blob: ce7af5e4cdc462c6e5ced714179cd714e0c699ec [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2011, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MATRIX_FUNCTION_H
#define EIGEN_MATRIX_FUNCTION_H
#include "StemFunction.h"
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
/** \brief Maximum distance allowed between eigenvalues to be considered "close". */
static const float matrix_function_separation = 0.1f;
/** \ingroup MatrixFunctions_Module
* \class MatrixFunctionAtomic
* \brief Helper class for computing matrix functions of atomic matrices.
*
* Here, an atomic matrix is a triangular matrix whose diagonal entries are close to each other.
*/
template <typename MatrixType>
class MatrixFunctionAtomic
{
public:
typedef typename MatrixType::Scalar Scalar;
typedef typename stem_function<Scalar>::type StemFunction;
/** \brief Constructor
* \param[in] f matrix function to compute.
*/
MatrixFunctionAtomic(StemFunction f) : m_f(f) { }
/** \brief Compute matrix function of atomic matrix
* \param[in] A argument of matrix function, should be upper triangular and atomic
* \returns f(A), the matrix function evaluated at the given matrix
*/
MatrixType compute(const MatrixType& A);
private:
StemFunction* m_f;
};
template <typename MatrixType>
typename NumTraits<typename MatrixType::Scalar>::Real matrix_function_compute_mu(const MatrixType& A)
{
typedef typename plain_col_type<MatrixType>::type VectorType;
Index rows = A.rows();
const MatrixType N = MatrixType::Identity(rows, rows) - A;
VectorType e = VectorType::Ones(rows);
N.template triangularView<Upper>().solveInPlace(e);
return e.cwiseAbs().maxCoeff();
}
template <typename MatrixType>
MatrixType MatrixFunctionAtomic<MatrixType>::compute(const MatrixType& A)
{
// TODO: Use that A is upper triangular
typedef typename NumTraits<Scalar>::Real RealScalar;
Index rows = A.rows();
Scalar avgEival = A.trace() / Scalar(RealScalar(rows));
MatrixType Ashifted = A - avgEival * MatrixType::Identity(rows, rows);
RealScalar mu = matrix_function_compute_mu(Ashifted);
MatrixType F = m_f(avgEival, 0) * MatrixType::Identity(rows, rows);
MatrixType P = Ashifted;
MatrixType Fincr;
for (Index s = 1; double(s) < 1.1 * double(rows) + 10.0; s++) { // upper limit is fairly arbitrary
Fincr = m_f(avgEival, static_cast<int>(s)) * P;
F += Fincr;
P = Scalar(RealScalar(1)/RealScalar(s + 1)) * P * Ashifted;
// test whether Taylor series converged
const RealScalar F_norm = F.cwiseAbs().rowwise().sum().maxCoeff();
const RealScalar Fincr_norm = Fincr.cwiseAbs().rowwise().sum().maxCoeff();
if (Fincr_norm < NumTraits<Scalar>::epsilon() * F_norm) {
RealScalar delta = 0;
RealScalar rfactorial = 1;
for (Index r = 0; r < rows; r++) {
RealScalar mx = 0;
for (Index i = 0; i < rows; i++)
mx = (std::max)(mx, std::abs(m_f(Ashifted(i, i) + avgEival, static_cast<int>(s+r))));
if (r != 0)
rfactorial *= RealScalar(r);
delta = (std::max)(delta, mx / rfactorial);
}
const RealScalar P_norm = P.cwiseAbs().rowwise().sum().maxCoeff();
if (mu * delta * P_norm < NumTraits<Scalar>::epsilon() * F_norm) // series converged
break;
}
}
return F;
}
/** \brief Find cluster in \p clusters containing some value
* \param[in] key Value to find
* \returns Iterator to cluster containing \p key, or \c clusters.end() if no cluster in \p m_clusters
* contains \p key.
*/
template <typename Index, typename ListOfClusters>
typename ListOfClusters::iterator matrix_function_find_cluster(Index key, ListOfClusters& clusters)
{
typename std::list<Index>::iterator j;
for (typename ListOfClusters::iterator i = clusters.begin(); i != clusters.end(); ++i) {
j = std::find(i->begin(), i->end(), key);
if (j != i->end())
return i;
}
return clusters.end();
}
/** \brief Partition eigenvalues in clusters of ei'vals close to each other
*
* \param[in] eivals Eigenvalues
* \param[out] clusters Resulting partition of eigenvalues
*
* The partition satisfies the following two properties:
* # Any eigenvalue in a certain cluster is at most matrix_function_separation() away from another eigenvalue
* in the same cluster.
