| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009-2011, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_MATRIX_FUNCTION_H |
| #define EIGEN_MATRIX_FUNCTION_H |
| |
| #include "StemFunction.h" |
| |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| /** \brief Maximum distance allowed between eigenvalues to be considered "close". */ |
| static const float matrix_function_separation = 0.1f; |
| |
| /** \ingroup MatrixFunctions_Module |
| * \class MatrixFunctionAtomic |
| * \brief Helper class for computing matrix functions of atomic matrices. |
| * |
| * Here, an atomic matrix is a triangular matrix whose diagonal entries are close to each other. |
| */ |
| template <typename MatrixType> |
| class MatrixFunctionAtomic |
| { |
| public: |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename stem_function<Scalar>::type StemFunction; |
| |
| /** \brief Constructor |
| * \param[in] f matrix function to compute. |
| */ |
| MatrixFunctionAtomic(StemFunction f) : m_f(f) { } |
| |
| /** \brief Compute matrix function of atomic matrix |
| * \param[in] A argument of matrix function, should be upper triangular and atomic |
| * \returns f(A), the matrix function evaluated at the given matrix |
| */ |
| MatrixType compute(const MatrixType& A); |
| |
| private: |
| StemFunction* m_f; |
| }; |
| |
| template <typename MatrixType> |
| typename NumTraits<typename MatrixType::Scalar>::Real matrix_function_compute_mu(const MatrixType& A) |
| { |
| typedef typename plain_col_type<MatrixType>::type VectorType; |
| Index rows = A.rows(); |
| const MatrixType N = MatrixType::Identity(rows, rows) - A; |
| VectorType e = VectorType::Ones(rows); |
| N.template triangularView<Upper>().solveInPlace(e); |
| return e.cwiseAbs().maxCoeff(); |
| } |
| |
| template <typename MatrixType> |
| MatrixType MatrixFunctionAtomic<MatrixType>::compute(const MatrixType& A) |
| { |
| // TODO: Use that A is upper triangular |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| Index rows = A.rows(); |
| Scalar avgEival = A.trace() / Scalar(RealScalar(rows)); |
| MatrixType Ashifted = A - avgEival * MatrixType::Identity(rows, rows); |
| RealScalar mu = matrix_function_compute_mu(Ashifted); |
| MatrixType F = m_f(avgEival, 0) * MatrixType::Identity(rows, rows); |
| MatrixType P = Ashifted; |
| MatrixType Fincr; |
| for (Index s = 1; double(s) < 1.1 * double(rows) + 10.0; s++) { // upper limit is fairly arbitrary |
| Fincr = m_f(avgEival, static_cast<int>(s)) * P; |
| F += Fincr; |
| P = Scalar(RealScalar(1)/RealScalar(s + 1)) * P * Ashifted; |
| |
| // test whether Taylor series converged |
| const RealScalar F_norm = F.cwiseAbs().rowwise().sum().maxCoeff(); |
| const RealScalar Fincr_norm = Fincr.cwiseAbs().rowwise().sum().maxCoeff(); |
| if (Fincr_norm < NumTraits<Scalar>::epsilon() * F_norm) { |
| RealScalar delta = 0; |
| RealScalar rfactorial = 1; |
| for (Index r = 0; r < rows; r++) { |
| RealScalar mx = 0; |
| for (Index i = 0; i < rows; i++) |
| mx = (std::max)(mx, std::abs(m_f(Ashifted(i, i) + avgEival, static_cast<int>(s+r)))); |
| if (r != 0) |
| rfactorial *= RealScalar(r); |
| delta = (std::max)(delta, mx / rfactorial); |
| } |
| const RealScalar P_norm = P.cwiseAbs().rowwise().sum().maxCoeff(); |
| if (mu * delta * P_norm < NumTraits<Scalar>::epsilon() * F_norm) // series converged |
| break; |
| } |
| } |
| return F; |
| } |
| |
| /** \brief Find cluster in \p clusters containing some value |
| * \param[in] key Value to find |
| * \returns Iterator to cluster containing \p key, or \c clusters.end() if no cluster in \p m_clusters |
| * contains \p key. |
| */ |
| template <typename Index, typename ListOfClusters> |
| typename ListOfClusters::iterator matrix_function_find_cluster(Index key, ListOfClusters& clusters) |
| { |
