| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| |
| #include <Eigen/CXX11/Tensor> |
| |
| using Eigen::DefaultDevice; |
| using Eigen::Tensor; |
| |
| typedef Tensor<float, 1>::DimensionPair DimPair; |
| |
| template <int DataLayout> |
| static void test_evals() { |
| Tensor<float, 2, DataLayout> mat1(2, 3); |
| Tensor<float, 2, DataLayout> mat2(2, 3); |
| Tensor<float, 2, DataLayout> mat3(3, 2); |
| |
| mat1.setRandom(); |
| mat2.setRandom(); |
| mat3.setRandom(); |
| |
| Tensor<float, 2, DataLayout> mat4(3, 3); |
| mat4.setZero(); |
| Eigen::array<DimPair, 1> dims3 = {{DimPair(0, 0)}}; |
| typedef TensorEvaluator<decltype(mat1.contract(mat2, dims3)), DefaultDevice> Evaluator; |
| Evaluator eval(mat1.contract(mat2, dims3), DefaultDevice()); |
| eval.evalTo(mat4.data()); |
| EIGEN_STATIC_ASSERT(Evaluator::NumDims == 2ul, YOU_MADE_A_PROGRAMMING_MISTAKE); |
| VERIFY_IS_EQUAL(eval.dimensions()[0], 3); |
| VERIFY_IS_EQUAL(eval.dimensions()[1], 3); |
| |
| VERIFY_IS_APPROX(mat4(0, 0), mat1(0, 0) * mat2(0, 0) + mat1(1, 0) * mat2(1, 0)); |
| VERIFY_IS_APPROX(mat4(0, 1), mat1(0, 0) * mat2(0, 1) + mat1(1, 0) * mat2(1, 1)); |
| VERIFY_IS_APPROX(mat4(0, 2), mat1(0, 0) * mat2(0, 2) + mat1(1, 0) * mat2(1, 2)); |
| VERIFY_IS_APPROX(mat4(1, 0), mat1(0, 1) * mat2(0, 0) + mat1(1, 1) * mat2(1, 0)); |
| VERIFY_IS_APPROX(mat4(1, 1), mat1(0, 1) * mat2(0, 1) + mat1(1, 1) * mat2(1, 1)); |
| VERIFY_IS_APPROX(mat4(1, 2), mat1(0, 1) * mat2(0, 2) + mat1(1, 1) * mat2(1, 2)); |
| VERIFY_IS_APPROX(mat4(2, 0), mat1(0, 2) * mat2(0, 0) + mat1(1, 2) * mat2(1, 0)); |
| VERIFY_IS_APPROX(mat4(2, 1), mat1(0, 2) * mat2(0, 1) + mat1(1, 2) * mat2(1, 1)); |
| VERIFY_IS_APPROX(mat4(2, 2), mat1(0, 2) * mat2(0, 2) + mat1(1, 2) * mat2(1, 2)); |
| |
| Tensor<float, 2, DataLayout> mat5(2, 2); |
| mat5.setZero(); |
| Eigen::array<DimPair, 1> dims4 = {{DimPair(1, 1)}}; |
| typedef TensorEvaluator<decltype(mat1.contract(mat2, dims4)), DefaultDevice> Evaluator2; |
| Evaluator2 eval2(mat1.contract(mat2, dims4), DefaultDevice()); |
| eval2.evalTo(mat5.data()); |
| EIGEN_STATIC_ASSERT(Evaluator2::NumDims == 2ul, YOU_MADE_A_PROGRAMMING_MISTAKE); |
| VERIFY_IS_EQUAL(eval2.dimensions()[0], 2); |
| VERIFY_IS_EQUAL(eval2.dimensions()[1], 2); |
| |
| VERIFY_IS_APPROX(mat5(0, 0), mat1(0, 0) * mat2(0, 0) + mat1(0, 1) * mat2(0, 1) + mat1(0, 2) * mat2(0, 2)); |
| VERIFY_IS_APPROX(mat5(0, 1), mat1(0, 0) * mat2(1, 0) + mat1(0, 1) * mat2(1, 1) + mat1(0, 2) * mat2(1, 2)); |
| VERIFY_IS_APPROX(mat5(1, 0), mat1(1, 0) * mat2(0, 0) + mat1(1, 1) * mat2(0, 1) + mat1(1, 2) * mat2(0, 2)); |
| VERIFY_IS_APPROX(mat5(1, 1), mat1(1, 0) * mat2(1, 0) + mat1(1, 1) * mat2(1, 1) + mat1(1, 2) * mat2(1, 2)); |
| |
| Tensor<float, 2, DataLayout> mat6(2, 2); |
| mat6.setZero(); |
| Eigen::array<DimPair, 1> dims6 = {{DimPair(1, 0)}}; |
| typedef TensorEvaluator<decltype(mat1.contract(mat3, dims6)), DefaultDevice> Evaluator3; |
| Evaluator3 eval3(mat1.contract(mat3, dims6), DefaultDevice()); |
| eval3.evalTo(mat6.data()); |
