| // This file is part of a joint effort between Eigen, a lightweight C++ template library |
| // for linear algebra, and MPFR C++, a C++ interface to MPFR library (http://www.holoborodko.com/pavel/) |
| // |
| // Copyright (C) 2010-2012 Pavel Holoborodko <pavel@holoborodko.com> |
| // Copyright (C) 2010 Konstantin Holoborodko <konstantin@holoborodko.com> |
| // Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_MPREALSUPPORT_MODULE_H |
| #define EIGEN_MPREALSUPPORT_MODULE_H |
| |
| #include "../../Eigen/Core" |
| #include <mpreal.h> |
| |
| namespace Eigen { |
| |
| /** |
| * \defgroup MPRealSupport_Module MPFRC++ Support module |
| * \code |
| * #include <Eigen/MPRealSupport> |
| * \endcode |
| * |
| * This module provides support for multi precision floating point numbers |
| * via the <a href="http://www.holoborodko.com/pavel/mpfr">MPFR C++</a> |
| * library which itself is built upon <a href="http://www.mpfr.org/">MPFR</a>/<a href="http://gmplib.org/">GMP</a>. |
| * |
| * \warning MPFR C++ is licensed under the GPL. |
| * |
| * You can find a copy of MPFR C++ that is known to be compatible in the unsupported/test/mpreal folder. |
| * |
| * Here is an example: |
| * |
| \code |
| #include <iostream> |
| #include <Eigen/MPRealSupport> |
| #include <Eigen/LU> |
| using namespace mpfr; |
| using namespace Eigen; |
| int main() |
| { |
| // set precision to 256 bits (double has only 53 bits) |
| mpreal::set_default_prec(256); |
| // Declare matrix and vector types with multi-precision scalar type |
| typedef Matrix<mpreal,Dynamic,Dynamic> MatrixXmp; |
| typedef Matrix<mpreal,Dynamic,1> VectorXmp; |
| |
| MatrixXmp A = MatrixXmp::Random(100,100); |
| VectorXmp b = VectorXmp::Random(100); |
| |
| // Solve Ax=b using LU |
| VectorXmp x = A.lu().solve(b); |
| std::cout << "relative error: " << (A*x - b).norm() / b.norm() << std::endl; |
| return 0; |
| } |
| \endcode |
| * |
| */ |
| |
| template <> |
| struct NumTraits<mpfr::mpreal> : GenericNumTraits<mpfr::mpreal> { |
| enum { |
| IsInteger = 0, |
| IsSigned = 1, |
| IsComplex = 0, |
| RequireInitialization = 1, |
| ReadCost = HugeCost, |
| AddCost = HugeCost, |
| MulCost = HugeCost |
| }; |
| |
| typedef mpfr::mpreal Real; |
| typedef mpfr::mpreal NonInteger; |
| |
| static inline Real highest(long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::maxval(Precision); } |
| static inline Real lowest(long Precision = mpfr::mpreal::get_default_prec()) { return -mpfr::maxval(Precision); } |
| |
| // Constants |
| static inline Real Pi(long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::const_pi(Precision); } |
| static inline Real Euler(long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::const_euler(Precision); } |
| static inline Real Log2(long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::const_log2(Precision); } |
| static inline Real Catalan(long Precision = mpfr::mpreal::get_default_prec()) { |
| return mpfr::const_catalan(Precision); |
| } |
| |
| static inline Real epsilon(long Precision = mpfr::mpreal::get_default_prec()) { |
| return mpfr::machine_epsilon(Precision); |
| } |
| static inline Real epsilon(const Real& x) { return mpfr::machine_epsilon(x); } |
| |
| #ifdef MPREAL_HAVE_DYNAMIC_STD_NUMERIC_LIMITS |
| static inline int digits10(long Precision = mpfr::mpreal::get_default_prec()) { |
| return std::numeric_limits<Real>::digits10(Precision); |
| } |
| static inline int digits10(const Real& x) { return std::numeric_limits<Real>::digits10(x); } |
| |
| static inline int max_digits10(long Precision = mpfr::mpreal::get_default_prec()) { |
| return std::numeric_limits<Real>::max_digits10(Precision); |
| } |
| |
| static inline int digits() { return std::numeric_limits<Real>::digits(); } |
