| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <unsupported/Eigen/AutoDiff> |
| |
| template <typename Scalar> |
| EIGEN_DONT_INLINE Scalar foo(const Scalar& x, const Scalar& y) { |
| using namespace std; |
| // return x+std::sin(y); |
| EIGEN_ASM_COMMENT("mybegin"); |
| // pow(float, int) promotes to pow(double, double) |
| return x * 2 - 1 + static_cast<Scalar>(pow(1 + x, 2)) + 2 * sqrt(y * y + 0) - 4 * sin(0 + x) + 2 * cos(y + 0) - |
| exp(Scalar(-0.5) * x * x + 0); |
| // return x+2*y*x;//x*2 -std::pow(x,2);//(2*y/x);// - y*2; |
| EIGEN_ASM_COMMENT("myend"); |
| } |
| |
| template <typename Vector> |
| EIGEN_DONT_INLINE typename Vector::Scalar foo(const Vector& p) { |
| typedef typename Vector::Scalar Scalar; |
| return (p - Vector(Scalar(-1), Scalar(1.))).norm() + (p.array() * p.array()).sum() + p.dot(p); |
| } |
| |
| template <typename Scalar_, int NX = Dynamic, int NY = Dynamic> |
| struct TestFunc1 { |
| typedef Scalar_ Scalar; |
| enum { InputsAtCompileTime = NX, ValuesAtCompileTime = NY }; |
| typedef Matrix<Scalar, InputsAtCompileTime, 1> InputType; |
| typedef Matrix<Scalar, ValuesAtCompileTime, 1> ValueType; |
| typedef Matrix<Scalar, ValuesAtCompileTime, InputsAtCompileTime> JacobianType; |
| |
| int m_inputs, m_values; |
| |
| TestFunc1() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {} |
| TestFunc1(int inputs_, int values_) : m_inputs(inputs_), m_values(values_) {} |
| |
| int inputs() const { return m_inputs; } |
| int values() const { return m_values; } |
| |
| template <typename T> |
| void operator()(const Matrix<T, InputsAtCompileTime, 1>& x, Matrix<T, ValuesAtCompileTime, 1>* _v) const { |
| Matrix<T, ValuesAtCompileTime, 1>& v = *_v; |
| |
| v[0] = 2 * x[0] * x[0] + x[0] * x[1]; |
| v[1] = 3 * x[1] * x[0] + 0.5 * x[1] * x[1]; |
| if (inputs() > 2) { |
| v[0] += 0.5 * x[2]; |
| v[1] += x[2]; |
| } |
| if (values() > 2) { |
| v[2] = 3 * x[1] * x[0] * x[0]; |
| } |
| if (inputs() > 2 && values() > 2) v[2] *= x[2]; |
| } |
| |
| void operator()(const InputType& x, ValueType* v, JacobianType* _j) const { |
| (*this)(x, v); |
| |
| if (_j) { |
| JacobianType& j = *_j; |
| |
| j(0, 0) = 4 * x[0] + x[1]; |
| j(1, 0) = 3 * x[1]; |
| |
| j(0, 1) = x[0]; |
| j(1, 1) = 3 * x[0] + 2 * 0.5 * x[1]; |
| |
| if (inputs() > 2) { |
| j(0, 2) = 0.5; |
| j(1, 2) = 1; |
| } |
| if (values() > 2) { |
| j(2, 0) = 3 * x[1] * 2 * x[0]; |
| j(2, 1) = 3 * x[0] * x[0]; |
| } |
| if (inputs() > 2 && values() > 2) { |
| j(2, 0) *= x[2]; |
| j(2, 1) *= x[2]; |
| |
| j(2, 2) = 3 * x[1] * x[0] * x[0]; |
| j(2, 2) = 3 * x[1] * x[0] * x[0]; |
| } |
| } |
| } |
| }; |
| |
| /* Test functor for the C++11 features. */ |
| template <typename Scalar> |
| struct integratorFunctor { |
| typedef Matrix<Scalar, 2, 1> InputType; |
| typedef Matrix<Scalar, 2, 1> ValueType; |
| |
| /* |
| * Implementation starts here. |
| */ |
| integratorFunctor(const Scalar gain) : _gain(gain) {} |
| integratorFunctor(const integratorFunctor& f) : _gain(f._gain) {} |
| const Scalar _gain; |
| |
| template <typename T1, typename T2> |
| void operator()(const T1& input, T2* output, const Scalar dt) const { |
| T2& o = *output; |
| |
| /* Integrator to test the AD. */ |
| o[0] = input[0] + input[1] * dt * _gain; |
| o[1] = input[1] * _gain; |
| } |
| |
| /* Only needed for the test */ |
| template <typename T1, typename T2, typename T3> |
| void operator()(const T1& input, T2* output, T3* jacobian, const Scalar dt) const { |
| T2& o = *output; |
| |
| /* Integrator to test the AD. */ |
| o[0] = input[0] + input[1] * dt * _gain; |
| o[1] = input[1] * _gain; |
| |
| if (jacobian) { |
| T3& j = *jacobian; |
| |
