| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| |
| #include <Eigen/CXX11/Tensor> |
| |
| using Eigen::DefaultDevice; |
| using Eigen::Tensor; |
| |
| template <int DataLayout> |
| static void test_evals() { |
| Tensor<float, 2, DataLayout> input(3, 3); |
| Tensor<float, 1, DataLayout> kernel(2); |
| |
| input.setRandom(); |
| kernel.setRandom(); |
| |
| Tensor<float, 2, DataLayout> result(2, 3); |
| result.setZero(); |
| Eigen::array<Tensor<float, 2>::Index, 1> dims3; |
| dims3[0] = 0; |
| |
| typedef TensorEvaluator<decltype(input.convolve(kernel, dims3)), DefaultDevice> Evaluator; |
| Evaluator eval(input.convolve(kernel, dims3), DefaultDevice()); |
| eval.evalTo(result.data()); |
| EIGEN_STATIC_ASSERT(Evaluator::NumDims == 2ul, YOU_MADE_A_PROGRAMMING_MISTAKE); |
| VERIFY_IS_EQUAL(eval.dimensions()[0], 2); |
| VERIFY_IS_EQUAL(eval.dimensions()[1], 3); |
| |
| VERIFY_IS_APPROX(result(0, 0), input(0, 0) * kernel(0) + input(1, 0) * kernel(1)); // index 0 |
| VERIFY_IS_APPROX(result(0, 1), input(0, 1) * kernel(0) + input(1, 1) * kernel(1)); // index 2 |
| VERIFY_IS_APPROX(result(0, 2), input(0, 2) * kernel(0) + input(1, 2) * kernel(1)); // index 4 |
| VERIFY_IS_APPROX(result(1, 0), input(1, 0) * kernel(0) + input(2, 0) * kernel(1)); // index 1 |
| VERIFY_IS_APPROX(result(1, 1), input(1, 1) * kernel(0) + input(2, 1) * kernel(1)); // index 3 |
| VERIFY_IS_APPROX(result(1, 2), input(1, 2) * kernel(0) + input(2, 2) * kernel(1)); // index 5 |
| } |
| |
| template <int DataLayout> |
| static void test_expr() { |
| Tensor<float, 2, DataLayout> input(3, 3); |
| Tensor<float, 2, DataLayout> kernel(2, 2); |
| input.setRandom(); |
| kernel.setRandom(); |
| |
| Tensor<float, 2, DataLayout> result(2, 2); |
| Eigen::array<ptrdiff_t, 2> dims; |
| dims[0] = 0; |
| dims[1] = 1; |
| result = input.convolve(kernel, dims); |
| |
| VERIFY_IS_APPROX(result(0, 0), input(0, 0) * kernel(0, 0) + input(0, 1) * kernel(0, 1) + input(1, 0) * kernel(1, 0) + |
| input(1, 1) * kernel(1, 1)); |
| VERIFY_IS_APPROX(result(0, 1), input(0, 1) * kernel(0, 0) + input(0, 2) * kernel(0, 1) + input(1, 1) * kernel(1, 0) + |
| input(1, 2) * kernel(1, 1)); |
| VERIFY_IS_APPROX(result(1, 0), input(1, 0) * kernel(0, 0) + input(1, 1) * kernel(0, 1) + input(2, 0) * kernel(1, 0) + |
| input(2, 1) * kernel(1, 1)); |
| VERIFY_IS_APPROX(result(1, 1), input(1, 1) * kernel(0, 0) + input(1, 2) * kernel(0, 1) + input(2, 1) * kernel(1, 0) + |
| input(2, 2) * kernel(1, 1)); |
| } |
| |
| template <int DataLayout> |
| static void test_modes() { |
| Tensor<float, 1, DataLayout> input(3); |
| Tensor<float, 1, DataLayout> kernel(3); |
| input(0) = 1.0f; |
| input(1) = 2.0f; |
| input(2) = 3.0f; |
| kernel(0) = 0.5f; |
| kernel(1) = 1.0f; |
| kernel(2) = 0.0f; |
| |
| Eigen::array<ptrdiff_t, 1> dims; |
| dims[0] = 0; |
| Eigen::array<std::pair<ptrdiff_t, ptrdiff_t>, 1> padding; |
| |
| // Emulate VALID mode (as defined in |
| // http://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html). |
| padding[0] = std::make_pair(0, 0); |
| Tensor<float, 1, DataLayout> valid(1); |
| valid = input.pad(padding).convolve(kernel, dims); |
| VERIFY_IS_EQUAL(valid.dimension(0), 1); |
| VERIFY_IS_APPROX(valid(0), 2.5f); |
| |
| // Emulate SAME mode (as defined in |
| // http://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html). |
| padding[0] = std::make_pair(1, 1); |
| Tensor<float, 1, DataLayout> same(3); |
| same = input.pad(padding).convolve(kernel, dims); |
| VERIFY_IS_EQUAL(same.dimension(0), 3); |
| VERIFY_IS_APPROX(same(0), 1.0f); |
| VERIFY_IS_APPROX(same(1), 2.5f); |
| VERIFY_IS_APPROX(same(2), 4.0f); |
| |
| // Emulate FULL mode (as defined in |
| // http://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html). |
| padding[0] = std::make_pair(2, 2); |
| Tensor<float, 1, DataLayout> full(5); |
| full = input.pad(padding).convolve(kernel, dims); |
| VERIFY_IS_EQUAL(full.dimension(0), 5); |
| VERIFY_IS_APPROX(full(0), 0.0f); |
| VERIFY_IS_APPROX(full(1), 1.0f); |
| VERIFY_IS_APPROX(full(2), 2.5f); |
| VERIFY_IS_APPROX(full(3), 4.0f); |
| VERIFY_IS_APPROX(full(4), 1.5f); |
| } |
| |
| template <int DataLayout> |
| static void test_strides() { |
| Tensor<float, 1, DataLayout> input(13); |
| Tensor<float, 1, DataLayout> kernel(3); |
| input.setRandom(); |
| kernel.setRandom(); |
| |
| Eigen::array<ptrdiff_t, 1> dims; |
| dims[0] = 0; |
| Eigen::array<ptrdiff_t, 1> stride_of_3; |
| stride_of_3[0] = 3; |
| Eigen::array<ptrdiff_t, 1> stride_of_2; |
| stride_of_2[0] = 2; |
| |
| Tensor<float, 1, DataLayout> result; |
| result = input.stride(stride_of_3).convolve(kernel, dims).stride(stride_of_2); |
| |
| VERIFY_IS_EQUAL(result.dimension(0), 2); |
| VERIFY_IS_APPROX(result(0), (input(0) * kernel(0) + input(3) * kernel(1) + input(6) * kernel(2))); |
| VERIFY_IS_APPROX(result(1), (input(6) * kernel(0) + input(9) * kernel(1) + input(12) * kernel(2))); |
| } |
| |
| EIGEN_DECLARE_TEST(cxx11_tensor_convolution) { |
| CALL_SUBTEST(test_evals<ColMajor>()); |
| CALL_SUBTEST(test_evals<RowMajor>()); |
| CALL_SUBTEST(test_expr<ColMajor>()); |
| CALL_SUBTEST(test_expr<RowMajor>()); |
| CALL_SUBTEST(test_modes<ColMajor>()); |
| CALL_SUBTEST(test_modes<RowMajor>()); |
| CALL_SUBTEST(test_strides<ColMajor>()); |
| CALL_SUBTEST(test_strides<RowMajor>()); |
| } |