| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2011, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_MATRIX_SQUARE_ROOT |
| #define EIGEN_MATRIX_SQUARE_ROOT |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| // pre: T.block(i,i,2,2) has complex conjugate eigenvalues |
| // post: sqrtT.block(i,i,2,2) is square root of T.block(i,i,2,2) |
| template <typename MatrixType, typename ResultType> |
| void matrix_sqrt_quasi_triangular_2x2_diagonal_block(const MatrixType& T, Index i, ResultType& sqrtT) |
| { |
| // TODO: This case (2-by-2 blocks with complex conjugate eigenvalues) is probably hidden somewhere |
| // in EigenSolver. If we expose it, we could call it directly from here. |
| typedef typename traits<MatrixType>::Scalar Scalar; |
| Matrix<Scalar,2,2> block = T.template block<2,2>(i,i); |
| EigenSolver<Matrix<Scalar,2,2> > es(block); |
| sqrtT.template block<2,2>(i,i) |
| = (es.eigenvectors() * es.eigenvalues().cwiseSqrt().asDiagonal() * es.eigenvectors().inverse()).real(); |
| } |
| |
| // pre: block structure of T is such that (i,j) is a 1x1 block, |
| // all blocks of sqrtT to left of and below (i,j) are correct |
| // post: sqrtT(i,j) has the correct value |
| template <typename MatrixType, typename ResultType> |
| void matrix_sqrt_quasi_triangular_1x1_off_diagonal_block(const MatrixType& T, Index i, Index j, ResultType& sqrtT) |
| { |
| typedef typename traits<MatrixType>::Scalar Scalar; |
| Scalar tmp = (sqrtT.row(i).segment(i+1,j-i-1) * sqrtT.col(j).segment(i+1,j-i-1)).value(); |
| sqrtT.coeffRef(i,j) = (T.coeff(i,j) - tmp) / (sqrtT.coeff(i,i) + sqrtT.coeff(j,j)); |
| } |
| |
| // similar to compute1x1offDiagonalBlock() |
| template <typename MatrixType, typename ResultType> |
| void matrix_sqrt_quasi_triangular_1x2_off_diagonal_block(const MatrixType& T, Index i, Index j, ResultType& sqrtT) |
| { |
| typedef typename traits<MatrixType>::Scalar Scalar; |
| Matrix<Scalar,1,2> rhs = T.template block<1,2>(i,j); |
| if (j-i > 1) |
| rhs -= sqrtT.block(i, i+1, 1, j-i-1) * sqrtT.block(i+1, j, j-i-1, 2); |
| Matrix<Scalar,2,2> A = sqrtT.coeff(i,i) * Matrix<Scalar,2,2>::Identity(); |
| A += sqrtT.template block<2,2>(j,j).transpose(); |
| sqrtT.template block<1,2>(i,j).transpose() = A.fullPivLu().solve(rhs.transpose()); |
| } |
| |
| // similar to compute1x1offDiagonalBlock() |
| template <typename MatrixType, typename ResultType> |
| void matrix_sqrt_quasi_triangular_2x1_off_diagonal_block(const MatrixType& T, Index i, Index j, ResultType& sqrtT) |
| { |
| typedef typename traits<MatrixType>::Scalar Scalar; |
| Matrix<Scalar,2,1> rhs = T.template block<2,1>(i,j); |
| if (j-i > 2) |
| rhs -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 1); |
| Matrix<Scalar,2,2> A = sqrtT.coeff(j,j) * Matrix<Scalar,2,2>::Identity(); |
| A += sqrtT.template block<2,2>(i,i); |
| sqrtT.template block<2,1>(i,j) = A.fullPivLu().solve(rhs); |
| } |
| |
| // solves the equation A X + X B = C where all matrices are 2-by-2 |
| template <typename MatrixType> |
| void matrix_sqrt_quasi_triangular_solve_auxiliary_equation(MatrixType& X, const MatrixType& A, const MatrixType& B, const MatrixType& C) |
| { |
| typedef typename traits<MatrixType>::Scalar Scalar; |
| Matrix<Scalar,4,4> coeffMatrix = Matrix<Scalar,4,4>::Zero(); |
| coeffMatrix.coeffRef(0,0) = A.coeff(0,0) + B.coeff(0,0); |
| coeffMatrix.coeffRef(1,1) = A.coeff(0,0) + B.coeff(1,1); |
| coeffMatrix.coeffRef(2,2) = A.coeff(1,1) + B.coeff(0,0); |
| coeffMatrix.coeffRef(3,3) = A.coeff(1,1) + B.coeff(1,1); |
| coeffMatrix.coeffRef(0,1) = B.coeff(1,0); |
| coeffMatrix.coeffRef(0,2) = A.coeff(0,1); |