| typename std::list<Index>::iterator j; |
| for (typename ListOfClusters::iterator i = clusters.begin(); i != clusters.end(); ++i) { |
| j = std::find(i->begin(), i->end(), key); |
| if (j != i->end()) |
| return i; |
| } |
| return clusters.end(); |
| } |
| |
| /** \brief Partition eigenvalues in clusters of ei'vals close to each other |
| * |
| * \param[in] eivals Eigenvalues |
| * \param[out] clusters Resulting partition of eigenvalues |
| * |
| * The partition satisfies the following two properties: |
| * # Any eigenvalue in a certain cluster is at most matrix_function_separation() away from another eigenvalue |
| * in the same cluster. |
| * # The distance between two eigenvalues in different clusters is more than matrix_function_separation(). |
| * The implementation follows Algorithm 4.1 in the paper of Davies and Higham. |
| */ |
| template <typename EivalsType, typename Cluster> |
| void matrix_function_partition_eigenvalues(const EivalsType& eivals, std::list<Cluster>& clusters) |
| { |
| typedef typename EivalsType::RealScalar RealScalar; |
| for (Index i=0; i<eivals.rows(); ++i) { |
| // Find cluster containing i-th ei'val, adding a new cluster if necessary |
| typename std::list<Cluster>::iterator qi = matrix_function_find_cluster(i, clusters); |
| if (qi == clusters.end()) { |
| Cluster l; |
| l.push_back(i); |
| clusters.push_back(l); |
| qi = clusters.end(); |
| --qi; |
| } |
| |
| // Look for other element to add to the set |
| for (Index j=i+1; j<eivals.rows(); ++j) { |
| if (abs(eivals(j) - eivals(i)) <= RealScalar(matrix_function_separation) |
| && std::find(qi->begin(), qi->end(), j) == qi->end()) { |
| typename std::list<Cluster>::iterator qj = matrix_function_find_cluster(j, clusters); |
| if (qj == clusters.end()) { |
| qi->push_back(j); |
| } else { |
| qi->insert(qi->end(), qj->begin(), qj->end()); |
| clusters.erase(qj); |
| } |
| } |
| } |
| } |
| } |
| |
| /** \brief Compute size of each cluster given a partitioning */ |
| template <typename ListOfClusters, typename Index> |
| void matrix_function_compute_cluster_size(const ListOfClusters& clusters, Matrix<Index, Dynamic, 1>& clusterSize) |
| { |
| const Index numClusters = static_cast<Index>(clusters.size()); |
| clusterSize.setZero(numClusters); |
| Index clusterIndex = 0; |
| for (typename ListOfClusters::const_iterator cluster = clusters.begin(); cluster != clusters.end(); ++cluster) { |
| clusterSize[clusterIndex] = cluster->size(); |
| ++clusterIndex; |
| } |
| } |
| |
| /** \brief Compute start of each block using clusterSize */ |
| template <typename VectorType> |
| void matrix_function_compute_block_start(const VectorType& clusterSize, VectorType& blockStart) |
| { |
| blockStart.resize(clusterSize.rows()); |
| blockStart(0) = 0; |
| for (Index i = 1; i < clusterSize.rows(); i++) { |
| blockStart(i) = blockStart(i-1) + clusterSize(i-1); |
| } |
| } |
| |
| /** \brief Compute mapping of eigenvalue indices to cluster indices */ |
| template <typename EivalsType, typename ListOfClusters, typename VectorType> |
| void matrix_function_compute_map(const EivalsType& eivals, const ListOfClusters& clusters, VectorType& eivalToCluster) |
| { |
| eivalToCluster.resize(eivals.rows()); |
| Index clusterIndex = 0; |
| for (typename ListOfClusters::const_iterator cluster = clusters.begin(); cluster != clusters.end(); ++cluster) { |
| for (Index i = 0; i < eivals.rows(); ++i) { |
| if (std::find(cluster->begin(), cluster->end(), i) != cluster->end()) { |
| eivalToCluster[i] = clusterIndex; |
| } |
| } |
| ++clusterIndex; |
| } |
| } |
| |
| /** \brief Compute permutation which groups ei'vals in same cluster together */ |
| template <typename DynVectorType, typename VectorType> |
| void matrix_function_compute_permutation(const DynVectorType& blockStart, const DynVectorType& eivalToCluster, VectorType& permutation) |
