blob: dbbd89dd1d0a8c98cbe3089273f866ace2dfed17 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/CXX11/Tensor>
using Eigen::Tensor;
template <int DataLayout>
static void test_simple_chip() {
Tensor<float, 5, DataLayout> tensor(2, 3, 5, 7, 11);
tensor.setRandom();
Tensor<float, 4, DataLayout> chip1;
chip1 = tensor.template chip<0>(1);
VERIFY_IS_EQUAL(chip1.dimension(0), 3);
VERIFY_IS_EQUAL(chip1.dimension(1), 5);
VERIFY_IS_EQUAL(chip1.dimension(2), 7);
VERIFY_IS_EQUAL(chip1.dimension(3), 11);
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 5; ++j) {
for (int k = 0; k < 7; ++k) {
for (int l = 0; l < 11; ++l) {
VERIFY_IS_EQUAL(chip1(i, j, k, l), tensor(1, i, j, k, l));
}
}
}
}
Tensor<float, 4, DataLayout> chip2 = tensor.template chip<1>(1);
VERIFY_IS_EQUAL(chip2.dimension(0), 2);
VERIFY_IS_EQUAL(chip2.dimension(1), 5);
VERIFY_IS_EQUAL(chip2.dimension(2), 7);
VERIFY_IS_EQUAL(chip2.dimension(3), 11);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 5; ++j) {
for (int k = 0; k < 7; ++k) {
for (int l = 0; l < 11; ++l) {
VERIFY_IS_EQUAL(chip2(i, j, k, l), tensor(i, 1, j, k, l));
}
}
}
}
Tensor<float, 4, DataLayout> chip3 = tensor.template chip<2>(2);
VERIFY_IS_EQUAL(chip3.dimension(0), 2);
VERIFY_IS_EQUAL(chip3.dimension(1), 3);
VERIFY_IS_EQUAL(chip3.dimension(2), 7);
VERIFY_IS_EQUAL(chip3.dimension(3), 11);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 7; ++k) {
for (int l = 0; l < 11; ++l) {
VERIFY_IS_EQUAL(chip3(i, j, k, l), tensor(i, j, 2, k, l));
}
}
}
}
Tensor<float, 4, DataLayout> chip4(tensor.template chip<3>(5));
VERIFY_IS_EQUAL(chip4.dimension(0), 2);
VERIFY_IS_EQUAL(chip4.dimension(1), 3);
VERIFY_IS_EQUAL(chip4.dimension(2), 5);
VERIFY_IS_EQUAL(chip4.dimension(3), 11);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 5; ++k) {
for (int l = 0; l < 11; ++l) {
VERIFY_IS_EQUAL(chip4(i, j, k, l), tensor(i, j, k, 5, l));
}
}
}
}
Tensor<float, 4, DataLayout> chip5(tensor.template chip<4>(7));
VERIFY_IS_EQUAL(chip5.dimension(0), 2);
VERIFY_IS_EQUAL(chip5.dimension(1), 3);
VERIFY_IS_EQUAL(chip5.dimension(2), 5);
VERIFY_IS_EQUAL(chip5.dimension(3), 7);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 5; ++k) {
for (int l = 0; l < 7; ++l) {
VERIFY_IS_EQUAL(chip5(i, j, k, l), tensor(i, j, k, l, 7));
}
}
}
}
}
template <int DataLayout>
static void test_dynamic_chip() {
Tensor<float, 5, DataLayout> tensor(2, 3, 5, 7, 11);
tensor.setRandom();
Tensor<float, 4, DataLayout> chip1;
chip1 = tensor.chip(1, 0);
VERIFY_IS_EQUAL(chip1.dimension(0), 3);
VERIFY_IS_EQUAL(chip1.dimension(1), 5);
VERIFY_IS_EQUAL(chip1.dimension(2), 7);
VERIFY_IS_EQUAL(chip1.dimension(3), 11);
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 5; ++j) {
for (int k = 0; k < 7; ++k) {