| EIGEN_STATIC_ASSERT(Evaluator3::NumDims == 2ul, YOU_MADE_A_PROGRAMMING_MISTAKE); |
| VERIFY_IS_EQUAL(eval3.dimensions()[0], 2); |
| VERIFY_IS_EQUAL(eval3.dimensions()[1], 2); |
| |
| VERIFY_IS_APPROX(mat6(0, 0), mat1(0, 0) * mat3(0, 0) + mat1(0, 1) * mat3(1, 0) + mat1(0, 2) * mat3(2, 0)); |
| VERIFY_IS_APPROX(mat6(0, 1), mat1(0, 0) * mat3(0, 1) + mat1(0, 1) * mat3(1, 1) + mat1(0, 2) * mat3(2, 1)); |
| VERIFY_IS_APPROX(mat6(1, 0), mat1(1, 0) * mat3(0, 0) + mat1(1, 1) * mat3(1, 0) + mat1(1, 2) * mat3(2, 0)); |
| VERIFY_IS_APPROX(mat6(1, 1), mat1(1, 0) * mat3(0, 1) + mat1(1, 1) * mat3(1, 1) + mat1(1, 2) * mat3(2, 1)); |
| } |
| |
| template <int DataLayout> |
| static void test_scalar() { |
| Tensor<float, 1, DataLayout> vec1({6}); |
| Tensor<float, 1, DataLayout> vec2({6}); |
| |
| vec1.setRandom(); |
| vec2.setRandom(); |
| |
| Eigen::array<DimPair, 1> dims = {{DimPair(0, 0)}}; |
| Tensor<float, 0, DataLayout> scalar = vec1.contract(vec2, dims); |
| |
| float expected = 0.0f; |
| for (int i = 0; i < 6; ++i) { |
| expected += vec1(i) * vec2(i); |
| } |
| VERIFY_IS_APPROX(scalar(), expected); |
| } |
| |
| template <int DataLayout> |
| static void test_multidims() { |
| Tensor<float, 3, DataLayout> mat1(2, 2, 2); |
| Tensor<float, 4, DataLayout> mat2(2, 2, 2, 2); |
| |
| mat1.setRandom(); |
| mat2.setRandom(); |
| |
| Tensor<float, 3, DataLayout> mat3(2, 2, 2); |
| mat3.setZero(); |
| Eigen::array<DimPair, 2> dims = {{DimPair(1, 2), DimPair(2, 3)}}; |
| typedef TensorEvaluator<decltype(mat1.contract(mat2, dims)), DefaultDevice> Evaluator; |
| Evaluator eval(mat1.contract(mat2, dims), DefaultDevice()); |
| eval.evalTo(mat3.data()); |
| EIGEN_STATIC_ASSERT(Evaluator::NumDims == 3ul, YOU_MADE_A_PROGRAMMING_MISTAKE); |
| VERIFY_IS_EQUAL(eval.dimensions()[0], 2); |
| VERIFY_IS_EQUAL(eval.dimensions()[1], 2); |
| VERIFY_IS_EQUAL(eval.dimensions()[2], 2); |
| |
| VERIFY_IS_APPROX(mat3(0, 0, 0), mat1(0, 0, 0) * mat2(0, 0, 0, 0) + mat1(0, 1, 0) * mat2(0, 0, 1, 0) + |
| mat1(0, 0, 1) * mat2(0, 0, 0, 1) + mat1(0, 1, 1) * mat2(0, 0, 1, 1)); |
| VERIFY_IS_APPROX(mat3(0, 0, 1), mat1(0, 0, 0) * mat2(0, 1, 0, 0) + mat1(0, 1, 0) * mat2(0, 1, 1, 0) + |
| mat1(0, 0, 1) * mat2(0, 1, 0, 1) + mat1(0, 1, 1) * mat2(0, 1, 1, 1)); |
| VERIFY_IS_APPROX(mat3(0, 1, 0), mat1(0, 0, 0) * mat2(1, 0, 0, 0) + mat1(0, 1, 0) * mat2(1, 0, 1, 0) + |
| mat1(0, 0, 1) * mat2(1, 0, 0, 1) + mat1(0, 1, 1) * mat2(1, 0, 1, 1)); |
| VERIFY_IS_APPROX(mat3(0, 1, 1), mat1(0, 0, 0) * mat2(1, 1, 0, 0) + mat1(0, 1, 0) * mat2(1, 1, 1, 0) + |
| mat1(0, 0, 1) * mat2(1, 1, 0, 1) + mat1(0, 1, 1) * mat2(1, 1, 1, 1)); |
| VERIFY_IS_APPROX(mat3(1, 0, 0), mat1(1, 0, 0) * mat2(0, 0, 0, 0) + mat1(1, 1, 0) * mat2(0, 0, 1, 0) + |
| mat1(1, 0, 1) * mat2(0, 0, 0, 1) + mat1(1, 1, 1) * mat2(0, 0, 1, 1)); |
| VERIFY_IS_APPROX(mat3(1, 0, 1), mat1(1, 0, 0) * mat2(0, 1, 0, 0) + mat1(1, 1, 0) * mat2(0, 1, 1, 0) + |
| mat1(1, 0, 1) * mat2(0, 1, 0, 1) + mat1(1, 1, 1) * mat2(0, 1, 1, 1)); |