| static inline int digits(const Real& x) { return std::numeric_limits<Real>::digits(x); } |
| #endif |
| |
| static inline Real dummy_precision() { |
| mpfr_prec_t weak_prec = ((mpfr::mpreal::get_default_prec() - 1) * 90) / 100; |
| return mpfr::machine_epsilon(weak_prec); |
| } |
| }; |
| |
| namespace internal { |
| |
| template <> |
| inline mpfr::mpreal random<mpfr::mpreal>() { |
| return mpfr::random(); |
| } |
| |
| template <> |
| inline mpfr::mpreal random<mpfr::mpreal>(const mpfr::mpreal& a, const mpfr::mpreal& b) { |
| return a + (b - a) * random<mpfr::mpreal>(); |
| } |
| |
| inline bool isMuchSmallerThan(const mpfr::mpreal& a, const mpfr::mpreal& b, const mpfr::mpreal& eps) { |
| return mpfr::abs(a) <= mpfr::abs(b) * eps; |
| } |
| |
| inline bool isApprox(const mpfr::mpreal& a, const mpfr::mpreal& b, const mpfr::mpreal& eps) { |
| return mpfr::isEqualFuzzy(a, b, eps); |
| } |
| |
| inline bool isApproxOrLessThan(const mpfr::mpreal& a, const mpfr::mpreal& b, const mpfr::mpreal& eps) { |
| return a <= b || mpfr::isEqualFuzzy(a, b, eps); |
| } |
| |
| template <> |
| inline long double cast<mpfr::mpreal, long double>(const mpfr::mpreal& x) { |
| return x.toLDouble(); |
| } |
| |
| template <> |
| inline double cast<mpfr::mpreal, double>(const mpfr::mpreal& x) { |
| return x.toDouble(); |
| } |
| |
| template <> |
| inline long cast<mpfr::mpreal, long>(const mpfr::mpreal& x) { |
| return x.toLong(); |
| } |
| |
| template <> |
| inline int cast<mpfr::mpreal, int>(const mpfr::mpreal& x) { |
| return int(x.toLong()); |
| } |
| |
| // Specialize GEBP kernel and traits for mpreal (no need for peeling, nor complicated stuff) |
| // This also permits to directly call mpfr's routines and avoid many temporaries produced by mpreal |
| template <> |
| class gebp_traits<mpfr::mpreal, mpfr::mpreal, false, false> { |
| public: |
| typedef mpfr::mpreal ResScalar; |
| enum { |
| Vectorizable = false, |
| LhsPacketSize = 1, |
| RhsPacketSize = 1, |
| ResPacketSize = 1, |
| NumberOfRegisters = 1, |
| nr = 1, |
| mr = 1, |
| LhsProgress = 1, |
| RhsProgress = 1 |
| }; |
| typedef ResScalar LhsPacket; |
| typedef ResScalar RhsPacket; |
| typedef ResScalar ResPacket; |
| typedef LhsPacket LhsPacket4Packing; |
| }; |
| |
| template <typename Index, typename DataMapper, bool ConjugateLhs, bool ConjugateRhs> |
| struct gebp_kernel<mpfr::mpreal, mpfr::mpreal, Index, DataMapper, 1, 1, ConjugateLhs, ConjugateRhs> { |
| typedef mpfr::mpreal mpreal; |
| |
| EIGEN_DONT_INLINE void operator()(const DataMapper& res, const mpreal* blockA, const mpreal* blockB, Index rows, |
| Index depth, Index cols, const mpreal& alpha, Index strideA = -1, |
| Index strideB = -1, Index offsetA = 0, Index offsetB = 0) { |
| if (rows == 0 || cols == 0 || depth == 0) return; |
| |
| mpreal acc1(0, mpfr_get_prec(blockA[0].mpfr_srcptr())), tmp(0, mpfr_get_prec(blockA[0].mpfr_srcptr())); |
| |
| if (strideA == -1) strideA = depth; |
| if (strideB == -1) strideB = depth; |
| |
| for (Index i = 0; i < rows; ++i) { |
| for (Index j = 0; j < cols; ++j) { |
| const mpreal* A = blockA + i * strideA + offsetA; |
| const mpreal* B = blockB + j * strideB + offsetB; |
| |
| acc1 = 0; |
| for (Index k = 0; k < depth; k++) { |
| mpfr_mul(tmp.mpfr_ptr(), A[k].mpfr_srcptr(), B[k].mpfr_srcptr(), mpreal::get_default_rnd()); |
| mpfr_add(acc1.mpfr_ptr(), acc1.mpfr_ptr(), tmp.mpfr_ptr(), mpreal::get_default_rnd()); |
| } |
| |
| mpfr_mul(acc1.mpfr_ptr(), acc1.mpfr_srcptr(), alpha.mpfr_srcptr(), mpreal::get_default_rnd()); |
| mpfr_add(res(i, j).mpfr_ptr(), res(i, j).mpfr_srcptr(), acc1.mpfr_srcptr(), mpreal::get_default_rnd()); |
| } |
| } |
| } |
| }; |
| } // end namespace internal |
| } // namespace Eigen |
| |
| #endif // EIGEN_MPREALSUPPORT_MODULE_H |