for (int l = 0; l < 11; ++l) {
VERIFY_IS_EQUAL(chip1(i, j, k, l), tensor(1, i, j, k, l));
}
}
}
}
Tensor<float, 4, DataLayout> chip2 = tensor.chip(1, 1);
VERIFY_IS_EQUAL(chip2.dimension(0), 2);
VERIFY_IS_EQUAL(chip2.dimension(1), 5);
VERIFY_IS_EQUAL(chip2.dimension(2), 7);
VERIFY_IS_EQUAL(chip2.dimension(3), 11);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 5; ++j) {
for (int k = 0; k < 7; ++k) {
for (int l = 0; l < 11; ++l) {
VERIFY_IS_EQUAL(chip2(i, j, k, l), tensor(i, 1, j, k, l));
}
}
}
}
Tensor<float, 4, DataLayout> chip3 = tensor.chip(2, 2);
VERIFY_IS_EQUAL(chip3.dimension(0), 2);
VERIFY_IS_EQUAL(chip3.dimension(1), 3);
VERIFY_IS_EQUAL(chip3.dimension(2), 7);
VERIFY_IS_EQUAL(chip3.dimension(3), 11);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 7; ++k) {
for (int l = 0; l < 11; ++l) {
VERIFY_IS_EQUAL(chip3(i, j, k, l), tensor(i, j, 2, k, l));
}
}
}
}
Tensor<float, 4, DataLayout> chip4(tensor.chip(5, 3));
VERIFY_IS_EQUAL(chip4.dimension(0), 2);
VERIFY_IS_EQUAL(chip4.dimension(1), 3);
VERIFY_IS_EQUAL(chip4.dimension(2), 5);
VERIFY_IS_EQUAL(chip4.dimension(3), 11);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 5; ++k) {
for (int l = 0; l < 11; ++l) {
VERIFY_IS_EQUAL(chip4(i, j, k, l), tensor(i, j, k, 5, l));
}
}
}
}
Tensor<float, 4, DataLayout> chip5(tensor.chip(7, 4));
VERIFY_IS_EQUAL(chip5.dimension(0), 2);
VERIFY_IS_EQUAL(chip5.dimension(1), 3);
VERIFY_IS_EQUAL(chip5.dimension(2), 5);
VERIFY_IS_EQUAL(chip5.dimension(3), 7);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 5; ++k) {
for (int l = 0; l < 7; ++l) {
VERIFY_IS_EQUAL(chip5(i, j, k, l), tensor(i, j, k, l, 7));
}
}
}
}
}
template <int DataLayout>
static void test_chip_in_expr() {
Tensor<float, 5, DataLayout> input1(2, 3, 5, 7, 11);
input1.setRandom();
Tensor<float, 4, DataLayout> input2(3, 5, 7, 11);
input2.setRandom();
Tensor<float, 4, DataLayout> result = input1.template chip<0>(0) + input2;
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 5; ++j) {
for (int k = 0; k < 7; ++k) {
for (int l = 0; l < 11; ++l) {
float expected = input1(0, i, j, k, l) + input2(i, j, k, l);
VERIFY_IS_EQUAL(result(i, j, k, l), expected);
}
}
}
}
Tensor<float, 3, DataLayout> input3(3, 7, 11);
input3.setRandom();
Tensor<float, 3, DataLayout> result2 = input1.template chip<0>(0).template chip<1>(2) + input3;
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 7; ++j) {
for (int k = 0; k < 11; ++k) {
float expected = input1(0, i, 2, j, k) + input3(i, j, k);
VERIFY_IS_EQUAL(result2(i, j, k), expected);
}
}
}
}
template <int DataLayout>
static void test_chip_as_lvalue() {
Tensor<float, 5, DataLayout> input1(2, 3, 5, 7, 11);
input1.setRandom();
Tensor<float, 4, DataLayout> input2(3, 5, 7, 11);
input2.setRandom();
