(A_.cols(), 0, A_.cols() - 1); // Identity permutation. |
| numInactive_ = 0; |
| |
| // Precompute A^T*b |
| Atb_.noalias() = A_.transpose() * b; |
| |
| const Index maxIterations = this->maxIterations(); |
| |
| // OUTER LOOP |
| while (true) { |
| // Early exit if all variables are inactive, which breaks 'maxCoeff' below. |
| if (A_.cols() == numInactive_) { |
| info_ = ComputationInfo::Success; |
| return x_; |
| } |
| |
| // Find the maximum element of the gradient in the active set. |
| // If it is small or negative, then we have converged. |
| // Else, we move that variable to the inactive set. |
| gradient_.noalias() = Atb_ - AtA_ * x_; |
| |
| const Index numActive = A_.cols() - numInactive_; |
| Index argmaxGradient = -1; |
| const Scalar maxGradient = gradient_(index_sets_.tail(numActive)).maxCoeff(&argmaxGradient); |
| argmaxGradient += numInactive_; // beacause tail() skipped the first numInactive_ elements |
| |
| if (maxGradient < tolerance_) { |
| info_ = ComputationInfo::Success; |
| return x_; |
| } |
| |
| moveToInactiveSet_(argmaxGradient); |
| |
| // INNER LOOP |
| while (true) { |
| // Check if max. number of iterations is reached |
| if (iterations_ >= maxIterations) { |
| info_ = ComputationInfo::NoConvergence; |
| return x_; |
| } |
| |
| // Solve least-squares problem in inactive set only, |
| // this step is rather trivial as moveToInactiveSet_ & moveToActiveSet_ |
| // updates the QR decomposition of inactive columns A^N. |
| // solveInactiveSet_ puts the solution in y_ |
| solveInactiveSet_(b); |
| ++iterations_; // The solve is expensive, so that is what we count as an iteration. |
| |
| // Check feasability... |
| bool feasible = true; |
| Scalar alpha = NumTraits<Scalar>::highest(); |
| Index infeasibleIdx = -1; // Which variable became infeasible first. |
| for (Index i = 0; i < numInactive_; i++) { |
| Index idx = index_sets_[i]; |
| if (y_(idx) < 0) { |
| // t should always be in [0,1]. |
| Scalar t = -x_(idx) / (y_(idx) - x_(idx)); |
| if (alpha > t) { |
| alpha = t; |
| infeasibleIdx = i; |
| feasible = false; |
| } |
| } |
| } |
| eigen_assert(feasible || 0 <= infeasibleIdx); |
| |
| // If solution is feasible, exit to outer loop |
| if (feasible) { |
| x_ = y_; |
| break; |
| } |
| |
| // Infeasible solution -> interpolate to feasible one |
| for (Index i = 0; i < numInactive_; i++) { |
| Index idx = index_sets_[i]; |
| x_(idx) += alpha * (y_(idx) - x_(idx)); |
| } |
| |
| // Remove these indices from the inactive set and update QR decomposition |
| moveToActiveSet_(infeasibleIdx); |
| } |
| } |
| } |
| |
| template <typename MatrixType> |
| void NNLS<MatrixType>::moveToInactiveSet_(Index idx) { |
| // Update permutation matrix: |
| std::swap(index_sets_(idx), index_sets_(numInactive_)); |
| numInactive_++; |
| |
| // Perform rank-1 update of the QR decomposition stored in QR_ & qrCoeff_ |
| internal::householder_qr_inplace_update(QR_, qrCoeffs_, A_.col(index_sets_(numInactive_ - 1)), numInactive_ - 1, |
| tempSolutionVector_.data()); |
| } |
| |
| template <typename MatrixType> |
| void NNLS<MatrixType>::moveToActiveSet_(Index idx) { |
| // swap index with last inactive one & reduce number of inactive columns |
| std::swap(index_sets_(idx), index_sets_(numInactive_ - 1)); |
| numInactive_--; |
| // Update QR decomposition starting from the removed index up to the end [idx, ..., numInactive_] |
| for (Index i = idx; i < numInactive_; i++) { |
| Index col = index_sets_(i); |
| internal::householder_qr_inplace_update(QR_, qrCoeffs_, A_.col(col), i, tempSolutionVector_.data()); |
| } |
| } |
| |
| template <typename MatrixType> |
| void NNLS<MatrixType>::solveInactiveSet_(const RhsVectorType &b) { |
| eigen_assert(numInactive_ > 0); |
| |
| tempRhsVector_ = b; |
| |
| // tmpRHS(0:numInactive_-1) := Q'*b |
| // tmpRHS(numInactive_:end) := useless stuff we would rather not compute at all. |
| tempRhsVector_.applyOnTheLeft( |
| householderSequence(QR_.leftCols(numInactive_), qrCoeffs_.head(numInactive_)).transpose()); |
| |
| // tempSol(0:numInactive_-1) := inv(R) * Q' * b |
| // = the least-squares solution for the inactive variables. |
| tempSolutionVector_.head(numInactive_) = // |
| QR_.topLeftCorner(numInactive_, numInactive_) // |
| .template triangularView<Upper>() // |
| .solve(tempRhsVector_.head(numInactive_)); // |
| |
| // tempSol(numInactive_:end) := 0 = the value for the constrained variables. |
| tempSolutionVector_.tail(y_.size() - numInactive_).setZero(); |
| |
| // Back permute into original column order of A |
| y_.noalias() = index_sets_.asPermutation() * tempSolutionVector_.head(y_.size()); |
| } |
| |
| } // namespace Eigen |
| |
| #endif // EIGEN_NNLS_H |