| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2016 |
| // Mehdi Goli Codeplay Software Ltd. |
| // Ralph Potter Codeplay Software Ltd. |
| // Luke Iwanski Codeplay Software Ltd. |
| // Contact: <eigen@codeplay.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #define EIGEN_TEST_NO_LONGDOUBLE |
| #define EIGEN_TEST_NO_COMPLEX |
| |
| #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t |
| #define EIGEN_USE_SYCL |
| |
| #include "main.h" |
| #include <unsupported/Eigen/CXX11/Tensor> |
| |
| using Eigen::array; |
| using Eigen::SyclDevice; |
| using Eigen::Tensor; |
| using Eigen::TensorMap; |
| |
| template <typename DataType, int DataLayout, typename IndexType> |
| static void test_broadcast_sycl_fixed(const Eigen::SyclDevice& sycl_device) { |
| // BROADCAST test: |
| IndexType inDim1 = 2; |
| IndexType inDim2 = 3; |
| IndexType inDim3 = 5; |
| IndexType inDim4 = 7; |
| IndexType bDim1 = 2; |
| IndexType bDim2 = 3; |
| IndexType bDim3 = 1; |
| IndexType bDim4 = 4; |
| array<IndexType, 4> in_range = {{inDim1, inDim2, inDim3, inDim4}}; |
| array<IndexType, 4> broadcasts = {{bDim1, bDim2, bDim3, bDim4}}; |
| array<IndexType, 4> out_range; // = in_range * broadcasts |
| for (size_t i = 0; i < out_range.size(); ++i) out_range[i] = in_range[i] * broadcasts[i]; |
| |
| Tensor<DataType, 4, DataLayout, IndexType> input(in_range); |
| Tensor<DataType, 4, DataLayout, IndexType> out(out_range); |
| |
| for (size_t i = 0; i < in_range.size(); ++i) VERIFY_IS_EQUAL(out.dimension(i), out_range[i]); |
| |
| for (IndexType i = 0; i < input.size(); ++i) input(i) = static_cast<DataType>(i); |
| |
| DataType* gpu_in_data = |
| static_cast<DataType*>(sycl_device.allocate(input.dimensions().TotalSize() * sizeof(DataType))); |
| DataType* gpu_out_data = |
| static_cast<DataType*>(sycl_device.allocate(out.dimensions().TotalSize() * sizeof(DataType))); |
| |
| TensorMap<TensorFixedSize<DataType, Sizes<2, 3, 5, 7>, DataLayout, IndexType>> gpu_in(gpu_in_data, in_range); |
| TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu_out(gpu_out_data, out_range); |
| sycl_device.memcpyHostToDevice(gpu_in_data, input.data(), (input.dimensions().TotalSize()) * sizeof(DataType)); |
| gpu_out.device(sycl_device) = gpu_in.broadcast(broadcasts); |
| sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data, (out.dimensions().TotalSize()) * sizeof(DataType)); |
| |
| for (IndexType i = 0; i < inDim1 * bDim1; ++i) { |
| for (IndexType j = 0; j < inDim2 * bDim2; ++j) { |
| for (IndexType k = 0; k < inDim3 * bDim3; ++k) { |
| for (IndexType l = 0; l < inDim4 * bDim4; ++l) { |
| VERIFY_IS_APPROX(input(i % 2, j % 3, k % 5, l % 7), out(i, j, k, l)); |
| } |
| } |
| } |
| } |
| printf("Broadcast Test with fixed size Passed\n"); |
| sycl_device.deallocate(gpu_in_data); |
| sycl_device.deallocate(gpu_out_data); |
| } |
| |
| template <typename DataType, int DataLayout, typename IndexType> |
| static void test_broadcast_sycl(const Eigen::SyclDevice& sycl_device) { |
| // BROADCAST test: |
| IndexType inDim1 = 2; |
| IndexType inDim2 = 3; |
| IndexType inDim3 = 5; |
| IndexType inDim4 = 7; |
| IndexType bDim1 = 2; |
| IndexType bDim2 = 3; |
| IndexType bDim3 = 1; |
| IndexType bDim4 = 4; |
| array<IndexType, 4> in_range = {{inDim1, inDim2, inDim3, inDim4}}; |
| array<IndexType, 4> broadcasts = {{bDim1, bDim2, bDim3, bDim4}}; |
| array<IndexType, 4> out_range; // = in_range * broadcasts |
| for (size_t i = 0; i < out_range.size(); ++i) out_range[i] = in_range[i] * broadcasts[i]; |
| |
| Tensor<DataType, 4, DataLayout, IndexType> input(in_range); |
| Tensor<DataType, 4, DataLayout, IndexType> out(out_range); |
| |
| for (size_t i = 0; i < in_range.size(); ++i) VERIFY_IS_EQUAL(out.dimension(i), out_range[i]); |
| |
| for (IndexType i = 0; i < input.size(); ++i) input(i) = static_cast<DataType>(i); |
| |
| DataType* gpu_in_data = |
| static_cast<DataType*>(sycl_device.allocate(input.dimensions().TotalSize() * sizeof(DataType))); |
| DataType* gpu_out_data = |
| static_cast<DataType*>(sycl_device.allocate(out.dimensions().TotalSize() * sizeof(DataType))); |
| |
| TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu_in(gpu_in_data, in_range); |
| TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu_out(gpu_out_data, out_range); |
| sycl_device.memcpyHostToDevice(gpu_in_data, input.data(), (input.dimensions().TotalSize()) * sizeof(DataType)); |
| gpu_out.device(sycl_device) = gpu_in.broadcast(broadcasts); |
| sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data, (out.dimensions().TotalSize()) * sizeof(DataType)); |
| |
| for (IndexType i = 0; i < inDim1 * bDim1; ++i) { |
| for (IndexType j = 0; j < inDim2 * bDim2; ++j) { |
| for (IndexType k = 0; k < inDim3 * bDim3; ++k) { |
| for (IndexType l = 0; l < inDim4 * bDim4; ++l) { |
| VERIFY_IS_APPROX(input(i % inDim1, j % inDim2, k % inDim3, l % inDim4), out(i, j, k, l)); |
| } |
| } |
| } |
| } |
| printf("Broadcast Test Passed\n"); |
| sycl_device.deallocate(gpu_in_data); |
| sycl_device.deallocate(gpu_out_data); |
| } |
| |
| template <typename DataType> |
| void sycl_broadcast_test_per_device(const cl::sycl::device& d) { |
| std::cout << "Running on " << d.template get_info<cl::sycl::info::device::name>() << std::endl; |
| QueueInterface queueInterface(d); |
| auto sycl_device = Eigen::SyclDevice(&queueInterface); |
| test_broadcast_sycl<DataType, RowMajor, int64_t>(sycl_device); |
| test_broadcast_sycl<DataType, ColMajor, int64_t>(sycl_device); |
| test_broadcast_sycl_fixed<DataType, RowMajor, int64_t>(sycl_device); |
| test_broadcast_sycl_fixed<DataType, ColMajor, int64_t>(sycl_device); |
| } |
| |
| EIGEN_DECLARE_TEST(cxx11_tensor_broadcast_sycl) { |
| for (const auto& device : Eigen::get_sycl_supported_devices()) { |
| CALL_SUBTEST(sycl_broadcast_test_per_device<half>(device)); |
| CALL_SUBTEST(sycl_broadcast_test_per_device<float>(device)); |
| } |
| } |