| VERIFY_IS_APPROX(mat3(1, 1, 0), mat1(1, 0, 0) * mat2(1, 0, 0, 0) + mat1(1, 1, 0) * mat2(1, 0, 1, 0) + |
| mat1(1, 0, 1) * mat2(1, 0, 0, 1) + mat1(1, 1, 1) * mat2(1, 0, 1, 1)); |
| VERIFY_IS_APPROX(mat3(1, 1, 1), mat1(1, 0, 0) * mat2(1, 1, 0, 0) + mat1(1, 1, 0) * mat2(1, 1, 1, 0) + |
| mat1(1, 0, 1) * mat2(1, 1, 0, 1) + mat1(1, 1, 1) * mat2(1, 1, 1, 1)); |
| |
| Tensor<float, 2, DataLayout> mat4(2, 2); |
| Tensor<float, 3, DataLayout> mat5(2, 2, 2); |
| |
| mat4.setRandom(); |
| mat5.setRandom(); |
| |
| Tensor<float, 1, DataLayout> mat6(2); |
| mat6.setZero(); |
| Eigen::array<DimPair, 2> dims2({{DimPair(0, 1), DimPair(1, 0)}}); |
| typedef TensorEvaluator<decltype(mat4.contract(mat5, dims2)), DefaultDevice> Evaluator2; |
| Evaluator2 eval2(mat4.contract(mat5, dims2), DefaultDevice()); |
| eval2.evalTo(mat6.data()); |
| EIGEN_STATIC_ASSERT(Evaluator2::NumDims == 1ul, YOU_MADE_A_PROGRAMMING_MISTAKE); |
| VERIFY_IS_EQUAL(eval2.dimensions()[0], 2); |
| |
| VERIFY_IS_APPROX(mat6(0), mat4(0, 0) * mat5(0, 0, 0) + mat4(1, 0) * mat5(0, 1, 0) + mat4(0, 1) * mat5(1, 0, 0) + |
| mat4(1, 1) * mat5(1, 1, 0)); |
| VERIFY_IS_APPROX(mat6(1), mat4(0, 0) * mat5(0, 0, 1) + mat4(1, 0) * mat5(0, 1, 1) + mat4(0, 1) * mat5(1, 0, 1) + |
| mat4(1, 1) * mat5(1, 1, 1)); |
| } |
| |
| template <int DataLayout> |
| static void test_holes() { |
| Tensor<float, 4, DataLayout> t1(2, 5, 7, 3); |
| Tensor<float, 5, DataLayout> t2(2, 7, 11, 13, 3); |
| t1.setRandom(); |
| t2.setRandom(); |
| |
| Eigen::array<DimPair, 2> dims = {{DimPair(0, 0), DimPair(3, 4)}}; |
| Tensor<float, 5, DataLayout> result = t1.contract(t2, dims); |
| VERIFY_IS_EQUAL(result.dimension(0), 5); |
| VERIFY_IS_EQUAL(result.dimension(1), 7); |
| VERIFY_IS_EQUAL(result.dimension(2), 7); |
| VERIFY_IS_EQUAL(result.dimension(3), 11); |
| VERIFY_IS_EQUAL(result.dimension(4), 13); |
| |
| for (int i = 0; i < 5; ++i) { |
| for (int j = 0; j < 5; ++j) { |
| for (int k = 0; k < 5; ++k) { |
| for (int l = 0; l < 5; ++l) { |
| for (int m = 0; m < 5; ++m) { |
| VERIFY_IS_APPROX(result(i, j, k, l, m), |
| t1(0, i, j, 0) * t2(0, k, l, m, 0) + t1(1, i, j, 0) * t2(1, k, l, m, 0) + |
| t1(0, i, j, 1) * t2(0, k, l, m, 1) + t1(1, i, j, 1) * t2(1, k, l, m, 1) + |
| t1(0, i, j, 2) * t2(0, k, l, m, 2) + t1(1, i, j, 2) * t2(1, k, l, m, 2)); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| template <int DataLayout> |
| static void test_full_redux() { |
| Tensor<float, 2, DataLayout> t1(2, 2); |
| Tensor<float, 3, DataLayout> t2(2, 2, 2); |
| t1.setRandom(); |
| t2.setRandom(); |
| |
| Eigen::array<DimPair, 2> dims = {{DimPair(0, 0), DimPair(1, 1)}}; |
| Tensor<float, 1, DataLayout> result = t1.contract(t2, dims); |
| VERIFY_IS_EQUAL(result.dimension(0), 2); |
| VERIFY_IS_APPROX(result(0), |
| t1(0, 0) * t2(0, 0, 0) + t1(1, 0) * t2(1, 0, 0) + t1(0, 1) * t2(0, 1, 0) + t1(1, 1) * t2(1, 1, 0)); |
| VERIFY_IS_APPROX(result(1), |
| t1(0, 0) * t2(0, 0, 1) + t1(1, 0) * t2(1, 0, 1) + t1(0, 1) * t2(0, 1, 1) + t1(1, 1) * t2(1, 1, 1)); |
| |