| { |
| DynVectorType indexNextEntry = blockStart; |
| permutation.resize(eivalToCluster.rows()); |
| for (Index i = 0; i < eivalToCluster.rows(); i++) { |
| Index cluster = eivalToCluster[i]; |
| permutation[i] = indexNextEntry[cluster]; |
| ++indexNextEntry[cluster]; |
| } |
| } |
| |
| /** \brief Permute Schur decomposition in U and T according to permutation */ |
| template <typename VectorType, typename MatrixType> |
| void matrix_function_permute_schur(VectorType& permutation, MatrixType& U, MatrixType& T) |
| { |
| for (Index i = 0; i < permutation.rows() - 1; i++) { |
| Index j; |
| for (j = i; j < permutation.rows(); j++) { |
| if (permutation(j) == i) break; |
| } |
| eigen_assert(permutation(j) == i); |
| for (Index k = j-1; k >= i; k--) { |
| JacobiRotation<typename MatrixType::Scalar> rotation; |
| rotation.makeGivens(T(k, k+1), T(k+1, k+1) - T(k, k)); |
| T.applyOnTheLeft(k, k+1, rotation.adjoint()); |
| T.applyOnTheRight(k, k+1, rotation); |
| U.applyOnTheRight(k, k+1, rotation); |
| std::swap(permutation.coeffRef(k), permutation.coeffRef(k+1)); |
| } |
| } |
| } |
| |
| /** \brief Compute block diagonal part of matrix function. |
| * |
| * This routine computes the matrix function applied to the block diagonal part of \p T (which should be |
| * upper triangular), with the blocking given by \p blockStart and \p clusterSize. The matrix function of |
| * each diagonal block is computed by \p atomic. The off-diagonal parts of \p fT are set to zero. |
| */ |
| template <typename MatrixType, typename AtomicType, typename VectorType> |
| void matrix_function_compute_block_atomic(const MatrixType& T, AtomicType& atomic, const VectorType& blockStart, const VectorType& clusterSize, MatrixType& fT) |
| { |
| fT.setZero(T.rows(), T.cols()); |
| for (Index i = 0; i < clusterSize.rows(); ++i) { |
| fT.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i)) |
| = atomic.compute(T.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i))); |
| } |
| } |
| |
| /** \brief Solve a triangular Sylvester equation AX + XB = C |
| * |
| * \param[in] A the matrix A; should be square and upper triangular |
| * \param[in] B the matrix B; should be square and upper triangular |
| * \param[in] C the matrix C; should have correct size. |
| * |
| * \returns the solution X. |
| * |
| * If A is m-by-m and B is n-by-n, then both C and X are m-by-n. The (i,j)-th component of the Sylvester |
| * equation is |
| * \f[ |
| * \sum_{k=i}^m A_{ik} X_{kj} + \sum_{k=1}^j X_{ik} B_{kj} = C_{ij}. |
| * \f] |
| * This can be re-arranged to yield: |
| * \f[ |
| * X_{ij} = \frac{1}{A_{ii} + B_{jj}} \Bigl( C_{ij} |
| * - \sum_{k=i+1}^m A_{ik} X_{kj} - \sum_{k=1}^{j-1} X_{ik} B_{kj} \Bigr). |
| * \f] |
| * It is assumed that A and B are such that the numerator is never zero (otherwise the Sylvester equation |
| * does not have a unique solution). In that case, these equations can be evaluated in the order |
| * \f$ i=m,\ldots,1 \f$ and \f$ j=1,\ldots,n \f$. |
| */ |
| template <typename MatrixType> |
| MatrixType matrix_function_solve_triangular_sylvester(const MatrixType& A, const MatrixType& B, const MatrixType& C) |
| { |
| eigen_assert(A.rows() == A.cols()); |
| eigen_assert(A.isUpperTriangular()); |
| eigen_assert(B.rows() == B.cols()); |
| eigen_assert(B.isUpperTriangular()); |
| eigen_assert(C.rows() == A.rows()); |
| eigen_assert(C.cols() == B.rows()); |
| |
| typedef typename MatrixType::Scalar Scalar; |
| |
| Index m = A.rows(); |
| Index n = B.rows(); |
| MatrixType X(m, n); |
| |
| for (Index i = m - 1; i >= 0; --i) { |
| for (Index j = 0; j < n; ++j) { |
| |
| // Compute AX = \sum_{k=i+1}^m A_{ik} X_{kj} |
| Scalar AX; |
| if (i == m - 1) { |
| AX = 0; |
| } else { |
