| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_SPARSEVECTOR_H |
| #define EIGEN_SPARSEVECTOR_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| /** \ingroup SparseCore_Module |
| * \class SparseVector |
| * |
| * \brief a sparse vector class |
| * |
| * \tparam Scalar_ the scalar type, i.e. the type of the coefficients |
| * |
| * See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme. |
| * |
| * This class can be extended with the help of the plugin mechanism described on the page |
| * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_SPARSEVECTOR_PLUGIN. |
| */ |
| |
| namespace internal { |
| template <typename Scalar_, int Options_, typename StorageIndex_> |
| struct traits<SparseVector<Scalar_, Options_, StorageIndex_> > { |
| typedef Scalar_ Scalar; |
| typedef StorageIndex_ StorageIndex; |
| typedef Sparse StorageKind; |
| typedef MatrixXpr XprKind; |
| enum { |
| IsColVector = (Options_ & RowMajorBit) ? 0 : 1, |
| |
| RowsAtCompileTime = IsColVector ? Dynamic : 1, |
| ColsAtCompileTime = IsColVector ? 1 : Dynamic, |
| MaxRowsAtCompileTime = RowsAtCompileTime, |
| MaxColsAtCompileTime = ColsAtCompileTime, |
| Flags = Options_ | NestByRefBit | LvalueBit | (IsColVector ? 0 : RowMajorBit) | CompressedAccessBit, |
| SupportedAccessPatterns = InnerRandomAccessPattern |
| }; |
| }; |
| |
| // Sparse-Vector-Assignment kinds: |
| enum { SVA_RuntimeSwitch, SVA_Inner, SVA_Outer }; |
| |
| template <typename Dest, typename Src, |
| int AssignmentKind = !bool(Src::IsVectorAtCompileTime) ? SVA_RuntimeSwitch |
| : Src::InnerSizeAtCompileTime == 1 ? SVA_Outer |
| : SVA_Inner> |
| struct sparse_vector_assign_selector; |
| |
| } // namespace internal |
| |
| template <typename Scalar_, int Options_, typename StorageIndex_> |
| class SparseVector : public SparseCompressedBase<SparseVector<Scalar_, Options_, StorageIndex_> > { |
| typedef SparseCompressedBase<SparseVector> Base; |
| using Base::convert_index; |
| |
| public: |
| EIGEN_SPARSE_PUBLIC_INTERFACE(SparseVector) |
| EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, +=) |
| EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, -=) |
| |
| typedef internal::CompressedStorage<Scalar, StorageIndex> Storage; |
| enum { IsColVector = internal::traits<SparseVector>::IsColVector }; |
| |
| enum { Options = Options_ }; |
| |
| EIGEN_STRONG_INLINE Index rows() const { return IsColVector ? m_size : 1; } |
| EIGEN_STRONG_INLINE Index cols() const { return IsColVector ? 1 : m_size; } |
| EIGEN_STRONG_INLINE Index innerSize() const { return m_size; } |
| EIGEN_STRONG_INLINE Index outerSize() const { return 1; } |
| |
| EIGEN_STRONG_INLINE const Scalar* valuePtr() const { return m_data.valuePtr(); } |
| EIGEN_STRONG_INLINE Scalar* valuePtr() { return m_data.valuePtr(); } |
| |
| EIGEN_STRONG_INLINE const StorageIndex* innerIndexPtr() const { return m_data.indexPtr(); } |
| EIGEN_STRONG_INLINE StorageIndex* innerIndexPtr() { return m_data.indexPtr(); } |
| |
| inline const StorageIndex* outerIndexPtr() const { return 0; } |
| inline StorageIndex* outerIndexPtr() { return 0; } |
| inline const StorageIndex* innerNonZeroPtr() const { return 0; } |
| inline StorageIndex* innerNonZeroPtr() { return 0; } |
| |
| /** \internal */ |
| constexpr Storage& data() { return m_data; } |
| /** \internal */ |
| constexpr const Storage& data() const { return m_data; } |
| |
| inline Scalar coeff(Index row, Index col) const { |
| eigen_assert(IsColVector ? (col == 0 && row >= 0 && row < m_size) : (row == 0 && col >= 0 && col < m_size)); |
| return coeff(IsColVector ? row : col); |
| } |
| inline Scalar coeff(Index i) const { |
| eigen_assert(i >= 0 && i < m_size); |
| return m_data.at(StorageIndex(i)); |