| dims[0] = DimPair(1, 0); |
| dims[1] = DimPair(2, 1); |
| result = t2.contract(t1, dims); |
| VERIFY_IS_EQUAL(result.dimension(0), 2); |
| VERIFY_IS_APPROX(result(0), |
| t1(0, 0) * t2(0, 0, 0) + t1(1, 0) * t2(0, 1, 0) + t1(0, 1) * t2(0, 0, 1) + t1(1, 1) * t2(0, 1, 1)); |
| VERIFY_IS_APPROX(result(1), |
| t1(0, 0) * t2(1, 0, 0) + t1(1, 0) * t2(1, 1, 0) + t1(0, 1) * t2(1, 0, 1) + t1(1, 1) * t2(1, 1, 1)); |
| } |
| |
| template <int DataLayout> |
| static void test_contraction_of_contraction() { |
| Tensor<float, 2, DataLayout> t1(2, 2); |
| Tensor<float, 2, DataLayout> t2(2, 2); |
| Tensor<float, 2, DataLayout> t3(2, 2); |
| Tensor<float, 2, DataLayout> t4(2, 2); |
| t1.setRandom(); |
| t2.setRandom(); |
| t3.setRandom(); |
| t4.setRandom(); |
| |
| Eigen::array<DimPair, 1> dims = {{DimPair(1, 0)}}; |
| auto contract1 = t1.contract(t2, dims); |
| auto diff = t3 - contract1; |
| auto contract2 = t1.contract(t4, dims); |
| Tensor<float, 2, DataLayout> result = contract2.contract(diff, dims); |
| |
| VERIFY_IS_EQUAL(result.dimension(0), 2); |
| VERIFY_IS_EQUAL(result.dimension(1), 2); |
| |
| Eigen::Map<Eigen::Matrix<float, Dynamic, Dynamic, DataLayout>> m1(t1.data(), 2, 2), m2(t2.data(), 2, 2), |
| m3(t3.data(), 2, 2), m4(t4.data(), 2, 2); |
| Eigen::Matrix<float, Dynamic, Dynamic, DataLayout> expected = (m1 * m4) * (m3 - m1 * m2); |
| |
| VERIFY_IS_APPROX(result(0, 0), expected(0, 0)); |
| VERIFY_IS_APPROX(result(0, 1), expected(0, 1)); |
| VERIFY_IS_APPROX(result(1, 0), expected(1, 0)); |
| VERIFY_IS_APPROX(result(1, 1), expected(1, 1)); |
| } |
| |
| template <int DataLayout> |
| static void test_expr() { |
| Tensor<float, 2, DataLayout> mat1(2, 3); |
| Tensor<float, 2, DataLayout> mat2(3, 2); |
| mat1.setRandom(); |
| mat2.setRandom(); |
| |
| Tensor<float, 2, DataLayout> mat3(2, 2); |
| |
| Eigen::array<DimPair, 1> dims = {{DimPair(1, 0)}}; |
| mat3 = mat1.contract(mat2, dims); |
| |
| VERIFY_IS_APPROX(mat3(0, 0), mat1(0, 0) * mat2(0, 0) + mat1(0, 1) * mat2(1, 0) + mat1(0, 2) * mat2(2, 0)); |
| VERIFY_IS_APPROX(mat3(0, 1), mat1(0, 0) * mat2(0, 1) + mat1(0, 1) * mat2(1, 1) + mat1(0, 2) * mat2(2, 1)); |
| VERIFY_IS_APPROX(mat3(1, 0), mat1(1, 0) * mat2(0, 0) + mat1(1, 1) * mat2(1, 0) + mat1(1, 2) * mat2(2, 0)); |
| VERIFY_IS_APPROX(mat3(1, 1), mat1(1, 0) * mat2(0, 1) + mat1(1, 1) * mat2(1, 1) + mat1(1, 2) * mat2(2, 1)); |
| } |
| |
| template <int DataLayout> |
| static void test_out_of_order_contraction() { |
| Tensor<float, 3, DataLayout> mat1(2, 2, 2); |
| Tensor<float, 3, DataLayout> mat2(2, 2, 2); |
| |
| mat1.setRandom(); |
| mat2.setRandom(); |
| |
| Tensor<float, 2, DataLayout> mat3(2, 2); |
| |
| Eigen::array<DimPair, 2> dims = {{DimPair(2, 0), DimPair(0, 2)}}; |
| mat3 = mat1.contract(mat2, dims); |
| |
| VERIFY_IS_APPROX(mat3(0, 0), mat1(0, 0, 0) * mat2(0, 0, 0) + mat1(1, 0, 0) * mat2(0, 0, 1) + |
| mat1(0, 0, 1) * mat2(1, 0, 0) + mat1(1, 0, 1) * mat2(1, 0, 1)); |
| VERIFY_IS_APPROX(mat3(1, 0), mat1(0, 1, 0) * mat2(0, 0, 0) + mat1(1, 1, 0) * mat2(0, 0, 1) + |