| Matrix<Scalar,1,1> AXmatrix = A.row(i).tail(m-1-i) * X.col(j).tail(m-1-i); |
| AX = AXmatrix(0,0); |
| } |
| |
| // Compute XB = \sum_{k=1}^{j-1} X_{ik} B_{kj} |
| Scalar XB; |
| if (j == 0) { |
| XB = 0; |
| } else { |
| Matrix<Scalar,1,1> XBmatrix = X.row(i).head(j) * B.col(j).head(j); |
| XB = XBmatrix(0,0); |
| } |
| |
| X(i,j) = (C(i,j) - AX - XB) / (A(i,i) + B(j,j)); |
| } |
| } |
| return X; |
| } |
| |
| /** \brief Compute part of matrix function above block diagonal. |
| * |
| * This routine completes the computation of \p fT, denoting a matrix function applied to the triangular |
| * matrix \p T. It assumes that the block diagonal part of \p fT has already been computed. The part below |
| * the diagonal is zero, because \p T is upper triangular. |
| */ |
| template <typename MatrixType, typename VectorType> |
| void matrix_function_compute_above_diagonal(const MatrixType& T, const VectorType& blockStart, const VectorType& clusterSize, MatrixType& fT) |
| { |
| typedef internal::traits<MatrixType> Traits; |
| typedef typename MatrixType::Scalar Scalar; |
| static const int Options = MatrixType::Options; |
| typedef Matrix<Scalar, Dynamic, Dynamic, Options, Traits::RowsAtCompileTime, Traits::ColsAtCompileTime> DynMatrixType; |
| |
| for (Index k = 1; k < clusterSize.rows(); k++) { |
| for (Index i = 0; i < clusterSize.rows() - k; i++) { |
| // compute (i, i+k) block |
| DynMatrixType A = T.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i)); |
| DynMatrixType B = -T.block(blockStart(i+k), blockStart(i+k), clusterSize(i+k), clusterSize(i+k)); |
| DynMatrixType C = fT.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i)) |
| * T.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k)); |
| C -= T.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k)) |
| * fT.block(blockStart(i+k), blockStart(i+k), clusterSize(i+k), clusterSize(i+k)); |
| for (Index m = i + 1; m < i + k; m++) { |
| C += fT.block(blockStart(i), blockStart(m), clusterSize(i), clusterSize(m)) |
| * T.block(blockStart(m), blockStart(i+k), clusterSize(m), clusterSize(i+k)); |
| C -= T.block(blockStart(i), blockStart(m), clusterSize(i), clusterSize(m)) |
| * fT.block(blockStart(m), blockStart(i+k), clusterSize(m), clusterSize(i+k)); |
| } |
| fT.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k)) |
| = matrix_function_solve_triangular_sylvester(A, B, C); |
| } |
| } |
| } |
| |
| /** \ingroup MatrixFunctions_Module |
| * \brief Class for computing matrix functions. |
| * \tparam MatrixType type of the argument of the matrix function, |
| * expected to be an instantiation of the Matrix class template. |
| * \tparam AtomicType type for computing matrix function of atomic blocks. |
| * \tparam IsComplex used internally to select correct specialization. |
| * |
| * This class implements the Schur-Parlett algorithm for computing matrix functions. The spectrum of the |
| * matrix is divided in clustered of eigenvalues that lies close together. This class delegates the |
| * computation of the matrix function on every block corresponding to these clusters to an object of type |
| * \p AtomicType and uses these results to compute the matrix function of the whole matrix. The class |
| * \p AtomicType should have a \p compute() member function for computing the matrix function of a block. |
| * |
| * \sa class MatrixFunctionAtomic, class MatrixLogarithmAtomic |
| */ |
| template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex> |
| struct matrix_function_compute |
| { |
| /** \brief Compute the matrix function. |
| * |
| * \param[in] A argument of matrix function, should be a square matrix. |
| * \param[in] atomic class for computing matrix function of atomic blocks. |
| * \param[out] result the function \p f applied to \p A, as |