| j(0, 0) = 1; |
| j(0, 1) = dt * _gain; |
| j(1, 0) = 0; |
| j(1, 1) = _gain; |
| } |
| } |
| }; |
| |
| template <typename Func> |
| void forward_jacobian_cpp11(const Func& f) { |
| typedef typename Func::ValueType::Scalar Scalar; |
| typedef typename Func::ValueType ValueType; |
| typedef typename Func::InputType InputType; |
| typedef typename AutoDiffJacobian<Func>::JacobianType JacobianType; |
| |
| InputType x = InputType::Random(InputType::RowsAtCompileTime); |
| ValueType y, yref; |
| JacobianType j, jref; |
| |
| const Scalar dt = internal::random<double>(); |
| |
| jref.setZero(); |
| yref.setZero(); |
| f(x, &yref, &jref, dt); |
| |
| // std::cerr << "y, yref, jref: " << "\n"; |
| // std::cerr << y.transpose() << "\n\n"; |
| // std::cerr << yref << "\n\n"; |
| // std::cerr << jref << "\n\n"; |
| |
| AutoDiffJacobian<Func> autoj(f); |
| autoj(x, &y, &j, dt); |
| |
| // std::cerr << "y j (via autodiff): " << "\n"; |
| // std::cerr << y.transpose() << "\n\n"; |
| // std::cerr << j << "\n\n"; |
| |
| VERIFY_IS_APPROX(y, yref); |
| VERIFY_IS_APPROX(j, jref); |
| } |
| |
| template <typename Func> |
| void forward_jacobian(const Func& f) { |
| typename Func::InputType x = Func::InputType::Random(f.inputs()); |
| typename Func::ValueType y(f.values()), yref(f.values()); |
| typename Func::JacobianType j(f.values(), f.inputs()), jref(f.values(), f.inputs()); |
| |
| jref.setZero(); |
| yref.setZero(); |
| f(x, &yref, &jref); |
| |
| j.setZero(); |
| y.setZero(); |
| AutoDiffJacobian<Func> autoj(f); |
| autoj(x, &y, &j); |
| |
| VERIFY_IS_APPROX(y, yref); |
| VERIFY_IS_APPROX(j, jref); |
| } |
| |
| // TODO also check actual derivatives! |
| template <int> |
| void test_autodiff_scalar() { |
| Vector2f p = Vector2f::Random(); |
| typedef AutoDiffScalar<Vector2f> AD; |
| AD ax(p.x(), Vector2f::UnitX()); |
| AD ay(p.y(), Vector2f::UnitY()); |
| AD res = foo<AD>(ax, ay); |
| VERIFY_IS_APPROX(res.value(), foo(p.x(), p.y())); |
| } |
| |
| // TODO also check actual derivatives! |
| template <int> |
| void test_autodiff_vector() { |
| Vector2f p = Vector2f::Random(); |
| typedef AutoDiffScalar<Vector2f> AD; |
| typedef Matrix<AD, 2, 1> VectorAD; |
| VectorAD ap = p.cast<AD>(); |
| ap.x().derivatives() = Vector2f::UnitX(); |
| ap.y().derivatives() = Vector2f::UnitY(); |
| |
| AD res = foo<VectorAD>(ap); |
| VERIFY_IS_APPROX(res.value(), foo(p)); |
| } |
| |
| template <int> |
| void test_autodiff_jacobian() { |
| CALL_SUBTEST((forward_jacobian(TestFunc1<double, 2, 2>()))); |
| CALL_SUBTEST((forward_jacobian(TestFunc1<double, 2, 3>()))); |
| CALL_SUBTEST((forward_jacobian(TestFunc1<double, 3, 2>()))); |
| CALL_SUBTEST((forward_jacobian(TestFunc1<double, 3, 3>()))); |
| CALL_SUBTEST((forward_jacobian(TestFunc1<double>(3, 3)))); |
| CALL_SUBTEST((forward_jacobian_cpp11(integratorFunctor<double>(10)))); |
| } |
| |
| template <int> |
| void test_autodiff_hessian() { |
| typedef AutoDiffScalar<VectorXd> AD; |
| typedef Matrix<AD, Eigen::Dynamic, 1> VectorAD; |
| typedef AutoDiffScalar<VectorAD> ADD; |
| typedef Matrix<ADD, Eigen::Dynamic, 1> VectorADD; |
| VectorADD x(2); |
| double s1 = internal::random<double>(), s2 = internal::random<double>(), s3 = internal::random<double>(), |
| s4 = internal::random<double>(); |
| x(0).value() = s1; |
| x(1).value() = s2; |
| |
| // set unit vectors for the derivative directions (partial derivatives of the input vector) |
| x(0).derivatives().resize(2); |
| x(0).derivatives().setZero(); |
| x(0).derivatives()(0) = 1; |
| x(1).derivatives().resize(2); |
| x(1).derivatives().setZero(); |
| x(1).derivatives()(1) = 1; |
| |
| // repeat partial derivatives for the inner AutoDiffScalar |