| mat1(0, 1, 1) * mat2(1, 0, 0) + mat1(1, 1, 1) * mat2(1, 0, 1)); |
| VERIFY_IS_APPROX(mat3(0, 1), mat1(0, 0, 0) * mat2(0, 1, 0) + mat1(1, 0, 0) * mat2(0, 1, 1) + |
| mat1(0, 0, 1) * mat2(1, 1, 0) + mat1(1, 0, 1) * mat2(1, 1, 1)); |
| VERIFY_IS_APPROX(mat3(1, 1), mat1(0, 1, 0) * mat2(0, 1, 0) + mat1(1, 1, 0) * mat2(0, 1, 1) + |
| mat1(0, 1, 1) * mat2(1, 1, 0) + mat1(1, 1, 1) * mat2(1, 1, 1)); |
| |
| Eigen::array<DimPair, 2> dims2 = {{DimPair(0, 2), DimPair(2, 0)}}; |
| mat3 = mat1.contract(mat2, dims2); |
| |
| VERIFY_IS_APPROX(mat3(0, 0), mat1(0, 0, 0) * mat2(0, 0, 0) + mat1(1, 0, 0) * mat2(0, 0, 1) + |
| mat1(0, 0, 1) * mat2(1, 0, 0) + mat1(1, 0, 1) * mat2(1, 0, 1)); |
| VERIFY_IS_APPROX(mat3(1, 0), mat1(0, 1, 0) * mat2(0, 0, 0) + mat1(1, 1, 0) * mat2(0, 0, 1) + |
| mat1(0, 1, 1) * mat2(1, 0, 0) + mat1(1, 1, 1) * mat2(1, 0, 1)); |
| VERIFY_IS_APPROX(mat3(0, 1), mat1(0, 0, 0) * mat2(0, 1, 0) + mat1(1, 0, 0) * mat2(0, 1, 1) + |
| mat1(0, 0, 1) * mat2(1, 1, 0) + mat1(1, 0, 1) * mat2(1, 1, 1)); |
| VERIFY_IS_APPROX(mat3(1, 1), mat1(0, 1, 0) * mat2(0, 1, 0) + mat1(1, 1, 0) * mat2(0, 1, 1) + |
| mat1(0, 1, 1) * mat2(1, 1, 0) + mat1(1, 1, 1) * mat2(1, 1, 1)); |
| } |
| |
| template <int DataLayout> |
| static void test_consistency() { |
| // this does something like testing (A*B)^T = (B^T * A^T) |
| |
| Tensor<float, 3, DataLayout> mat1(4, 3, 5); |
| Tensor<float, 5, DataLayout> mat2(3, 2, 1, 5, 4); |
| mat1.setRandom(); |
| mat2.setRandom(); |
| |
| Tensor<float, 4, DataLayout> mat3(5, 2, 1, 5); |
| Tensor<float, 4, DataLayout> mat4(2, 1, 5, 5); |
| |
| // contract on dimensions of size 4 and 3 |
| Eigen::array<DimPair, 2> dims1 = {{DimPair(0, 4), DimPair(1, 0)}}; |
| Eigen::array<DimPair, 2> dims2 = {{DimPair(4, 0), DimPair(0, 1)}}; |
| |
| mat3 = mat1.contract(mat2, dims1); |
| mat4 = mat2.contract(mat1, dims2); |
| |
| // check that these are equal except for ordering of dimensions |
| if (DataLayout == ColMajor) { |
| for (size_t i = 0; i < 5; i++) { |
| for (size_t j = 0; j < 10; j++) { |
| VERIFY_IS_APPROX(mat3.data()[i + 5 * j], mat4.data()[j + 10 * i]); |
| } |
| } |
| } else { |
| // Row major |
| for (size_t i = 0; i < 5; i++) { |
| for (size_t j = 0; j < 10; j++) { |
| VERIFY_IS_APPROX(mat3.data()[10 * i + j], mat4.data()[i + 5 * j]); |
| } |
| } |
| } |
| } |
| |
| template <int DataLayout> |
| static void test_large_contraction() { |
| Tensor<float, 4, DataLayout> t_left(30, 50, 8, 31); |
| Tensor<float, 5, DataLayout> t_right(8, 31, 7, 20, 10); |
| Tensor<float, 5, DataLayout> t_result(30, 50, 7, 20, 10); |
| |
| t_left.setRandom(); |
| t_right.setRandom(); |
| |
| // Add a little offset so that the results won't be close to zero. |
| t_left += t_left.constant(1.0f); |
| t_right += t_right.constant(1.0f); |
| |
| typedef Map<Eigen::Matrix<float, Dynamic, Dynamic, DataLayout>> MapXf; |
| MapXf m_left(t_left.data(), 1500, 248); |
| MapXf m_right(t_right.data(), 248, 1400); |