Tensor<float, 5, DataLayout> tensor = input1;
tensor.template chip<0>(1) = input2;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 5; ++k) {
for (int l = 0; l < 7; ++l) {
for (int m = 0; m < 11; ++m) {
if (i != 1) {
VERIFY_IS_EQUAL(tensor(i, j, k, l, m), input1(i, j, k, l, m));
} else {
VERIFY_IS_EQUAL(tensor(i, j, k, l, m), input2(j, k, l, m));
}
}
}
}
}
}
Tensor<float, 4, DataLayout> input3(2, 5, 7, 11);
input3.setRandom();
tensor = input1;
tensor.template chip<1>(1) = input3;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 5; ++k) {
for (int l = 0; l < 7; ++l) {
for (int m = 0; m < 11; ++m) {
if (j != 1) {
VERIFY_IS_EQUAL(tensor(i, j, k, l, m), input1(i, j, k, l, m));
} else {
VERIFY_IS_EQUAL(tensor(i, j, k, l, m), input3(i, k, l, m));
}
}
}
}
}
}
Tensor<float, 4, DataLayout> input4(2, 3, 7, 11);
input4.setRandom();
tensor = input1;
tensor.template chip<2>(3) = input4;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 5; ++k) {
for (int l = 0; l < 7; ++l) {
for (int m = 0; m < 11; ++m) {
if (k != 3) {
VERIFY_IS_EQUAL(tensor(i, j, k, l, m), input1(i, j, k, l, m));
} else {
VERIFY_IS_EQUAL(tensor(i, j, k, l, m), input4(i, j, l, m));
}
}
}
}
}
}
Tensor<float, 4, DataLayout> input5(2, 3, 5, 11);
input5.setRandom();
tensor = input1;
tensor.template chip<3>(4) = input5;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 5; ++k) {
for (int l = 0; l < 7; ++l) {
for (int m = 0; m < 11; ++m) {
if (l != 4) {
VERIFY_IS_EQUAL(tensor(i, j, k, l, m), input1(i, j, k, l, m));
} else {
VERIFY_IS_EQUAL(tensor(i, j, k, l, m), input5(i, j, k, m));
}
}
}
}
}
}
Tensor<float, 4, DataLayout> input6(2, 3, 5, 7);
input6.setRandom();
tensor = input1;
tensor.template chip<4>(5) = input6;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 5; ++k) {
for (int l = 0; l < 7; ++l) {
for (int m = 0; m < 11; ++m) {
if (m != 5) {
VERIFY_IS_EQUAL(tensor(i, j, k, l, m), input1(i, j, k, l, m));
} else {
VERIFY_IS_EQUAL(tensor(i, j, k, l, m), input6(i, j, k, l));
}
}
}
}
}
}
Tensor<float, 5, DataLayout> input7(2, 3, 5, 7, 11);
input7.setRandom();
tensor = input1;
tensor.chip(0, 0) = input7.chip(0, 0);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 5; ++k) {
for (int l = 0; l < 7; ++l) {
for (int m = 0; m < 11; ++m) {
if (i != 0) {
VERIFY_IS_EQUAL(tensor(i, j, k, l, m), input1(i, j, k, l, m));
} else {
VERIFY_IS_EQUAL(tensor(i, j, k, l, m), input7(i, j, k, l, m));
}
}
}
}
}
}
}
static void test_chip_raw_data_col_major() {
Tensor<float, 5, ColMajor> tensor(2, 3, 5, 7, 11);
tensor.setRandom();
typedef TensorEvaluator<decltype(tensor.chip<4>(3)), DefaultDevice> Evaluator4;
auto chip = Evaluator4(tensor.chip<4>(3), DefaultDevice());
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 5; ++k) {