| } |
| |
| inline Scalar& coeffRef(Index row, Index col) { |
| eigen_assert(IsColVector ? (col == 0 && row >= 0 && row < m_size) : (row == 0 && col >= 0 && col < m_size)); |
| return coeffRef(IsColVector ? row : col); |
| } |
| |
| /** \returns a reference to the coefficient value at given index \a i |
| * This operation involves a log(rho*size) binary search. If the coefficient does not |
| * exist yet, then a sorted insertion into a sequential buffer is performed. |
| * |
| * This insertion might be very costly if the number of nonzeros above \a i is large. |
| */ |
| inline Scalar& coeffRef(Index i) { |
| eigen_assert(i >= 0 && i < m_size); |
| |
| return m_data.atWithInsertion(StorageIndex(i)); |
| } |
| |
| public: |
| typedef typename Base::InnerIterator InnerIterator; |
| typedef typename Base::ReverseInnerIterator ReverseInnerIterator; |
| |
| inline void setZero() { m_data.clear(); } |
| |
| /** \returns the number of non zero coefficients */ |
| inline Index nonZeros() const { return m_data.size(); } |
| |
| inline void startVec(Index outer) { |
| EIGEN_UNUSED_VARIABLE(outer); |
| eigen_assert(outer == 0); |
| } |
| |
| inline Scalar& insertBackByOuterInner(Index outer, Index inner) { |
| EIGEN_UNUSED_VARIABLE(outer); |
| eigen_assert(outer == 0); |
| return insertBack(inner); |
| } |
| inline Scalar& insertBack(Index i) { |
| m_data.append(0, i); |
| return m_data.value(m_data.size() - 1); |
| } |
| |
| Scalar& insertBackByOuterInnerUnordered(Index outer, Index inner) { |
| EIGEN_UNUSED_VARIABLE(outer); |
| eigen_assert(outer == 0); |
| return insertBackUnordered(inner); |
| } |
| inline Scalar& insertBackUnordered(Index i) { |
| m_data.append(0, i); |
| return m_data.value(m_data.size() - 1); |
| } |
| |
| inline Scalar& insert(Index row, Index col) { |
| eigen_assert(IsColVector ? (col == 0 && row >= 0 && row < m_size) : (row == 0 && col >= 0 && col < m_size)); |
| |
| Index inner = IsColVector ? row : col; |
| Index outer = IsColVector ? col : row; |
| EIGEN_ONLY_USED_FOR_DEBUG(outer); |
| eigen_assert(outer == 0); |
| return insert(inner); |
| } |
| Scalar& insert(Index i) { |
| eigen_assert(i >= 0 && i < m_size); |
| |
| Index startId = 0; |
| Index p = Index(m_data.size()) - 1; |
| // TODO smart realloc |
| m_data.resize(p + 2, 1); |
| |
| while ((p >= startId) && (m_data.index(p) > i)) { |
| m_data.index(p + 1) = m_data.index(p); |
| m_data.value(p + 1) = m_data.value(p); |
| --p; |
| } |
| m_data.index(p + 1) = convert_index(i); |
| m_data.value(p + 1) = 0; |
| return m_data.value(p + 1); |
| } |
| |
| /** |
| */ |
| inline void reserve(Index reserveSize) { m_data.reserve(reserveSize); } |
| |
| inline void finalize() {} |
| |
| /** \copydoc SparseMatrix::prune(const Scalar&,const RealScalar&) */ |
| Index prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision()) { |
| return prune([&](const Scalar& val) { return !internal::isMuchSmallerThan(val, reference, epsilon); }); |
| } |
| |
| /** |
| * \brief Prunes the entries of the vector based on a `predicate` |
| * \tparam F Type of the predicate. |
| * \param keep_predicate The predicate that is used to test whether a value should be kept. A callable that |
| * gets passed om a `Scalar` value and returns a boolean. If the predicate returns true, the value is kept. |
| * \return The new number of structural non-zeros. |
| */ |
| template <class F> |
| Index prune(F&& keep_predicate) { |
| Index k = 0; |
| Index n = m_data.size(); |
| for (Index i = 0; i < n; ++i) { |
| if (keep_predicate(m_data.value(i))) { |
| m_data.value(k) = std::move(m_data.value(i)); |
| m_data.index(k) = m_data.index(i); |
| ++k; |
| } |
| } |
| m_data.resize(k); |