| Eigen::Matrix<float, Dynamic, Dynamic, DataLayout> m_result(1500, 1400); |
| |
| // this contraction should be equivalent to a single matrix multiplication |
| Eigen::array<DimPair, 2> dims = {{DimPair(2, 0), DimPair(3, 1)}}; |
| |
| // compute results by separate methods |
| t_result = t_left.contract(t_right, dims); |
| m_result = m_left * m_right; |
| |
| for (int i = 0; i < t_result.dimensions().TotalSize(); i++) { |
| VERIFY(&t_result.data()[i] != &m_result.data()[i]); |
| VERIFY_IS_APPROX(t_result.data()[i], m_result.data()[i]); |
| } |
| } |
| |
| template <int DataLayout> |
| static void test_matrix_vector() { |
| Tensor<float, 2, DataLayout> t_left(30, 50); |
| Tensor<float, 1, DataLayout> t_right(50); |
| Tensor<float, 1, DataLayout> t_result(30); |
| |
| t_left.setRandom(); |
| t_right.setRandom(); |
| |
| typedef Map<Eigen::Matrix<float, Dynamic, Dynamic, DataLayout>> MapXf; |
| MapXf m_left(t_left.data(), 30, 50); |
| MapXf m_right(t_right.data(), 50, 1); |
| Eigen::Matrix<float, Dynamic, Dynamic, DataLayout> m_result(30, 1); |
| |
| // this contraction should be equivalent to a single matrix multiplication |
| Eigen::array<DimPair, 1> dims{{DimPair(1, 0)}}; |
| |
| // compute results by separate methods |
| t_result = t_left.contract(t_right, dims); |
| m_result = m_left * m_right; |
| |
| for (int i = 0; i < t_result.dimensions().TotalSize(); i++) { |
| VERIFY(internal::isApprox(t_result(i), m_result(i, 0), 1)); |
| } |
| } |
| |
| template <int DataLayout> |
| static void test_tensor_vector() { |
| Tensor<float, 3, DataLayout> t_left(7, 13, 17); |
| Tensor<float, 2, DataLayout> t_right(1, 7); |
| |
| t_left.setRandom(); |
| t_right.setRandom(); |
| |
| typedef typename Tensor<float, 1, DataLayout>::DimensionPair DimensionPair; |
| Eigen::array<DimensionPair, 1> dim_pair01{{{0, 1}}}; |
| Tensor<float, 3, DataLayout> t_result = t_left.contract(t_right, dim_pair01); |
| |
| typedef Map<Eigen::Matrix<float, Dynamic, Dynamic, DataLayout>> MapXf; |
| MapXf m_left(t_left.data(), 7, 13 * 17); |
| MapXf m_right(t_right.data(), 1, 7); |
| Eigen::Matrix<float, Dynamic, Dynamic, DataLayout> m_result = m_left.transpose() * m_right.transpose(); |
| |
| for (int i = 0; i < t_result.dimensions().TotalSize(); i++) { |
| VERIFY(internal::isApprox(t_result(i), m_result(i, 0), 1)); |
| } |
| } |
| |
| template <int DataLayout> |
| static void test_small_blocking_factors() { |
| Tensor<float, 4, DataLayout> t_left(30, 5, 3, 31); |
| Tensor<float, 5, DataLayout> t_right(3, 31, 7, 20, 1); |
| t_left.setRandom(); |
| t_right.setRandom(); |
| |
| // Add a little offset so that the results won't be close to zero. |
| t_left += t_left.constant(1.0f); |
| t_right += t_right.constant(1.0f); |
| |
| // Force the cache sizes, which results in smaller blocking factors. |
| Eigen::setCpuCacheSizes(896, 1920, 2944); |
| |
| // this contraction should be equivalent to a single matrix multiplication |
| Eigen::array<DimPair, 2> dims = {{DimPair(2, 0), DimPair(3, 1)}}; |