for (int l = 0; l < 7; ++l) {
int chip_index = i + 2 * (j + 3 * (k + 5 * l));
VERIFY_IS_EQUAL(chip.data()[chip_index], tensor(i, j, k, l, 3));
}
}
}
}
typedef TensorEvaluator<decltype(tensor.chip<0>(0)), DefaultDevice> Evaluator0;
auto chip0 = Evaluator0(tensor.chip<0>(0), DefaultDevice());
VERIFY_IS_EQUAL(chip0.data(), static_cast<float*>(0));
typedef TensorEvaluator<decltype(tensor.chip<1>(0)), DefaultDevice> Evaluator1;
auto chip1 = Evaluator1(tensor.chip<1>(0), DefaultDevice());
VERIFY_IS_EQUAL(chip1.data(), static_cast<float*>(0));
typedef TensorEvaluator<decltype(tensor.chip<2>(0)), DefaultDevice> Evaluator2;
auto chip2 = Evaluator2(tensor.chip<2>(0), DefaultDevice());
VERIFY_IS_EQUAL(chip2.data(), static_cast<float*>(0));
typedef TensorEvaluator<decltype(tensor.chip<3>(0)), DefaultDevice> Evaluator3;
auto chip3 = Evaluator3(tensor.chip<3>(0), DefaultDevice());
VERIFY_IS_EQUAL(chip3.data(), static_cast<float*>(0));
}
static void test_chip_raw_data_row_major() {
Tensor<float, 5, RowMajor> tensor(11, 7, 5, 3, 2);
tensor.setRandom();
typedef TensorEvaluator<decltype(tensor.chip<0>(3)), DefaultDevice> Evaluator0;
auto chip = Evaluator0(tensor.chip<0>(3), DefaultDevice());
for (int i = 0; i < 7; ++i) {
for (int j = 0; j < 5; ++j) {
for (int k = 0; k < 3; ++k) {
for (int l = 0; l < 2; ++l) {
int chip_index = l + 2 * (k + 3 * (j + 5 * i));
VERIFY_IS_EQUAL(chip.data()[chip_index], tensor(3, i, j, k, l));
}
}
}
}
typedef TensorEvaluator<decltype(tensor.chip<1>(0)), DefaultDevice> Evaluator1;
auto chip1 = Evaluator1(tensor.chip<1>(0), DefaultDevice());
VERIFY_IS_EQUAL(chip1.data(), static_cast<float*>(0));
typedef TensorEvaluator<decltype(tensor.chip<2>(0)), DefaultDevice> Evaluator2;
auto chip2 = Evaluator2(tensor.chip<2>(0), DefaultDevice());
VERIFY_IS_EQUAL(chip2.data(), static_cast<float*>(0));
typedef TensorEvaluator<decltype(tensor.chip<3>(0)), DefaultDevice> Evaluator3;
auto chip3 = Evaluator3(tensor.chip<3>(0), DefaultDevice());
VERIFY_IS_EQUAL(chip3.data(), static_cast<float*>(0));
typedef TensorEvaluator<decltype(tensor.chip<4>(0)), DefaultDevice> Evaluator4;
auto chip4 = Evaluator4(tensor.chip<4>(0), DefaultDevice());
VERIFY_IS_EQUAL(chip4.data(), static_cast<float*>(0));
}
EIGEN_DECLARE_TEST(cxx11_tensor_chipping) {
CALL_SUBTEST(test_simple_chip<ColMajor>());
CALL_SUBTEST(test_simple_chip<RowMajor>());
CALL_SUBTEST(test_dynamic_chip<ColMajor>());
CALL_SUBTEST(test_dynamic_chip<RowMajor>());
CALL_SUBTEST(test_chip_in_expr<ColMajor>());
CALL_SUBTEST(test_chip_in_expr<RowMajor>());
CALL_SUBTEST(test_chip_as_lvalue<ColMajor>());
CALL_SUBTEST(test_chip_as_lvalue<RowMajor>());
CALL_SUBTEST(test_chip_raw_data_col_major());
CALL_SUBTEST(test_chip_raw_data_row_major());
}