blob: a885a1e3730d89eaa935eb61043a8d7b3250f9d0 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <unsupported/Eigen/AutoDiff>
template <typename Scalar>
EIGEN_DONT_INLINE Scalar foo(const Scalar& x, const Scalar& y) {
using namespace std;
// return x+std::sin(y);
EIGEN_ASM_COMMENT("mybegin");
// pow(float, int) promotes to pow(double, double)
return x * 2 - 1 + static_cast<Scalar>(pow(1 + x, 2)) + 2 * sqrt(y * y + 0) - 4 * sin(0 + x) + 2 * cos(y + 0) -
exp(Scalar(-0.5) * x * x + 0);
// return x+2*y*x;//x*2 -std::pow(x,2);//(2*y/x);// - y*2;
EIGEN_ASM_COMMENT("myend");
}
template <typename Vector>
EIGEN_DONT_INLINE typename Vector::Scalar foo(const Vector& p) {
typedef typename Vector::Scalar Scalar;
return (p - Vector(Scalar(-1), Scalar(1.))).norm() + (p.array() * p.array()).sum() + p.dot(p);
}
template <typename Scalar_, int NX = Dynamic, int NY = Dynamic>
struct TestFunc1 {
typedef Scalar_ Scalar;
enum { InputsAtCompileTime = NX, ValuesAtCompileTime = NY };
typedef Matrix<Scalar, InputsAtCompileTime, 1> InputType;
typedef Matrix<Scalar, ValuesAtCompileTime, 1> ValueType;
typedef Matrix<Scalar, ValuesAtCompileTime, InputsAtCompileTime> JacobianType;
int m_inputs, m_values;
TestFunc1() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {}
TestFunc1(int inputs_, int values_) : m_inputs(inputs_), m_values(values_) {}
int inputs() const { return m_inputs; }
int values() const { return m_values; }
template <typename T>
void operator()(const Matrix<T, InputsAtCompileTime, 1>& x, Matrix<T, ValuesAtCompileTime, 1>* _v) const {
Matrix<T, ValuesAtCompileTime, 1>& v = *_v;
v[0] = 2 * x[0] * x[0] + x[0] * x[1];
v[1] = 3 * x[1] * x[0] + 0.5 * x[1] * x[1];
if (inputs() > 2) {
v[0] += 0.5 * x[2];
v[1] += x[2];
}
if (values() > 2) {
v[2] = 3 * x[1] * x[0] * x[0];
}
if (inputs() > 2 && values() > 2) v[2] *= x[2];
}
void operator()(const InputType& x, ValueType* v, JacobianType* _j) const {
(*this)(x, v);
if (_j) {
JacobianType& j = *_j;
j(0, 0) = 4 * x[0] + x[1];
j(1, 0) = 3 * x[1];
j(0, 1) = x[0];
j(1, 1) = 3 * x[0] + 2 * 0.5 * x[1];
if (inputs() > 2) {
j(0, 2) = 0.5;
j(1, 2) = 1;
}
if (values() > 2) {
j(2, 0) = 3 * x[1] * 2 * x[0];
j(2, 1) = 3 * x[0] * x[0];
}
if (inputs() > 2 && values() > 2) {
j(2, 0) *= x[2];
j(2, 1) *= x[2];
j(2, 2) = 3 * x[1] * x[0] * x[0];
j(2, 2) = 3 * x[1] * x[0] * x[0];
}
}
}
};
/* Test functor for the C++11 features. */
template <typename Scalar>
struct integratorFunctor {
typedef Matrix<Scalar, 2, 1> InputType;
typedef Matrix<Scalar, 2, 1> ValueType;
/*
* Implementation starts here.