* # The distance between two eigenvalues in different clusters is more than matrix_function_separation().
* The implementation follows Algorithm 4.1 in the paper of Davies and Higham.
*/
template <typename EivalsType, typename Cluster>
void matrix_function_partition_eigenvalues(const EivalsType& eivals, std::list<Cluster>& clusters)
{
typedef typename EivalsType::RealScalar RealScalar;
for (Index i=0; i<eivals.rows(); ++i) {
// Find cluster containing i-th ei'val, adding a new cluster if necessary
typename std::list<Cluster>::iterator qi = matrix_function_find_cluster(i, clusters);
if (qi == clusters.end()) {
Cluster l;
l.push_back(i);
clusters.push_back(l);
qi = clusters.end();
--qi;
}
// Look for other element to add to the set
for (Index j=i+1; j<eivals.rows(); ++j) {
if (abs(eivals(j) - eivals(i)) <= RealScalar(matrix_function_separation)
&& std::find(qi->begin(), qi->end(), j) == qi->end()) {
typename std::list<Cluster>::iterator qj = matrix_function_find_cluster(j, clusters);
if (qj == clusters.end()) {
qi->push_back(j);
} else {
qi->insert(qi->end(), qj->begin(), qj->end());
clusters.erase(qj);
}
}
}
}
}
/** \brief Compute size of each cluster given a partitioning */
template <typename ListOfClusters, typename Index>
void matrix_function_compute_cluster_size(const ListOfClusters& clusters, Matrix<Index, Dynamic, 1>& clusterSize)
{
const Index numClusters = static_cast<Index>(clusters.size());
clusterSize.setZero(numClusters);
Index clusterIndex = 0;
for (typename ListOfClusters::const_iterator cluster = clusters.begin(); cluster != clusters.end(); ++cluster) {
clusterSize[clusterIndex] = cluster->size();
++clusterIndex;
}
}
/** \brief Compute start of each block using clusterSize */
template <typename VectorType>
void matrix_function_compute_block_start(const VectorType& clusterSize, VectorType& blockStart)
{
blockStart.resize(clusterSize.rows());
blockStart(0) = 0;
for (Index i = 1; i < clusterSize.rows(); i++) {
blockStart(i) = blockStart(i-1) + clusterSize(i-1);
}
}
/** \brief Compute mapping of eigenvalue indices to cluster indices */
template <typename EivalsType, typename ListOfClusters, typename VectorType>
void matrix_function_compute_map(const EivalsType& eivals, const ListOfClusters& clusters, VectorType& eivalToCluster)
{
eivalToCluster.resize(eivals.rows());
Index clusterIndex = 0;
for (typename ListOfClusters::const_iterator cluster = clusters.begin(); cluster != clusters.end(); ++cluster) {
for (Index i = 0; i < eivals.rows(); ++i) {
if (std::find(cluster->begin(), cluster->end(), i) != cluster->end()) {
eivalToCluster[i] = clusterIndex;
}
}
++clusterIndex;
}
}
/** \brief Compute permutation which groups ei'vals in same cluster together */
template <typename DynVectorType, typename VectorType>
void matrix_function_compute_permutation(const DynVectorType& blockStart, const DynVectorType& eivalToCluster, VectorType& permutation)
{
DynVectorType indexNextEntry = blockStart;
permutation.resize(eivalToCluster.rows());
for (Index i = 0; i < eivalToCluster.rows(); i++) {
Index cluster = eivalToCluster[i];
permutation[i] = indexNextEntry[cluster];
++indexNextEntry[cluster];
}
}
/** \brief Permute Schur decomposition in U and T according to permutation */
template <typename VectorType, typename MatrixType>
void matrix_function_permute_schur(VectorType& permutation, MatrixType& U, MatrixType& T)
{
for (Index i = 0; i < permutation.rows() - 1; i++) {
Index j;
for (j = i; j < permutation.rows(); j++) {
if (permutation(j) == i) break;
}
eigen_assert(permutation(j) == i);
for (Index k = j-1; k >= i; k--) {
JacobiRotation<typename MatrixType::Scalar> rotation;
rotation.makeGivens(T(k, k+1), T(k+1, k+1) - T(k, k));
T.applyOnTheLeft(k, k+1, rotation.adjoint());
T.applyOnTheRight(k, k+1, rotation);
U.applyOnTheRight(k, k+1, rotation);
std::swap(permutation.coeffRef(k), permutation.coeffRef(k+1));
}
}
}
/** \brief Compute block diagonal part of matrix function.