| return k; |
| } |
| |
| /** Resizes the sparse vector to \a rows x \a cols |
| * |
| * This method is provided for compatibility with matrices. |
| * For a column vector, \a cols must be equal to 1. |
| * For a row vector, \a rows must be equal to 1. |
| * |
| * \sa resize(Index) |
| */ |
| void resize(Index rows, Index cols) { |
| eigen_assert((IsColVector ? cols : rows) == 1 && "Outer dimension must equal 1"); |
| resize(IsColVector ? rows : cols); |
| } |
| |
| /** Resizes the sparse vector to \a newSize |
| * This method deletes all entries, thus leaving an empty sparse vector |
| * |
| * \sa conservativeResize(), setZero() */ |
| void resize(Index newSize) { |
| m_size = newSize; |
| m_data.clear(); |
| } |
| |
| /** Resizes the sparse vector to \a newSize, while leaving old values untouched. |
| * |
| * If the size of the vector is decreased, then the storage of the out-of bounds coefficients is kept and reserved. |
| * Call .data().squeeze() to free extra memory. |
| * |
| * \sa reserve(), setZero() |
| */ |
| void conservativeResize(Index newSize) { |
| if (newSize < m_size) { |
| Index i = 0; |
| while (i < m_data.size() && m_data.index(i) < newSize) ++i; |
| m_data.resize(i); |
| } |
| m_size = newSize; |
| } |
| |
| void resizeNonZeros(Index size) { m_data.resize(size); } |
| |
| inline SparseVector() : m_size(0) { resize(0); } |
| |
| explicit inline SparseVector(Index size) : m_size(0) { resize(size); } |
| |
| inline SparseVector(Index rows, Index cols) : m_size(0) { resize(rows, cols); } |
| |
| template <typename OtherDerived> |
| inline SparseVector(const SparseMatrixBase<OtherDerived>& other) : m_size(0) { |
| #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN |
| EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN |
| #endif |
| *this = other.derived(); |
| } |
| |
| inline SparseVector(const SparseVector& other) : Base(other), m_size(0) { *this = other.derived(); } |
| |
| /** Swaps the values of \c *this and \a other. |
| * Overloaded for performance: this version performs a \em shallow swap by swapping pointers and attributes only. |
| * \sa SparseMatrixBase::swap() |
| */ |
| inline void swap(SparseVector& other) { |
| std::swap(m_size, other.m_size); |
| m_data.swap(other.m_data); |
| } |
| friend EIGEN_DEVICE_FUNC void swap(SparseVector& a, SparseVector& b) { a.swap(b); } |
| |
| template <int OtherOptions> |
| inline void swap(SparseMatrix<Scalar, OtherOptions, StorageIndex>& other) { |
| eigen_assert(other.outerSize() == 1); |
| std::swap(m_size, other.m_innerSize); |
| m_data.swap(other.m_data); |
| } |
| template <int OtherOptions> |
| friend EIGEN_DEVICE_FUNC void swap(SparseVector& a, SparseMatrix<Scalar, OtherOptions, StorageIndex>& b) { |
| a.swap(b); |
| } |
| template <int OtherOptions> |
| friend EIGEN_DEVICE_FUNC void swap(SparseMatrix<Scalar, OtherOptions, StorageIndex>& a, SparseVector& b) { |
| b.swap(a); |
| } |
| |
| inline SparseVector& operator=(const SparseVector& other) { |
| if (other.isRValue()) { |
| swap(other.const_cast_derived()); |
| } else { |
| resize(other.size()); |
| m_data = other.m_data; |
| } |
| return *this; |
| } |
| |
| template <typename OtherDerived> |
| inline SparseVector& operator=(const SparseMatrixBase<OtherDerived>& other) { |
| SparseVector tmp(other.size()); |
| internal::sparse_vector_assign_selector<SparseVector, OtherDerived>::run(tmp, other.derived()); |
| this->swap(tmp); |
| return *this; |
| } |
| |
| inline SparseVector(SparseVector&& other) : SparseVector() { this->swap(other); } |
| |
| template <typename OtherDerived> |
| inline SparseVector(SparseCompressedBase<OtherDerived>&& other) : SparseVector() { |
| *this = other.derived().markAsRValue(); |