*/
integratorFunctor(const Scalar gain) : _gain(gain) {}
integratorFunctor(const integratorFunctor& f) : _gain(f._gain) {}
const Scalar _gain;
template <typename T1, typename T2>
void operator()(const T1& input, T2* output, const Scalar dt) const {
T2& o = *output;
/* Integrator to test the AD. */
o[0] = input[0] + input[1] * dt * _gain;
o[1] = input[1] * _gain;
}
/* Only needed for the test */
template <typename T1, typename T2, typename T3>
void operator()(const T1& input, T2* output, T3* jacobian, const Scalar dt) const {
T2& o = *output;
/* Integrator to test the AD. */
o[0] = input[0] + input[1] * dt * _gain;
o[1] = input[1] * _gain;
if (jacobian) {
T3& j = *jacobian;
j(0, 0) = 1;
j(0, 1) = dt * _gain;
j(1, 0) = 0;
j(1, 1) = _gain;
}
}
};
template <typename Func>
void forward_jacobian_cpp11(const Func& f) {
typedef typename Func::ValueType::Scalar Scalar;
typedef typename Func::ValueType ValueType;
typedef typename Func::InputType InputType;
typedef typename AutoDiffJacobian<Func>::JacobianType JacobianType;
InputType x = InputType::Random(InputType::RowsAtCompileTime);
ValueType y, yref;
JacobianType j, jref;
const Scalar dt = internal::random<double>();
jref.setZero();
yref.setZero();
f(x, &yref, &jref, dt);
// std::cerr << "y, yref, jref: " << "\n";
// std::cerr << y.transpose() << "\n\n";
// std::cerr << yref << "\n\n";
// std::cerr << jref << "\n\n";
AutoDiffJacobian<Func> autoj(f);
autoj(x, &y, &j, dt);
// std::cerr << "y j (via autodiff): " << "\n";
// std::cerr << y.transpose() << "\n\n";
// std::cerr << j << "\n\n";
VERIFY_IS_APPROX(y, yref);
VERIFY_IS_APPROX(j, jref);
}
template <typename Func>
void forward_jacobian(const Func& f) {
typename Func::InputType x = Func::InputType::Random(f.inputs());
typename Func::ValueType y(f.values()), yref(f.values());
typename Func::JacobianType j(f.values(), f.inputs()), jref(f.values(), f.inputs());
jref.setZero();
yref.setZero();
f(x, &yref, &jref);
j.setZero();
y.setZero();
AutoDiffJacobian<Func> autoj(f);
autoj(x, &y, &j);
VERIFY_IS_APPROX(y, yref);
VERIFY_IS_APPROX(j, jref);
}
// TODO also check actual derivatives!
template <int>
void test_autodiff_scalar() {
Vector2f p = Vector2f::Random();
typedef AutoDiffScalar<Vector2f> AD;
AD ax(p.x(), Vector2f::UnitX());
AD ay(p.y(), Vector2f::UnitY());
AD res = foo<AD>(ax, ay);
VERIFY_IS_APPROX(res.value(), foo(p.x(), p.y()));
}
// TODO also check actual derivatives!
template <int>
void test_autodiff_vector() {
Vector2f p = Vector2f::Random();
typedef AutoDiffScalar<Vector2f> AD;
typedef Matrix<AD, 2, 1> VectorAD;
VectorAD ap = p.cast<AD>();
ap.x().derivatives() = Vector2f::UnitX();
ap.y().derivatives() = Vector2f::UnitY();
AD res = foo<VectorAD>(ap);
VERIFY_IS_APPROX(res.value(), foo(p));
}
template <int>
void test_autodiff_jacobian() {
CALL_SUBTEST((forward_jacobian(TestFunc1<double, 2, 2>())));
CALL_SUBTEST((forward_jacobian(TestFunc1<double, 2, 3>())));
CALL_SUBTEST((forward_jacobian(TestFunc1<double, 3, 2>())));
CALL_SUBTEST((forward_jacobian(TestFunc1<double, 3, 3>())));
CALL_SUBTEST((forward_jacobian(TestFunc1<double>(3, 3))));
CALL_SUBTEST((forward_jacobian_cpp11(integratorFunctor<double>(10))));
}
template <int>
void test_autodiff_hessian() {
typedef AutoDiffScalar<VectorXd> AD;
typedef Matrix<AD, Eigen::Dynamic, 1> VectorAD;
typedef AutoDiffScalar<VectorAD> ADD;
typedef Matrix<ADD, Eigen::Dynamic, 1> VectorADD;
VectorADD x(2);
double s1 = internal::random<double>(), s2 = internal::random<double>(), s3 = internal::random<double>(),
s4 = internal::random<double>();
x(0).value() = s1;