| * specified in the constructor. |
| * |
| * See MatrixBase::matrixFunction() for details on how this computation |
| * is implemented. |
| */ |
| template <typename AtomicType, typename ResultType> |
| static void run(const MatrixType& A, AtomicType& atomic, ResultType &result); |
| }; |
| |
| /** \internal \ingroup MatrixFunctions_Module |
| * \brief Partial specialization of MatrixFunction for real matrices |
| * |
| * This converts the real matrix to a complex matrix, compute the matrix function of that matrix, and then |
| * converts the result back to a real matrix. |
| */ |
| template <typename MatrixType> |
| struct matrix_function_compute<MatrixType, 0> |
| { |
| template <typename MatA, typename AtomicType, typename ResultType> |
| static void run(const MatA& A, AtomicType& atomic, ResultType &result) |
| { |
| typedef internal::traits<MatrixType> Traits; |
| typedef typename Traits::Scalar Scalar; |
| static const int Rows = Traits::RowsAtCompileTime, Cols = Traits::ColsAtCompileTime; |
| static const int MaxRows = Traits::MaxRowsAtCompileTime, MaxCols = Traits::MaxColsAtCompileTime; |
| |
| typedef std::complex<Scalar> ComplexScalar; |
| typedef Matrix<ComplexScalar, Rows, Cols, 0, MaxRows, MaxCols> ComplexMatrix; |
| |
| ComplexMatrix CA = A.template cast<ComplexScalar>(); |
| ComplexMatrix Cresult; |
| matrix_function_compute<ComplexMatrix>::run(CA, atomic, Cresult); |
| result = Cresult.real(); |
| } |
| }; |
| |
| /** \internal \ingroup MatrixFunctions_Module |
| * \brief Partial specialization of MatrixFunction for complex matrices |
| */ |
| template <typename MatrixType> |
| struct matrix_function_compute<MatrixType, 1> |
| { |
| template <typename MatA, typename AtomicType, typename ResultType> |
| static void run(const MatA& A, AtomicType& atomic, ResultType &result) |
| { |
| typedef internal::traits<MatrixType> Traits; |
| |
| // compute Schur decomposition of A |
| const ComplexSchur<MatrixType> schurOfA(A); |
| eigen_assert(schurOfA.info()==Success); |
| MatrixType T = schurOfA.matrixT(); |
| MatrixType U = schurOfA.matrixU(); |
| |
| // partition eigenvalues into clusters of ei'vals "close" to each other |
| std::list<std::list<Index> > clusters; |
| matrix_function_partition_eigenvalues(T.diagonal(), clusters); |
| |
| // compute size of each cluster |
| Matrix<Index, Dynamic, 1> clusterSize; |
| matrix_function_compute_cluster_size(clusters, clusterSize); |
| |
| // blockStart[i] is row index at which block corresponding to i-th cluster starts |
| Matrix<Index, Dynamic, 1> blockStart; |
| matrix_function_compute_block_start(clusterSize, blockStart); |
| |
| // compute map so that eivalToCluster[i] = j means that i-th ei'val is in j-th cluster |
| Matrix<Index, Dynamic, 1> eivalToCluster; |
| matrix_function_compute_map(T.diagonal(), clusters, eivalToCluster); |
| |
| // compute permutation which groups ei'vals in same cluster together |
| Matrix<Index, Traits::RowsAtCompileTime, 1> permutation; |
| matrix_function_compute_permutation(blockStart, eivalToCluster, permutation); |
| |
| // permute Schur decomposition |
| matrix_function_permute_schur(permutation, U, T); |
| |
| // compute result |
| MatrixType fT; // matrix function applied to T |
| matrix_function_compute_block_atomic(T, atomic, blockStart, clusterSize, fT); |
| matrix_function_compute_above_diagonal(T, blockStart, clusterSize, fT); |
| result = U * (fT.template triangularView<Upper>() * U.adjoint()); |
| } |
| }; |
| |
| } // end of namespace internal |
| |
| /** \ingroup MatrixFunctions_Module |
| * |
| * \brief Proxy for the matrix function of some matrix (expression). |
| * |
| * \tparam Derived Type of the argument to the matrix function. |
| * |
| * This class holds the argument to the matrix function until it is assigned or evaluated for some other |
