blob: 228fa9e081e5e8ce3bb2287400f1740cde0303c4 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2018 Eugene Zhulenev <ezhulenev@google.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_USE_THREADS
#include "main.h"
#include <Eigen/CXX11/Tensor>
using Eigen::ColMajor;
using Eigen::RowMajor;
using Eigen::Tensor;
using Eigen::internal::TiledEvaluation;
// A set of tests to verify that different TensorExecutor strategies yields the
// same results for all the ops, supporting tiled evaluation.
// Default assignment that does no use block evaluation or vectorization.
// We assume that default coefficient evaluation is well tested and correct.
template <typename Dst, typename Expr>
void DefaultAssign(Dst& dst, Expr expr) {
using Assign = Eigen::TensorAssignOp<Dst, const Expr>;
using Executor = Eigen::internal::TensorExecutor<const Assign, DefaultDevice,
/*Vectorizable=*/false,
/*Tiling=*/TiledEvaluation::Off>;
Executor::run(Assign(dst, expr), DefaultDevice());
}
// Assignment with specified device and tiling strategy.
template <bool Vectorizable, TiledEvaluation Tiling, typename Device, typename Dst, typename Expr>
void DeviceAssign(Device& d, Dst& dst, Expr expr) {
using Assign = Eigen::TensorAssignOp<Dst, const Expr>;
using Executor = Eigen::internal::TensorExecutor<const Assign, Device, Vectorizable, Tiling>;
Executor::run(Assign(dst, expr), d);
}
template <int NumDims>
static array<Index, NumDims> RandomDims(int min_dim = 1, int max_dim = 20) {
array<Index, NumDims> dims;
for (int i = 0; i < NumDims; ++i) {
dims[i] = internal::random<int>(min_dim, max_dim);
}
return dims;
}
template <typename T, int NumDims, typename Device, bool Vectorizable, TiledEvaluation Tiling, int Layout>
void test_execute_unary_expr(Device d) {
static constexpr int Options = 0 | Layout;
// Pick a large enough tensor size to bypass small tensor block evaluation
// optimization.
auto dims = RandomDims<NumDims>(50 / NumDims, 100 / NumDims);
Tensor<T, NumDims, Options, Index> src(dims);
Tensor<T, NumDims, Options, Index> dst(dims);
src.setRandom();
const auto expr = src.square();
using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>;
using Executor = internal::TensorExecutor<const Assign, Device, Vectorizable, Tiling>;
Executor::run(Assign(dst, expr), d);
for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
T square = src.coeff(i) * src.coeff(i);
VERIFY_IS_EQUAL(square, dst.coeff(i));
}
}
template <typename T, int NumDims, typename Device, bool Vectorizable, TiledEvaluation Tiling, int Layout>
void test_execute_binary_expr(Device d) {
static constexpr int Options = 0 | Layout;
// Pick a large enough tensor size to bypass small tensor block evaluation
// optimization.
auto dims = RandomDims<NumDims>(50 / NumDims, 100 / NumDims);
Tensor<T, NumDims, Options, Index> lhs(dims);
Tensor<T, NumDims, Options, Index> rhs(dims);
Tensor<T, NumDims, Options, Index> dst(dims);
lhs.setRandom();
rhs.setRandom();
const auto expr = lhs + rhs;
using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>;
using Executor = internal::TensorExecutor<const Assign, Device, Vectorizable, Tiling>;
Executor::run(Assign(dst, expr), d);
for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
T sum = lhs.coeff(i) + rhs.coeff(i);
VERIFY_IS_EQUAL(sum, dst.coeff(i));
}
}
template <typename T, int NumDims, typename Device, bool Vectorizable, TiledEvaluation Tiling, int Layout>
void test_execute_broadcasting(Device d) {
static constexpr int Options = 0 | Layout;
auto dims = RandomDims<NumDims>(1, 10);
Tensor<T, NumDims, Options, Index> src(dims);
src.setRandom();
const auto broadcasts = RandomDims<NumDims>(1, 7);
const auto expr = src.broadcast(broadcasts);
// We assume that broadcasting on a default device is tested and correct, so
// we can rely on it to verify correctness of tensor executor and tiling.
Tensor<T, NumDims, Options, Index> golden;
golden = expr;
// Now do the broadcasting using configured tensor executor.
Tensor<T, NumDims, Options, Index> dst(golden.dimensions());
using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>;
using Executor = internal::TensorExecutor<const Assign, Device, Vectorizable, Tiling>;
Executor::run(Assign(dst, expr), d);
for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i));
}
}
template <typename T, int NumDims, typename Device, bool Vectorizable, TiledEvaluation Tiling, int Layout>
struct test_execute_chipping_rvalue_runner {
template <int ChipDim>
static std::enable_if_t<0 <= ChipDim, void> run_dim(Device& d, const array<Index, NumDims>& dims,
const Tensor<T, NumDims, Layout, Index>& src) {
const auto offset = internal::random<Index>(0, dims[(ChipDim)] - 1);
const auto expr = src.template chip<ChipDim>(offset);
Tensor<T, NumDims - 1, Layout, Index> golden;
golden = expr;
Tensor<T, NumDims - 1, Layout, Index> dst(golden.dimensions());
using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>;
using Executor = internal::TensorExecutor<const Assign, Device, Vectorizable, Tiling>;
Executor::run(Assign(dst, expr), d);
for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i));
}
// Recursively reduce chip dimension.