| x(0).value().derivatives() = VectorXd::Unit(2, 0); |
| x(1).value().derivatives() = VectorXd::Unit(2, 1); |
| |
| // set the hessian matrix to zero |
| for (int idx = 0; idx < 2; idx++) { |
| x(0).derivatives()(idx).derivatives() = VectorXd::Zero(2); |
| x(1).derivatives()(idx).derivatives() = VectorXd::Zero(2); |
| } |
| |
| ADD y = sin(AD(s3) * x(0) + AD(s4) * x(1)); |
| |
| VERIFY_IS_APPROX(y.value().derivatives()(0), y.derivatives()(0).value()); |
| VERIFY_IS_APPROX(y.value().derivatives()(1), y.derivatives()(1).value()); |
| VERIFY_IS_APPROX(y.value().derivatives()(0), s3 * std::cos(s1 * s3 + s2 * s4)); |
| VERIFY_IS_APPROX(y.value().derivatives()(1), s4 * std::cos(s1 * s3 + s2 * s4)); |
| VERIFY_IS_APPROX(y.derivatives()(0).derivatives(), -std::sin(s1 * s3 + s2 * s4) * Vector2d(s3 * s3, s4 * s3)); |
| VERIFY_IS_APPROX(y.derivatives()(1).derivatives(), -std::sin(s1 * s3 + s2 * s4) * Vector2d(s3 * s4, s4 * s4)); |
| |
| ADD z = x(0) * x(1); |
| VERIFY_IS_APPROX(z.derivatives()(0).derivatives(), Vector2d(0, 1)); |
| VERIFY_IS_APPROX(z.derivatives()(1).derivatives(), Vector2d(1, 0)); |
| } |
| |
| double bug_1222() { |
| typedef Eigen::AutoDiffScalar<Eigen::Vector3d> AD; |
| const double _cv1_3 = 1.0; |
| const AD chi_3 = 1.0; |
| // this line did not work, because operator+ returns ADS<DerType&>, which then cannot be converted to ADS<DerType> |
| const AD denom = chi_3 + _cv1_3; |
| return denom.value(); |
| } |
| |
| double bug_1223() { |
| using std::min; |
| typedef Eigen::AutoDiffScalar<Eigen::Vector3d> AD; |
| |
| const double _cv1_3 = 1.0; |
| const AD chi_3 = 1.0; |
| const AD denom = 1.0; |
| |
| // failed because implementation of min attempts to construct ADS<DerType&> via constructor AutoDiffScalar(const Real& |
| // value) without initializing m_derivatives (which is a reference in this case) |
| #define EIGEN_TEST_SPACE |
| const AD t = min EIGEN_TEST_SPACE(denom / chi_3, 1.0); |
| |
| const AD t2 = min EIGEN_TEST_SPACE(denom / (chi_3 * _cv1_3), 1.0); |
| |
| return t.value() + t2.value(); |
| } |
| |
| // regression test for some compilation issues with specializations of ScalarBinaryOpTraits |
| void bug_1260() { |
| Matrix4d A = Matrix4d::Ones(); |
| Vector4d v = Vector4d::Ones(); |
| A* v; |
| } |
| |
| // check a compilation issue with numext::max |
| double bug_1261() { |
| typedef AutoDiffScalar<Matrix2d> AD; |
| typedef Matrix<AD, 2, 1> VectorAD; |
| |
| VectorAD v(0., 0.); |
| const AD maxVal = v.maxCoeff(); |
| const AD minVal = v.minCoeff(); |
| return maxVal.value() + minVal.value(); |
| } |
| |
| double bug_1264() { |
| typedef AutoDiffScalar<Vector2d> AD; |
| const AD s = 0.; |
| const Matrix<AD, 3, 1> v1(0., 0., 0.); |
| const Matrix<AD, 3, 1> v2 = (s + 3.0) * v1; |
| return v2(0).value(); |
| } |
| |
| // check with expressions on constants |
| double bug_1281() { |
| int n = 2; |
| typedef AutoDiffScalar<VectorXd> AD; |
| const AD c = 1.; |
| AD x0(2, n, 0); |
| AD y1 = (AD(c) + AD(c)) * x0; |
| y1 = x0 * (AD(c) + AD(c)); |
| AD y2 = (-AD(c)) + x0; |
| y2 = x0 + (-AD(c)); |
| AD y3 = (AD(c) * (-AD(c)) + AD(c)) * x0; |
| y3 = x0 * (AD(c) * (-AD(c)) + AD(c)); |
| return (y1 + y2 + y3).value(); |
| } |
| |
| EIGEN_DECLARE_TEST(autodiff) { |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1(test_autodiff_scalar<1>()); |
| CALL_SUBTEST_2(test_autodiff_vector<1>()); |
| CALL_SUBTEST_3(test_autodiff_jacobian<1>()); |
| CALL_SUBTEST_4(test_autodiff_hessian<1>()); |
| } |
| |
| CALL_SUBTEST_5(bug_1222()); |
| CALL_SUBTEST_5(bug_1223()); |
| CALL_SUBTEST_5(bug_1260()); |
| CALL_SUBTEST_5(bug_1261()); |
| CALL_SUBTEST_5(bug_1281()); |
| } |