| Tensor<float, 5, DataLayout> t_result; |
| t_result = t_left.contract(t_right, dims); |
| |
| // compute result using a simple eigen matrix product |
| Map<Eigen::Matrix<float, Dynamic, Dynamic, DataLayout>> m_left(t_left.data(), 150, 93); |
| Map<Eigen::Matrix<float, Dynamic, Dynamic, DataLayout>> m_right(t_right.data(), 93, 140); |
| Eigen::Matrix<float, Dynamic, Dynamic, DataLayout> m_result = m_left * m_right; |
| |
| for (int i = 0; i < t_result.dimensions().TotalSize(); i++) { |
| VERIFY_IS_APPROX(t_result.data()[i], m_result.data()[i]); |
| } |
| } |
| |
| template <int DataLayout> |
| static void test_tensor_product() { |
| Tensor<float, 2, DataLayout> mat1(2, 3); |
| Tensor<float, 2, DataLayout> mat2(4, 1); |
| mat1.setRandom(); |
| mat2.setRandom(); |
| |
| Eigen::array<DimPair, 0> dims; |
| Tensor<float, 4, DataLayout> result = mat1.contract(mat2, dims); |
| |
| VERIFY_IS_EQUAL(result.dimension(0), 2); |
| VERIFY_IS_EQUAL(result.dimension(1), 3); |
| VERIFY_IS_EQUAL(result.dimension(2), 4); |
| VERIFY_IS_EQUAL(result.dimension(3), 1); |
| for (int i = 0; i < result.dimension(0); ++i) { |
| for (int j = 0; j < result.dimension(1); ++j) { |
| for (int k = 0; k < result.dimension(2); ++k) { |
| for (int l = 0; l < result.dimension(3); ++l) { |
| VERIFY_IS_APPROX(result(i, j, k, l), mat1(i, j) * mat2(k, l)); |
| } |
| } |
| } |
| } |
| } |
| |
| template <int DataLayout> |
| static void test_const_inputs() { |
| Tensor<float, 2, DataLayout> in1(2, 3); |
| Tensor<float, 2, DataLayout> in2(3, 2); |
| in1.setRandom(); |
| in2.setRandom(); |
| |
| TensorMap<Tensor<const float, 2, DataLayout>> mat1(in1.data(), 2, 3); |
| TensorMap<Tensor<const float, 2, DataLayout>> mat2(in2.data(), 3, 2); |
| Tensor<float, 2, DataLayout> mat3(2, 2); |
| |
| Eigen::array<DimPair, 1> dims = {{DimPair(1, 0)}}; |
| mat3 = mat1.contract(mat2, dims); |
| |
| VERIFY_IS_APPROX(mat3(0, 0), mat1(0, 0) * mat2(0, 0) + mat1(0, 1) * mat2(1, 0) + mat1(0, 2) * mat2(2, 0)); |
| VERIFY_IS_APPROX(mat3(0, 1), mat1(0, 0) * mat2(0, 1) + mat1(0, 1) * mat2(1, 1) + mat1(0, 2) * mat2(2, 1)); |
| VERIFY_IS_APPROX(mat3(1, 0), mat1(1, 0) * mat2(0, 0) + mat1(1, 1) * mat2(1, 0) + mat1(1, 2) * mat2(2, 0)); |
| VERIFY_IS_APPROX(mat3(1, 1), mat1(1, 0) * mat2(0, 1) + mat1(1, 1) * mat2(1, 1) + mat1(1, 2) * mat2(2, 1)); |
| } |
| |
| // Apply Sqrt to all output elements. |
| struct SqrtOutputKernel { |
| template <typename Index, typename Scalar> |
| EIGEN_ALWAYS_INLINE void operator()(const internal::blas_data_mapper<Scalar, Index, ColMajor>& output_mapper, |
| const TensorContractionParams&, Index, Index, Index num_rows, |
| Index num_cols) const { |
| for (int i = 0; i < num_rows; ++i) { |
| for (int j = 0; j < num_cols; ++j) { |
| output_mapper(i, j) = std::sqrt(output_mapper(i, j)); |
| } |
| } |
| } |
| }; |
| |
| template <int DataLayout> |
| static void test_large_contraction_with_output_kernel() { |
| Tensor<float, 4, DataLayout> t_left(30, 50, 8, 31); |
| Tensor<float, 5, DataLayout> t_right(8, 31, 7, 20, 10); |