*
* This routine computes the matrix function applied to the block diagonal part of \p T (which should be
* upper triangular), with the blocking given by \p blockStart and \p clusterSize. The matrix function of
* each diagonal block is computed by \p atomic. The off-diagonal parts of \p fT are set to zero.
*/
template <typename MatrixType, typename AtomicType, typename VectorType>
void matrix_function_compute_block_atomic(const MatrixType& T, AtomicType& atomic, const VectorType& blockStart, const VectorType& clusterSize, MatrixType& fT)
{
fT.setZero(T.rows(), T.cols());
for (Index i = 0; i < clusterSize.rows(); ++i) {
fT.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i))
= atomic.compute(T.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i)));
}
}
/** \brief Solve a triangular Sylvester equation AX + XB = C
*
* \param[in] A the matrix A; should be square and upper triangular
* \param[in] B the matrix B; should be square and upper triangular
* \param[in] C the matrix C; should have correct size.
*
* \returns the solution X.
*
* If A is m-by-m and B is n-by-n, then both C and X are m-by-n. The (i,j)-th component of the Sylvester
* equation is
* \f[
* \sum_{k=i}^m A_{ik} X_{kj} + \sum_{k=1}^j X_{ik} B_{kj} = C_{ij}.
* \f]
* This can be re-arranged to yield:
* \f[
* X_{ij} = \frac{1}{A_{ii} + B_{jj}} \Bigl( C_{ij}
* - \sum_{k=i+1}^m A_{ik} X_{kj} - \sum_{k=1}^{j-1} X_{ik} B_{kj} \Bigr).
* \f]
* It is assumed that A and B are such that the numerator is never zero (otherwise the Sylvester equation
* does not have a unique solution). In that case, these equations can be evaluated in the order
* \f$ i=m,\ldots,1 \f$ and \f$ j=1,\ldots,n \f$.
*/
template <typename MatrixType>
MatrixType matrix_function_solve_triangular_sylvester(const MatrixType& A, const MatrixType& B, const MatrixType& C)
{
eigen_assert(A.rows() == A.cols());
eigen_assert(A.isUpperTriangular());
eigen_assert(B.rows() == B.cols());
eigen_assert(B.isUpperTriangular());
eigen_assert(C.rows() == A.rows());
eigen_assert(C.cols() == B.rows());
typedef typename MatrixType::Scalar Scalar;
Index m = A.rows();
Index n = B.rows();
MatrixType X(m, n);
for (Index i = m - 1; i >= 0; --i) {
for (Index j = 0; j < n; ++j) {
// Compute AX = \sum_{k=i+1}^m A_{ik} X_{kj}
Scalar AX;
if (i == m - 1) {
AX = 0;
} else {
Matrix<Scalar,1,1> AXmatrix = A.row(i).tail(m-1-i) * X.col(j).tail(m-1-i);
AX = AXmatrix(0,0);
}
// Compute XB = \sum_{k=1}^{j-1} X_{ik} B_{kj}
Scalar XB;
if (j == 0) {
XB = 0;
} else {
Matrix<Scalar,1,1> XBmatrix = X.row(i).head(j) * B.col(j).head(j);
XB = XBmatrix(0,0);
}
X(i,j) = (C(i,j) - AX - XB) / (A(i,i) + B(j,j));
}
}
return X;
}
/** \brief Compute part of matrix function above block diagonal.
*
* This routine completes the computation of \p fT, denoting a matrix function applied to the triangular
* matrix \p T. It assumes that the block diagonal part of \p fT has already been computed. The part below
* the diagonal is zero, because \p T is upper triangular.