| } |
| |
| inline SparseVector& operator=(SparseVector&& other) { |
| this->swap(other); |
| return *this; |
| } |
| |
| template <typename OtherDerived> |
| inline SparseVector& operator=(SparseCompressedBase<OtherDerived>&& other) { |
| *this = other.derived().markAsRValue(); |
| return *this; |
| } |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| template <typename Lhs, typename Rhs> |
| inline SparseVector& operator=(const SparseSparseProduct<Lhs, Rhs>& product) { |
| return Base::operator=(product); |
| } |
| #endif |
| |
| #ifndef EIGEN_NO_IO |
| friend std::ostream& operator<<(std::ostream& s, const SparseVector& m) { |
| for (Index i = 0; i < m.nonZeros(); ++i) s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") "; |
| s << std::endl; |
| return s; |
| } |
| #endif |
| |
| /** Destructor */ |
| inline ~SparseVector() {} |
| |
| /** Overloaded for performance */ |
| Scalar sum() const; |
| |
| public: |
| /** \internal \deprecated use setZero() and reserve() */ |
| EIGEN_DEPRECATED void startFill(Index reserve) { |
| setZero(); |
| m_data.reserve(reserve); |
| } |
| |
| /** \internal \deprecated use insertBack(Index,Index) */ |
| EIGEN_DEPRECATED Scalar& fill(Index r, Index c) { |
| eigen_assert(r == 0 || c == 0); |
| return fill(IsColVector ? r : c); |
| } |
| |
| /** \internal \deprecated use insertBack(Index) */ |
| EIGEN_DEPRECATED Scalar& fill(Index i) { |
| m_data.append(0, i); |
| return m_data.value(m_data.size() - 1); |
| } |
| |
| /** \internal \deprecated use insert(Index,Index) */ |
| EIGEN_DEPRECATED Scalar& fillrand(Index r, Index c) { |
| eigen_assert(r == 0 || c == 0); |
| return fillrand(IsColVector ? r : c); |
| } |
| |
| /** \internal \deprecated use insert(Index) */ |
| EIGEN_DEPRECATED Scalar& fillrand(Index i) { return insert(i); } |
| |
| /** \internal \deprecated use finalize() */ |
| EIGEN_DEPRECATED void endFill() {} |
| |
| // These two functions were here in the 3.1 release, so let's keep them in case some code rely on them. |
| /** \internal \deprecated use data() */ |
| EIGEN_DEPRECATED Storage& _data() { return m_data; } |
| /** \internal \deprecated use data() */ |
| EIGEN_DEPRECATED const Storage& _data() const { return m_data; } |
| |
| #ifdef EIGEN_SPARSEVECTOR_PLUGIN |
| #include EIGEN_SPARSEVECTOR_PLUGIN |
| #endif |
| |
| protected: |
| EIGEN_STATIC_ASSERT(NumTraits<StorageIndex>::IsSigned, THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE) |
| EIGEN_STATIC_ASSERT((Options_ & (ColMajor | RowMajor)) == Options, INVALID_MATRIX_TEMPLATE_PARAMETERS) |
| |
| Storage m_data; |
| Index m_size; |
| }; |
| |
| namespace internal { |
| |
| template <typename Scalar_, int Options_, typename Index_> |
| struct evaluator<SparseVector<Scalar_, Options_, Index_> > : evaluator_base<SparseVector<Scalar_, Options_, Index_> > { |
| typedef SparseVector<Scalar_, Options_, Index_> SparseVectorType; |
| typedef evaluator_base<SparseVectorType> Base; |
| typedef typename SparseVectorType::InnerIterator InnerIterator; |
| typedef typename SparseVectorType::ReverseInnerIterator ReverseInnerIterator; |
| |
| enum { CoeffReadCost = NumTraits<Scalar_>::ReadCost, Flags = SparseVectorType::Flags }; |
| |
| evaluator() : Base() {} |
| |
| explicit evaluator(const SparseVectorType& mat) : m_matrix(&mat) { EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); } |
| |
| inline Index nonZerosEstimate() const { return m_matrix->nonZeros(); } |
| |
| operator SparseVectorType&() { return m_matrix->const_cast_derived(); } |
| operator const SparseVectorType&() const { return *m_matrix; } |
| |
| const SparseVectorType* m_matrix; |
| }; |
| |
| template <typename Dest, typename Src> |
