blob: 59f5efe0affcbc5f1c000dfe814a1456baa9b700 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2024 Tobias Wood tobias@spinicist.org.uk
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/CXX11/Tensor>
using Eigen::array;
using Eigen::Tensor;
template <int DataLayout>
static void test_simple_roll() {
Tensor<float, 4, DataLayout> tensor(2, 3, 5, 7);
tensor.setRandom();
array<Index, 4> dim_roll;
dim_roll[0] = 0;
dim_roll[1] = 1;
dim_roll[2] = 4;
dim_roll[3] = 8;
Tensor<float, 4, DataLayout> rolled_tensor;
rolled_tensor = tensor.roll(dim_roll);
VERIFY_IS_EQUAL(rolled_tensor.dimension(0), 2);
VERIFY_IS_EQUAL(rolled_tensor.dimension(1), 3);
VERIFY_IS_EQUAL(rolled_tensor.dimension(2), 5);
VERIFY_IS_EQUAL(rolled_tensor.dimension(3), 7);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 5; ++k) {
for (int l = 0; l < 7; ++l) {
VERIFY_IS_EQUAL(tensor(i, (j + 1) % 3, (k + 4) % 5, (l + 8) % 7), rolled_tensor(i, j, k, l));
}
}
}
}
dim_roll[0] = -3;
dim_roll[1] = -2;
dim_roll[2] = -1;
dim_roll[3] = 0;
rolled_tensor = tensor.roll(dim_roll);
VERIFY_IS_EQUAL(rolled_tensor.dimension(0), 2);
VERIFY_IS_EQUAL(rolled_tensor.dimension(1), 3);
VERIFY_IS_EQUAL(rolled_tensor.dimension(2), 5);
VERIFY_IS_EQUAL(rolled_tensor.dimension(3), 7);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 5; ++k) {
for (int l = 0; l < 7; ++l) {
VERIFY_IS_EQUAL(tensor((i + 1) % 2, (j + 1) % 3, (k + 4) % 5, l), rolled_tensor(i, j, k, l));
}
}
}
}
}
template <int DataLayout>
static void test_expr_roll(bool LValue) {
Tensor<float, 4, DataLayout> tensor(2, 3, 5, 7);
tensor.setRandom();
array<bool, 4> dim_roll;
dim_roll[0] = 2;
dim_roll[1] = 1;
dim_roll[2] = 0;
dim_roll[3] = 3;
Tensor<float, 4, DataLayout> expected(tensor.dimensions());
if (LValue) {
expected.roll(dim_roll) = tensor;
} else {
expected = tensor.roll(dim_roll);
}
Tensor<float, 4, DataLayout> result(tensor.dimensions());
array<ptrdiff_t, 4> src_slice_dim;
src_slice_dim[0] = tensor.dimension(0);
src_slice_dim[1] = tensor.dimension(1);
src_slice_dim[2] = 1;
src_slice_dim[3] = tensor.dimension(3);
array<ptrdiff_t, 4> src_slice_start;
src_slice_start[0] = 0;
src_slice_start[1] = 0;
src_slice_start[2] = 0;
src_slice_start[3] = 0;
array<ptrdiff_t, 4> dst_slice_dim = src_slice_dim;
array<ptrdiff_t, 4> dst_slice_start = src_slice_start;
for (int i = 0; i < tensor.dimension(2); ++i) {
if (LValue) {
result.slice(dst_slice_start, dst_slice_dim).roll(dim_roll) = tensor.slice(src_slice_start, src_slice_dim);
} else {
result.slice(dst_slice_start, dst_slice_dim) = tensor.slice(src_slice_start, src_slice_dim).roll(dim_roll);
}
src_slice_start[2] += 1;
dst_slice_start[2] += 1;
}
VERIFY_IS_EQUAL(result.dimension(0), tensor.dimension(0));
VERIFY_IS_EQUAL(result.dimension(1), tensor.dimension(1));
VERIFY_IS_EQUAL(result.dimension(2), tensor.dimension(2));
VERIFY_IS_EQUAL(result.dimension(3), tensor.dimension(3));
for (int i = 0; i < expected.dimension(0); ++i) {
for (int j = 0; j < expected.dimension(1); ++j) {
for (int k = 0; k < expected.dimension(2); ++k) {
for (int l = 0; l < expected.dimension(3); ++l) {
VERIFY_IS_EQUAL(result(i, j, k, l), expected(i, j, k, l));
}
}
}
}
dst_slice_start[2] = 0;
result.setRandom();
for (int i = 0; i < tensor.dimension(2); ++i) {
if (LValue) {
result.slice(dst_slice_start, dst_slice_dim).roll(dim_roll) = tensor.slice(dst_slice_start, dst_slice_dim);
} else {
result.slice(dst_slice_start, dst_slice_dim) = tensor.roll(dim_roll).slice(dst_slice_start, dst_slice_dim);
}
dst_slice_start[2] += 1;
}
for (int i = 0; i < expected.dimension(0); ++i) {
for (int j = 0; j < expected.dimension(1); ++j) {
for (int k = 0; k < expected.dimension(2); ++k) {
for (int l = 0; l < expected.dimension(3); ++l) {
VERIFY_IS_EQUAL(result(i, j, k, l), expected(i, j, k, l));
}
}
}
}
}
EIGEN_DECLARE_TEST(cxx11_tensor_roll) {
CALL_SUBTEST(test_simple_roll<ColMajor>());
CALL_SUBTEST(test_simple_roll<RowMajor>());
CALL_SUBTEST(test_expr_roll<ColMajor>(true));
CALL_SUBTEST(test_expr_roll<RowMajor>(true));
CALL_SUBTEST(test_expr_roll<ColMajor>(false));
CALL_SUBTEST(test_expr_roll<RowMajor>(false));
}