*/
template <typename MatrixType, typename VectorType>
void matrix_function_compute_above_diagonal(const MatrixType& T, const VectorType& blockStart, const VectorType& clusterSize, MatrixType& fT)
{
typedef internal::traits<MatrixType> Traits;
typedef typename MatrixType::Scalar Scalar;
static const int Options = MatrixType::Options;
typedef Matrix<Scalar, Dynamic, Dynamic, Options, Traits::RowsAtCompileTime, Traits::ColsAtCompileTime> DynMatrixType;
for (Index k = 1; k < clusterSize.rows(); k++) {
for (Index i = 0; i < clusterSize.rows() - k; i++) {
// compute (i, i+k) block
DynMatrixType A = T.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i));
DynMatrixType B = -T.block(blockStart(i+k), blockStart(i+k), clusterSize(i+k), clusterSize(i+k));
DynMatrixType C = fT.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i))
* T.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k));
C -= T.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k))
* fT.block(blockStart(i+k), blockStart(i+k), clusterSize(i+k), clusterSize(i+k));
for (Index m = i + 1; m < i + k; m++) {
C += fT.block(blockStart(i), blockStart(m), clusterSize(i), clusterSize(m))
* T.block(blockStart(m), blockStart(i+k), clusterSize(m), clusterSize(i+k));
C -= T.block(blockStart(i), blockStart(m), clusterSize(i), clusterSize(m))
* fT.block(blockStart(m), blockStart(i+k), clusterSize(m), clusterSize(i+k));
}
fT.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k))
= matrix_function_solve_triangular_sylvester(A, B, C);
}
}
}
/** \ingroup MatrixFunctions_Module
* \brief Class for computing matrix functions.
* \tparam MatrixType type of the argument of the matrix function,
* expected to be an instantiation of the Matrix class template.
* \tparam AtomicType type for computing matrix function of atomic blocks.
* \tparam IsComplex used internally to select correct specialization.
*
* This class implements the Schur-Parlett algorithm for computing matrix functions. The spectrum of the
* matrix is divided in clustered of eigenvalues that lies close together. This class delegates the
* computation of the matrix function on every block corresponding to these clusters to an object of type
* \p AtomicType and uses these results to compute the matrix function of the whole matrix. The class
* \p AtomicType should have a \p compute() member function for computing the matrix function of a block.
*
* \sa class MatrixFunctionAtomic, class MatrixLogarithmAtomic
*/
template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
struct matrix_function_compute
{
/** \brief Compute the matrix function.
*
* \param[in] A argument of matrix function, should be a square matrix.
* \param[in] atomic class for computing matrix function of atomic blocks.
* \param[out] result the function \p f applied to \p A, as
* specified in the constructor.
*
* See MatrixBase::matrixFunction() for details on how this computation
* is implemented.
*/
template <typename AtomicType, typename ResultType>
static void run(const MatrixType& A, AtomicType& atomic, ResultType &result);
};
/** \internal \ingroup MatrixFunctions_Module
* \brief Partial specialization of MatrixFunction for real matrices
*
* This converts the real matrix to a complex matrix, compute the matrix function of that matrix, and then
* converts the result back to a real matrix.
*/
template <typename MatrixType>
struct matrix_function_compute<MatrixType, 0>
{
template <typename MatA, typename AtomicType, typename ResultType>
static void run(const MatA& A, AtomicType& atomic, ResultType &result)
{
typedef internal::traits<MatrixType> Traits;
typedef typename Traits::Scalar Scalar;
static const int Rows = Traits::RowsAtCompileTime, Cols = Traits::ColsAtCompileTime;
static const int MaxRows = Traits::MaxRowsAtCompileTime, MaxCols = Traits::MaxColsAtCompileTime;
typedef std::complex<Scalar> ComplexScalar;
typedef Matrix<ComplexScalar, Rows, Cols, 0, MaxRows, MaxCols> ComplexMatrix;
ComplexMatrix CA = A.template cast<ComplexScalar>();
ComplexMatrix Cresult;
matrix_function_compute<ComplexMatrix>::run(CA, atomic, Cresult);
result = Cresult.real();
}
};
/** \internal \ingroup MatrixFunctions_Module
* \brief Partial specialization of MatrixFunction for complex matrices
*/
template <typename MatrixType>
struct matrix_function_compute<MatrixType, 1>
{
template <typename MatA, typename AtomicType, typename ResultType>
static void run(const MatA& A, AtomicType& atomic, ResultType &result)
{
typedef internal::traits<MatrixType> Traits;
// compute Schur decomposition of A
const ComplexSchur<MatrixType> schurOfA(A);
eigen_assert(schurOfA.info()==Success);
MatrixType T = schurOfA.matrixT();