| Tensor<float, 5, DataLayout> t_result(30, 50, 7, 20, 10); |
| |
| t_left.setRandom(); |
| t_right.setRandom(); |
| // Put trash in mat4 to verify contraction clears output memory. |
| t_result.setRandom(); |
| |
| // Add a little offset so that the results won't be close to zero. |
| t_left += t_left.constant(1.0f); |
| t_right += t_right.constant(1.0f); |
| |
| typedef Map<Eigen::Matrix<float, Dynamic, Dynamic, DataLayout>> MapXf; |
| MapXf m_left(t_left.data(), 1500, 248); |
| MapXf m_right(t_right.data(), 248, 1400); |
| Eigen::Matrix<float, Dynamic, Dynamic, DataLayout> m_result(1500, 1400); |
| |
| // this contraction should be equivalent to a single matrix multiplication |
| Eigen::array<DimPair, 2> dims({{DimPair(2, 0), DimPair(3, 1)}}); |
| |
| // compute results by separate methods |
| t_result = t_left.contract(t_right, dims, SqrtOutputKernel()); |
| |
| m_result = m_left * m_right; |
| |
| for (std::ptrdiff_t i = 0; i < t_result.dimensions().TotalSize(); i++) { |
| VERIFY(&t_result.data()[i] != &m_result.data()[i]); |
| VERIFY_IS_APPROX(t_result.data()[i], std::sqrt(m_result.data()[i])); |
| } |
| } |
| |
| EIGEN_DECLARE_TEST(cxx11_tensor_contraction) { |
| CALL_SUBTEST_1(test_evals<ColMajor>()); |
| CALL_SUBTEST_1(test_evals<RowMajor>()); |
| CALL_SUBTEST_1(test_scalar<ColMajor>()); |
| CALL_SUBTEST_1(test_scalar<RowMajor>()); |
| CALL_SUBTEST_2(test_multidims<ColMajor>()); |
| CALL_SUBTEST_2(test_multidims<RowMajor>()); |
| CALL_SUBTEST_2(test_holes<ColMajor>()); |
| CALL_SUBTEST_2(test_holes<RowMajor>()); |
| CALL_SUBTEST_3(test_full_redux<ColMajor>()); |
| CALL_SUBTEST_3(test_full_redux<RowMajor>()); |
| CALL_SUBTEST_3(test_contraction_of_contraction<ColMajor>()); |
| CALL_SUBTEST_3(test_contraction_of_contraction<RowMajor>()); |
| CALL_SUBTEST_4(test_expr<ColMajor>()); |
| CALL_SUBTEST_4(test_expr<RowMajor>()); |
| CALL_SUBTEST_4(test_out_of_order_contraction<ColMajor>()); |
| CALL_SUBTEST_4(test_out_of_order_contraction<RowMajor>()); |
| CALL_SUBTEST_5(test_consistency<ColMajor>()); |
| CALL_SUBTEST_5(test_consistency<RowMajor>()); |
| CALL_SUBTEST_5(test_large_contraction<ColMajor>()); |
| CALL_SUBTEST_5(test_large_contraction<RowMajor>()); |
| CALL_SUBTEST_6(test_matrix_vector<ColMajor>()); |
| CALL_SUBTEST_6(test_matrix_vector<RowMajor>()); |
| CALL_SUBTEST_6(test_tensor_vector<ColMajor>()); |
| CALL_SUBTEST_6(test_tensor_vector<RowMajor>()); |
| CALL_SUBTEST_7(test_small_blocking_factors<ColMajor>()); |
| CALL_SUBTEST_7(test_small_blocking_factors<RowMajor>()); |
| CALL_SUBTEST_7(test_tensor_product<ColMajor>()); |
| CALL_SUBTEST_7(test_tensor_product<RowMajor>()); |
| CALL_SUBTEST_8(test_const_inputs<ColMajor>()); |
| CALL_SUBTEST_8(test_const_inputs<RowMajor>()); |
| CALL_SUBTEST_8(test_large_contraction_with_output_kernel<ColMajor>()); |
| CALL_SUBTEST_8(test_large_contraction_with_output_kernel<RowMajor>()); |
| |
| // Force CMake to split this test. |
| // EIGEN_SUFFIXES;1;2;3;4;5;6;7;8 |
| } |