| coeffMatrix.coeffRef(1,0) = B.coeff(0,1); |
| coeffMatrix.coeffRef(1,3) = A.coeff(0,1); |
| coeffMatrix.coeffRef(2,0) = A.coeff(1,0); |
| coeffMatrix.coeffRef(2,3) = B.coeff(1,0); |
| coeffMatrix.coeffRef(3,1) = A.coeff(1,0); |
| coeffMatrix.coeffRef(3,2) = B.coeff(0,1); |
| |
| Matrix<Scalar,4,1> rhs; |
| rhs.coeffRef(0) = C.coeff(0,0); |
| rhs.coeffRef(1) = C.coeff(0,1); |
| rhs.coeffRef(2) = C.coeff(1,0); |
| rhs.coeffRef(3) = C.coeff(1,1); |
| |
| Matrix<Scalar,4,1> result; |
| result = coeffMatrix.fullPivLu().solve(rhs); |
| |
| X.coeffRef(0,0) = result.coeff(0); |
| X.coeffRef(0,1) = result.coeff(1); |
| X.coeffRef(1,0) = result.coeff(2); |
| X.coeffRef(1,1) = result.coeff(3); |
| } |
| |
| // similar to compute1x1offDiagonalBlock() |
| template <typename MatrixType, typename ResultType> |
| void matrix_sqrt_quasi_triangular_2x2_off_diagonal_block(const MatrixType& T, Index i, Index j, ResultType& sqrtT) |
| { |
| typedef typename traits<MatrixType>::Scalar Scalar; |
| Matrix<Scalar,2,2> A = sqrtT.template block<2,2>(i,i); |
| Matrix<Scalar,2,2> B = sqrtT.template block<2,2>(j,j); |
| Matrix<Scalar,2,2> C = T.template block<2,2>(i,j); |
| if (j-i > 2) |
| C -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 2); |
| Matrix<Scalar,2,2> X; |
| matrix_sqrt_quasi_triangular_solve_auxiliary_equation(X, A, B, C); |
| sqrtT.template block<2,2>(i,j) = X; |
| } |
| |
| // pre: T is quasi-upper-triangular and sqrtT is a zero matrix of the same size |
| // post: the diagonal blocks of sqrtT are the square roots of the diagonal blocks of T |
| template <typename MatrixType, typename ResultType> |
| void matrix_sqrt_quasi_triangular_diagonal(const MatrixType& T, ResultType& sqrtT) |
| { |
| using std::sqrt; |
| const Index size = T.rows(); |
| for (Index i = 0; i < size; i++) { |
| if (i == size - 1 || T.coeff(i+1, i) == 0) { |
| eigen_assert(T(i,i) >= 0); |
| sqrtT.coeffRef(i,i) = sqrt(T.coeff(i,i)); |
| } |
| else { |
| matrix_sqrt_quasi_triangular_2x2_diagonal_block(T, i, sqrtT); |
| ++i; |
| } |
| } |
| } |
| |
| // pre: T is quasi-upper-triangular and diagonal blocks of sqrtT are square root of diagonal blocks of T. |
| // post: sqrtT is the square root of T. |
| template <typename MatrixType, typename ResultType> |
| void matrix_sqrt_quasi_triangular_off_diagonal(const MatrixType& T, ResultType& sqrtT) |
| { |
| const Index size = T.rows(); |
| for (Index j = 1; j < size; j++) { |
| if (T.coeff(j, j-1) != 0) // if T(j-1:j, j-1:j) is a 2-by-2 block |
| continue; |
| for (Index i = j-1; i >= 0; i--) { |
| if (i > 0 && T.coeff(i, i-1) != 0) // if T(i-1:i, i-1:i) is a 2-by-2 block |
| continue; |
| bool iBlockIs2x2 = (i < size - 1) && (T.coeff(i+1, i) != 0); |
| bool jBlockIs2x2 = (j < size - 1) && (T.coeff(j+1, j) != 0); |
| if (iBlockIs2x2 && jBlockIs2x2) |
| matrix_sqrt_quasi_triangular_2x2_off_diagonal_block(T, i, j, sqrtT); |
| else if (iBlockIs2x2 && !jBlockIs2x2) |
| matrix_sqrt_quasi_triangular_2x1_off_diagonal_block(T, i, j, sqrtT); |
| else if (!iBlockIs2x2 && jBlockIs2x2) |
| matrix_sqrt_quasi_triangular_1x2_off_diagonal_block(T, i, j, sqrtT); |
| else if (!iBlockIs2x2 && !jBlockIs2x2) |
| matrix_sqrt_quasi_triangular_1x1_off_diagonal_block(T, i, j, sqrtT); |
| } |
| } |
| } |
| |
| } // end of namespace internal |
| |
| /** \ingroup MatrixFunctions_Module |
| * \brief Compute matrix square root of quasi-triangular matrix. |
| * |
| * \tparam MatrixType type of \p arg, the argument of matrix square root, |
| * expected to be an instantiation of the Matrix class template. |
| * \tparam ResultType type of \p result, where result is to be stored. |