| * reason (so the argument should not be changed in the meantime). It is the return type of |
| * matrixBase::matrixFunction() and related functions and most of the time this is the only way it is used. |
| */ |
| template<typename Derived> class MatrixFunctionReturnValue |
| : public ReturnByValue<MatrixFunctionReturnValue<Derived> > |
| { |
| public: |
| typedef typename Derived::Scalar Scalar; |
| typedef typename internal::stem_function<Scalar>::type StemFunction; |
| |
| protected: |
| typedef typename internal::ref_selector<Derived>::type DerivedNested; |
| |
| public: |
| |
| /** \brief Constructor. |
| * |
| * \param[in] A %Matrix (expression) forming the argument of the matrix function. |
| * \param[in] f Stem function for matrix function under consideration. |
| */ |
| MatrixFunctionReturnValue(const Derived& A, StemFunction f) : m_A(A), m_f(f) { } |
| |
| /** \brief Compute the matrix function. |
| * |
| * \param[out] result \p f applied to \p A, where \p f and \p A are as in the constructor. |
| */ |
| template <typename ResultType> |
| inline void evalTo(ResultType& result) const |
| { |
| typedef typename internal::nested_eval<Derived, 10>::type NestedEvalType; |
| typedef internal::remove_all_t<NestedEvalType> NestedEvalTypeClean; |
| typedef internal::traits<NestedEvalTypeClean> Traits; |
| typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar; |
| typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0, Traits::RowsAtCompileTime, Traits::ColsAtCompileTime> DynMatrixType; |
| |
| typedef internal::MatrixFunctionAtomic<DynMatrixType> AtomicType; |
| AtomicType atomic(m_f); |
| |
| internal::matrix_function_compute<typename NestedEvalTypeClean::PlainObject>::run(m_A, atomic, result); |
| } |
| |
| Index rows() const { return m_A.rows(); } |
| Index cols() const { return m_A.cols(); } |
| |
| private: |
| const DerivedNested m_A; |
| StemFunction *m_f; |
| }; |
| |
| namespace internal { |
| template<typename Derived> |
| struct traits<MatrixFunctionReturnValue<Derived> > |
| { |
| typedef typename Derived::PlainObject ReturnType; |
| }; |
| } |
| |
| |
| /********** MatrixBase methods **********/ |
| |
| |
| template <typename Derived> |
| const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::matrixFunction(typename internal::stem_function<typename internal::traits<Derived>::Scalar>::type f) const |
| { |
| eigen_assert(rows() == cols()); |
| return MatrixFunctionReturnValue<Derived>(derived(), f); |
| } |
| |
| template <typename Derived> |
| const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sin() const |
| { |
| eigen_assert(rows() == cols()); |
| typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar; |
| return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_sin<ComplexScalar>); |
| } |
| |
| template <typename Derived> |
| const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cos() const |
| { |
| eigen_assert(rows() == cols()); |
| typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar; |
| return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_cos<ComplexScalar>); |
| } |
| |
| template <typename Derived> |
| const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sinh() const |
| { |
| eigen_assert(rows() == cols()); |
| typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar; |
| return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_sinh<ComplexScalar>); |
| } |
| |
| template <typename Derived> |
| const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cosh() const |
| { |
| eigen_assert(rows() == cols()); |
| typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar; |
| return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_cosh<ComplexScalar>); |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_MATRIX_FUNCTION_H |