| struct sparse_vector_assign_selector<Dest, Src, SVA_Inner> { |
| static void run(Dest& dst, const Src& src) { |
| eigen_internal_assert(src.innerSize() == src.size()); |
| typedef internal::evaluator<Src> SrcEvaluatorType; |
| SrcEvaluatorType srcEval(src); |
| for (typename SrcEvaluatorType::InnerIterator it(srcEval, 0); it; ++it) dst.insert(it.index()) = it.value(); |
| } |
| }; |
| |
| template <typename Dest, typename Src> |
| struct sparse_vector_assign_selector<Dest, Src, SVA_Outer> { |
| static void run(Dest& dst, const Src& src) { |
| eigen_internal_assert(src.outerSize() == src.size()); |
| typedef internal::evaluator<Src> SrcEvaluatorType; |
| SrcEvaluatorType srcEval(src); |
| for (Index i = 0; i < src.size(); ++i) { |
| typename SrcEvaluatorType::InnerIterator it(srcEval, i); |
| if (it) dst.insert(i) = it.value(); |
| } |
| } |
| }; |
| |
| template <typename Dest, typename Src> |
| struct sparse_vector_assign_selector<Dest, Src, SVA_RuntimeSwitch> { |
| static void run(Dest& dst, const Src& src) { |
| if (src.outerSize() == 1) |
| sparse_vector_assign_selector<Dest, Src, SVA_Inner>::run(dst, src); |
| else |
| sparse_vector_assign_selector<Dest, Src, SVA_Outer>::run(dst, src); |
| } |
| }; |
| |
| } // namespace internal |
| |
| // Specialization for SparseVector. |
| // Serializes [size, numNonZeros, innerIndices, values]. |
| template <typename Scalar, int Options, typename StorageIndex> |
| class Serializer<SparseVector<Scalar, Options, StorageIndex>, void> { |
| public: |
| typedef SparseVector<Scalar, Options, StorageIndex> SparseMat; |
| |
| struct Header { |
| typename SparseMat::Index size; |
| Index num_non_zeros; |
| }; |
| |
| EIGEN_DEVICE_FUNC size_t size(const SparseMat& value) const { |
| return sizeof(Header) + (sizeof(Scalar) + sizeof(StorageIndex)) * value.nonZeros(); |
| } |
| |
| EIGEN_DEVICE_FUNC uint8_t* serialize(uint8_t* dest, uint8_t* end, const SparseMat& value) { |
| if (EIGEN_PREDICT_FALSE(dest == nullptr)) return nullptr; |
| if (EIGEN_PREDICT_FALSE(dest + size(value) > end)) return nullptr; |
| |
| const size_t header_bytes = sizeof(Header); |
| Header header = {value.innerSize(), value.nonZeros()}; |
| EIGEN_USING_STD(memcpy) |
| memcpy(dest, &header, header_bytes); |
| dest += header_bytes; |
| |
| // Inner indices. |
| std::size_t data_bytes = sizeof(StorageIndex) * header.num_non_zeros; |
| memcpy(dest, value.innerIndexPtr(), data_bytes); |
| dest += data_bytes; |
| |
| // Values. |
| data_bytes = sizeof(Scalar) * header.num_non_zeros; |
| memcpy(dest, value.valuePtr(), data_bytes); |
| dest += data_bytes; |
| |
| return dest; |
| } |
| |
| EIGEN_DEVICE_FUNC const uint8_t* deserialize(const uint8_t* src, const uint8_t* end, SparseMat& value) const { |
| if (EIGEN_PREDICT_FALSE(src == nullptr)) return nullptr; |
| if (EIGEN_PREDICT_FALSE(src + sizeof(Header) > end)) return nullptr; |
| |
| const size_t header_bytes = sizeof(Header); |
| Header header; |
| EIGEN_USING_STD(memcpy) |
| memcpy(&header, src, header_bytes); |
| src += header_bytes; |
| |
| value.setZero(); |
| value.resize(header.size); |
| value.resizeNonZeros(header.num_non_zeros); |
| |
| // Inner indices. |
| std::size_t data_bytes = sizeof(StorageIndex) * header.num_non_zeros; |
| if (EIGEN_PREDICT_FALSE(src + data_bytes > end)) return nullptr; |
| memcpy(value.innerIndexPtr(), src, data_bytes); |
| src += data_bytes; |
| |
| // Values. |
| data_bytes = sizeof(Scalar) * header.num_non_zeros; |
| if (EIGEN_PREDICT_FALSE(src + data_bytes > end)) return nullptr; |
| memcpy(value.valuePtr(), src, data_bytes); |
| src += data_bytes; |
| return src; |
| } |
| }; |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_SPARSEVECTOR_H |