| * \param[in] arg argument of matrix square root. |
| * \param[out] result matrix square root of upper Hessenberg part of \p arg. |
| * |
| * This function computes the square root of the upper quasi-triangular matrix stored in the upper |
| * Hessenberg part of \p arg. Only the upper Hessenberg part of \p result is updated, the rest is |
| * not touched. See MatrixBase::sqrt() for details on how this computation is implemented. |
| * |
| * \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular |
| */ |
| template <typename MatrixType, typename ResultType> |
| void matrix_sqrt_quasi_triangular(const MatrixType &arg, ResultType &result) |
| { |
| eigen_assert(arg.rows() == arg.cols()); |
| result.resize(arg.rows(), arg.cols()); |
| internal::matrix_sqrt_quasi_triangular_diagonal(arg, result); |
| internal::matrix_sqrt_quasi_triangular_off_diagonal(arg, result); |
| } |
| |
| |
| /** \ingroup MatrixFunctions_Module |
| * \brief Compute matrix square root of triangular matrix. |
| * |
| * \tparam MatrixType type of \p arg, the argument of matrix square root, |
| * expected to be an instantiation of the Matrix class template. |
| * \tparam ResultType type of \p result, where result is to be stored. |
| * \param[in] arg argument of matrix square root. |
| * \param[out] result matrix square root of upper triangular part of \p arg. |
| * |
| * Only the upper triangular part (including the diagonal) of \p result is updated, the rest is not |
| * touched. See MatrixBase::sqrt() for details on how this computation is implemented. |
| * |
| * \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular |
| */ |
| template <typename MatrixType, typename ResultType> |
| void matrix_sqrt_triangular(const MatrixType &arg, ResultType &result) |
| { |
| using std::sqrt; |
| typedef typename MatrixType::Scalar Scalar; |
| |
| eigen_assert(arg.rows() == arg.cols()); |
| |
| // Compute square root of arg and store it in upper triangular part of result |
| // This uses that the square root of triangular matrices can be computed directly. |
| result.resize(arg.rows(), arg.cols()); |
| for (Index i = 0; i < arg.rows(); i++) { |
| result.coeffRef(i,i) = sqrt(arg.coeff(i,i)); |
| } |
| for (Index j = 1; j < arg.cols(); j++) { |
| for (Index i = j-1; i >= 0; i--) { |
| // if i = j-1, then segment has length 0 so tmp = 0 |
| Scalar tmp = (result.row(i).segment(i+1,j-i-1) * result.col(j).segment(i+1,j-i-1)).value(); |
| // denominator may be zero if original matrix is singular |
| result.coeffRef(i,j) = (arg.coeff(i,j) - tmp) / (result.coeff(i,i) + result.coeff(j,j)); |
| } |
| } |
| } |
| |
| |
| namespace internal { |
| |
| /** \ingroup MatrixFunctions_Module |
| * \brief Helper struct for computing matrix square roots of general matrices. |
| * \tparam MatrixType type of the argument of the matrix square root, |
| * expected to be an instantiation of the Matrix class template. |
| * |
| * \sa MatrixSquareRootTriangular, MatrixSquareRootQuasiTriangular, MatrixBase::sqrt() |
| */ |
| template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex> |
| struct matrix_sqrt_compute |
| { |
| /** \brief Compute the matrix square root |
| * |
| * \param[in] arg matrix whose square root is to be computed. |
| * \param[out] result square root of \p arg. |
| * |
| * See MatrixBase::sqrt() for details on how this computation is implemented. |
| */ |
| template <typename ResultType> static void run(const MatrixType &arg, ResultType &result); |
| }; |
| |
| |
| // ********** Partial specialization for real matrices ********** |
| |
| template <typename MatrixType> |