x(1).value() = s2;
// set unit vectors for the derivative directions (partial derivatives of the input vector)
x(0).derivatives().resize(2);
x(0).derivatives().setZero();
x(0).derivatives()(0) = 1;
x(1).derivatives().resize(2);
x(1).derivatives().setZero();
x(1).derivatives()(1) = 1;
// repeat partial derivatives for the inner AutoDiffScalar
x(0).value().derivatives() = VectorXd::Unit(2, 0);
x(1).value().derivatives() = VectorXd::Unit(2, 1);
// set the hessian matrix to zero
for (int idx = 0; idx < 2; idx++) {
x(0).derivatives()(idx).derivatives() = VectorXd::Zero(2);
x(1).derivatives()(idx).derivatives() = VectorXd::Zero(2);
}
ADD y = sin(AD(s3) * x(0) + AD(s4) * x(1));
VERIFY_IS_APPROX(y.value().derivatives()(0), y.derivatives()(0).value());
VERIFY_IS_APPROX(y.value().derivatives()(1), y.derivatives()(1).value());
VERIFY_IS_APPROX(y.value().derivatives()(0), s3 * std::cos(s1 * s3 + s2 * s4));
VERIFY_IS_APPROX(y.value().derivatives()(1), s4 * std::cos(s1 * s3 + s2 * s4));
VERIFY_IS_APPROX(y.derivatives()(0).derivatives(), -std::sin(s1 * s3 + s2 * s4) * Vector2d(s3 * s3, s4 * s3));
VERIFY_IS_APPROX(y.derivatives()(1).derivatives(), -std::sin(s1 * s3 + s2 * s4) * Vector2d(s3 * s4, s4 * s4));
ADD z = x(0) * x(1);
VERIFY_IS_APPROX(z.derivatives()(0).derivatives(), Vector2d(0, 1));
VERIFY_IS_APPROX(z.derivatives()(1).derivatives(), Vector2d(1, 0));
}
double bug_1222() {
typedef Eigen::AutoDiffScalar<Eigen::Vector3d> AD;
const double _cv1_3 = 1.0;
const AD chi_3 = 1.0;
// this line did not work, because operator+ returns ADS<DerType&>, which then cannot be converted to ADS<DerType>
const AD denom = chi_3 + _cv1_3;
return denom.value();
}
double bug_1223() {
using std::min;
typedef Eigen::AutoDiffScalar<Eigen::Vector3d> AD;
const double _cv1_3 = 1.0;
const AD chi_3 = 1.0;
const AD denom = 1.0;
// failed because implementation of min attempts to construct ADS<DerType&> via constructor AutoDiffScalar(const Real&
// value) without initializing m_derivatives (which is a reference in this case)
#define EIGEN_TEST_SPACE
const AD t = min EIGEN_TEST_SPACE(denom / chi_3, 1.0);
const AD t2 = min EIGEN_TEST_SPACE(denom / (chi_3 * _cv1_3), 1.0);
return t.value() + t2.value();
}
// regression test for some compilation issues with specializations of ScalarBinaryOpTraits
void bug_1260() {
Matrix4d A = Matrix4d::Ones();
Vector4d v = Vector4d::Ones();
A* v;
}
// check a compilation issue with numext::max
double bug_1261() {
typedef AutoDiffScalar<Matrix2d> AD;
typedef Matrix<AD, 2, 1> VectorAD;
VectorAD v(0., 0.);
const AD maxVal = v.maxCoeff();
const AD minVal = v.minCoeff();
return maxVal.value() + minVal.value();
}
double bug_1264() {
typedef AutoDiffScalar<Vector2d> AD;
const AD s = 0.;
const Matrix<AD, 3, 1> v1(0., 0., 0.);
const Matrix<AD, 3, 1> v2 = (s + 3.0) * v1;
return v2(0).value();
}
// check with expressions on constants
double bug_1281() {
int n = 2;
typedef AutoDiffScalar<VectorXd> AD;
const AD c = 1.;
AD x0(2, n, 0);
AD y1 = (AD(c) + AD(c)) * x0;
y1 = x0 * (AD(c) + AD(c));
AD y2 = (-AD(c)) + x0;
y2 = x0 + (-AD(c));
AD y3 = (AD(c) * (-AD(c)) + AD(c)) * x0;
y3 = x0 * (AD(c) * (-AD(c)) + AD(c));
return (y1 + y2 + y3).value();
}
EIGEN_DECLARE_TEST(autodiff) {
for (int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1(test_autodiff_scalar<1>());
CALL_SUBTEST_2(test_autodiff_vector<1>());
CALL_SUBTEST_3(test_autodiff_jacobian<1>());
CALL_SUBTEST_4(test_autodiff_hessian<1>());
}
CALL_SUBTEST_5(bug_1222());
CALL_SUBTEST_5(bug_1223());
CALL_SUBTEST_5(bug_1260());
CALL_SUBTEST_5(bug_1261());
CALL_SUBTEST_5(bug_1281());
}