MatrixType U = schurOfA.matrixU();
// partition eigenvalues into clusters of ei'vals "close" to each other
std::list<std::list<Index> > clusters;
matrix_function_partition_eigenvalues(T.diagonal(), clusters);
// compute size of each cluster
Matrix<Index, Dynamic, 1> clusterSize;
matrix_function_compute_cluster_size(clusters, clusterSize);
// blockStart[i] is row index at which block corresponding to i-th cluster starts
Matrix<Index, Dynamic, 1> blockStart;
matrix_function_compute_block_start(clusterSize, blockStart);
// compute map so that eivalToCluster[i] = j means that i-th ei'val is in j-th cluster
Matrix<Index, Dynamic, 1> eivalToCluster;
matrix_function_compute_map(T.diagonal(), clusters, eivalToCluster);
// compute permutation which groups ei'vals in same cluster together
Matrix<Index, Traits::RowsAtCompileTime, 1> permutation;
matrix_function_compute_permutation(blockStart, eivalToCluster, permutation);
// permute Schur decomposition
matrix_function_permute_schur(permutation, U, T);
// compute result
MatrixType fT; // matrix function applied to T
matrix_function_compute_block_atomic(T, atomic, blockStart, clusterSize, fT);
matrix_function_compute_above_diagonal(T, blockStart, clusterSize, fT);
result = U * (fT.template triangularView<Upper>() * U.adjoint());
}
};
} // end of namespace internal
/** \ingroup MatrixFunctions_Module
*
* \brief Proxy for the matrix function of some matrix (expression).
*
* \tparam Derived Type of the argument to the matrix function.
*
* This class holds the argument to the matrix function until it is assigned or evaluated for some other
* reason (so the argument should not be changed in the meantime). It is the return type of
* matrixBase::matrixFunction() and related functions and most of the time this is the only way it is used.
*/
template<typename Derived> class MatrixFunctionReturnValue
: public ReturnByValue<MatrixFunctionReturnValue<Derived> >
{
public:
typedef typename Derived::Scalar Scalar;
typedef typename internal::stem_function<Scalar>::type StemFunction;
protected:
typedef typename internal::ref_selector<Derived>::type DerivedNested;
public:
/** \brief Constructor.
*
* \param[in] A %Matrix (expression) forming the argument of the matrix function.
* \param[in] f Stem function for matrix function under consideration.
*/
MatrixFunctionReturnValue(const Derived& A, StemFunction f) : m_A(A), m_f(f) { }
/** \brief Compute the matrix function.
*
* \param[out] result \p f applied to \p A, where \p f and \p A are as in the constructor.
*/
template <typename ResultType>
inline void evalTo(ResultType& result) const
{
typedef typename internal::nested_eval<Derived, 10>::type NestedEvalType;
typedef internal::remove_all_t<NestedEvalType> NestedEvalTypeClean;
typedef internal::traits<NestedEvalTypeClean> Traits;
typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0, Traits::RowsAtCompileTime, Traits::ColsAtCompileTime> DynMatrixType;
typedef internal::MatrixFunctionAtomic<DynMatrixType> AtomicType;
AtomicType atomic(m_f);
internal::matrix_function_compute<typename NestedEvalTypeClean::PlainObject>::run(m_A, atomic, result);
}
Index rows() const { return m_A.rows(); }
Index cols() const { return m_A.cols(); }
private:
const DerivedNested m_A;
StemFunction *m_f;
};
namespace internal {
template<typename Derived>
struct traits<MatrixFunctionReturnValue<Derived> >
{
typedef typename Derived::PlainObject ReturnType;
};
}
/********** MatrixBase methods **********/
template <typename Derived>
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::matrixFunction(typename internal::stem_function<typename internal::traits<Derived>::Scalar>::type f) const
{
eigen_assert(rows() == cols());
return MatrixFunctionReturnValue<Derived>(derived(), f);
}
template <typename Derived>
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sin() const
{
eigen_assert(rows() == cols());
typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_sin<ComplexScalar>);
}
template <typename Derived>
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cos() const
{
eigen_assert(rows() == cols());
typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_cos<ComplexScalar>);
}
template <typename Derived>
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sinh() const
{
eigen_assert(rows() == cols());
typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_sinh<ComplexScalar>);
}
template <typename Derived>
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cosh() const
{
eigen_assert(rows() == cols());
typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_cosh<ComplexScalar>);
}
} // end namespace Eigen
#endif // EIGEN_MATRIX_FUNCTION_H