| struct matrix_sqrt_compute<MatrixType, 0> |
| { |
| typedef typename MatrixType::PlainObject PlainType; |
| template <typename ResultType> |
| static void run(const MatrixType &arg, ResultType &result) |
| { |
| eigen_assert(arg.rows() == arg.cols()); |
| |
| // Compute Schur decomposition of arg |
| const RealSchur<PlainType> schurOfA(arg); |
| const PlainType& T = schurOfA.matrixT(); |
| const PlainType& U = schurOfA.matrixU(); |
| |
| // Compute square root of T |
| PlainType sqrtT = PlainType::Zero(arg.rows(), arg.cols()); |
| matrix_sqrt_quasi_triangular(T, sqrtT); |
| |
| // Compute square root of arg |
| result = U * sqrtT * U.adjoint(); |
| } |
| }; |
| |
| |
| // ********** Partial specialization for complex matrices ********** |
| |
| template <typename MatrixType> |
| struct matrix_sqrt_compute<MatrixType, 1> |
| { |
| typedef typename MatrixType::PlainObject PlainType; |
| template <typename ResultType> |
| static void run(const MatrixType &arg, ResultType &result) |
| { |
| eigen_assert(arg.rows() == arg.cols()); |
| |
| // Compute Schur decomposition of arg |
| const ComplexSchur<PlainType> schurOfA(arg); |
| const PlainType& T = schurOfA.matrixT(); |
| const PlainType& U = schurOfA.matrixU(); |
| |
| // Compute square root of T |
| PlainType sqrtT; |
| matrix_sqrt_triangular(T, sqrtT); |
| |
| // Compute square root of arg |
| result = U * (sqrtT.template triangularView<Upper>() * U.adjoint()); |
| } |
| }; |
| |
| } // end namespace internal |
| |
| /** \ingroup MatrixFunctions_Module |
| * |
| * \brief Proxy for the matrix square root of some matrix (expression). |
| * |
| * \tparam Derived Type of the argument to the matrix square root. |
| * |
| * This class holds the argument to the matrix square root until it |
| * is assigned or evaluated for some other reason (so the argument |
| * should not be changed in the meantime). It is the return type of |
| * MatrixBase::sqrt() and most of the time this is the only way it is |
| * used. |
| */ |
| template<typename Derived> class MatrixSquareRootReturnValue |
| : public ReturnByValue<MatrixSquareRootReturnValue<Derived> > |
| { |
| protected: |
| typedef typename internal::ref_selector<Derived>::type DerivedNested; |
| |
| public: |
| /** \brief Constructor. |
| * |
| * \param[in] src %Matrix (expression) forming the argument of the |
| * matrix square root. |
| */ |
| explicit MatrixSquareRootReturnValue(const Derived& src) : m_src(src) { } |
| |
| /** \brief Compute the matrix square root. |
| * |
| * \param[out] result the matrix square root of \p src in the |
| * constructor. |
| */ |
| template <typename ResultType> |
| inline void evalTo(ResultType& result) const |
| { |
| typedef typename internal::nested_eval<Derived, 10>::type DerivedEvalType; |
| typedef internal::remove_all_t<DerivedEvalType> DerivedEvalTypeClean; |
| DerivedEvalType tmp(m_src); |
| internal::matrix_sqrt_compute<DerivedEvalTypeClean>::run(tmp, result); |
| } |
| |
| Index rows() const { return m_src.rows(); } |
| Index cols() const { return m_src.cols(); } |
| |
| protected: |
| const DerivedNested m_src; |
| }; |
| |
| namespace internal { |
| template<typename Derived> |
| struct traits<MatrixSquareRootReturnValue<Derived> > |
| { |
| typedef typename Derived::PlainObject ReturnType; |
| }; |
| } |
| |
| template <typename Derived> |
| const MatrixSquareRootReturnValue<Derived> MatrixBase<Derived>::sqrt() const |
| { |
| eigen_assert(rows() == cols()); |
| return MatrixSquareRootReturnValue<Derived>(derived()); |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_MATRIX_FUNCTION |