run_dim<ChipDim - 1>(d, dims, src);
}
template <int ChipDim>
static std::enable_if_t <
ChipDim<0, void> run_dim(Device&, const array<Index, NumDims>&, const Tensor<T, NumDims, Layout, Index>&) {}
static void run(Device d) {
auto dims = RandomDims<NumDims>(1, 10);
Tensor<T, NumDims, Layout, Index> src(dims);
src.setRandom();
run_dim<NumDims - 1>(d, dims, src);
}
};
template <typename T, int NumDims, typename Device, bool Vectorizable, TiledEvaluation Tiling, int Layout>
void test_execute_chipping_rvalue(Device d) {
test_execute_chipping_rvalue_runner<T, NumDims, Device, Vectorizable, Tiling, Layout>::run(d);
}
template <typename T, int NumDims, typename Device, bool Vectorizable, TiledEvaluation Tiling, int Layout>
struct test_execute_chipping_lvalue_runner {
template <int ChipDim>
static std::enable_if_t<0 <= ChipDim> run_dim(Device& d, const array<Index, NumDims>& dims) {
/* Generate random data that we'll assign to the chipped tensor dim. */
array<Index, NumDims - 1> src_dims;
for (int i = 0; i < NumDims - 1; ++i) {
int dim = i < (ChipDim) ? i : i + 1;
src_dims[i] = dims[dim];
}
Tensor<T, NumDims - 1, Layout, Index> src(src_dims);
src.setRandom();
const auto offset = internal::random<Index>(0, dims[(ChipDim)] - 1);
Tensor<T, NumDims, Layout, Index> random(dims);
random.setZero();
Tensor<T, NumDims, Layout, Index> golden(dims);
golden = random;
golden.template chip<(ChipDim)>(offset) = src;
Tensor<T, NumDims, Layout, Index> dst(dims);
dst = random;
auto expr = dst.template chip<(ChipDim)>(offset);
using Assign = TensorAssignOp<decltype(expr), const decltype(src)>;
using Executor = internal::TensorExecutor<const Assign, Device, Vectorizable, Tiling>;
Executor::run(Assign(expr, src), d);
for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i));
}
run_dim<ChipDim - 1>(d, dims);
}
template <int ChipDim>
static std::enable_if_t < ChipDim<0, void> run_dim(Device&, const array<Index, NumDims>&) {}
static void run(Device d) {
auto dims = RandomDims<NumDims>(1, 10);
run_dim<NumDims - 1>(d, dims);
}
};
template <typename T, int NumDims, typename Device, bool Vectorizable, TiledEvaluation Tiling, int Layout>
void test_execute_chipping_lvalue(Device d) {
test_execute_chipping_lvalue_runner<T, NumDims, Device, Vectorizable, Tiling, Layout>::run(d);
}
template <typename T, int NumDims, typename Device, bool Vectorizable, TiledEvaluation Tiling, int Layout>
void test_execute_shuffle_rvalue(Device d) {
static constexpr int Options = 0 | Layout;
auto dims = RandomDims<NumDims>(1, 10);
Tensor<T, NumDims, Options, Index> src(dims);
src.setRandom();
DSizes<Index, NumDims> shuffle;
for (int i = 0; i < NumDims; ++i) shuffle[i] = i;
// Test all possible shuffle permutations.
do {
DSizes<Index, NumDims> shuffled_dims;
for (int i = 0; i < NumDims; ++i) {
shuffled_dims[i] = dims[shuffle[i]];
}
const auto expr = src.shuffle(shuffle);
// We assume that shuffling on a default device is tested and correct, so
// we can rely on it to verify correctness of tensor executor and tiling.
Tensor<T, NumDims, Options, Index> golden(shuffled_dims);
DefaultAssign(golden, expr);
// Now do the shuffling using configured tensor executor.
Tensor<T, NumDims, Options, Index> dst(shuffled_dims);
DeviceAssign<Vectorizable, Tiling>(d, dst, expr);
for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i));
}
} while (std::next_permutation(&shuffle[0], &shuffle[0] + NumDims));
}
template <typename T, int NumDims, typename Device, bool Vectorizable, TiledEvaluation Tiling, int Layout>
void test_execute_shuffle_lvalue(Device d) {
static constexpr int Options = 0 | Layout;
auto dims = RandomDims<NumDims>(5, 10);
Tensor<T, NumDims, Options, Index> src(dims);
src.setRandom();
DSizes<Index, NumDims> shuffle;
for (int i = 0; i < NumDims; ++i) shuffle[i] = i;
// Test all possible shuffle permutations.
do {
DSizes<Index, NumDims> shuffled_dims;
for (int i = 0; i < NumDims; ++i) shuffled_dims[shuffle[i]] = dims[i];
// We assume that shuffling on a default device is tested and correct, so
// we can rely on it to verify correctness of tensor executor and tiling.
Tensor<T, NumDims, Options, Index> golden(shuffled_dims);
auto golden_shuffle = golden.shuffle(shuffle);
DefaultAssign(golden_shuffle, src);
// Now do the shuffling using configured tensor executor.
Tensor<T, NumDims, Options, Index> dst(shuffled_dims);
auto dst_shuffle = dst.shuffle(shuffle);
DeviceAssign<Vectorizable, Tiling>(d, dst_shuffle, src);
for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i));
}
} while (std::next_permutation(&shuffle[0], &shuffle[0] + NumDims));
}
template <typename T, int NumDims, typename Device, bool Vectorizable, TiledEvaluation Tiling, int Layout>
void test_execute_reshape(Device d) {
static_assert(NumDims >= 2, "NumDims must be greater or equal than 2");
static constexpr int ReshapedDims = NumDims - 1;
static constexpr int Options = 0 | Layout;
auto dims = RandomDims<NumDims>(5, 10);
Tensor<T, NumDims, Options, Index> src(dims);
src.setRandom();
// Multiple 0th dimension and then shuffle.
std::vector<Index> shuffle;
for (int i = 0; i < ReshapedDims; ++i) shuffle.push_back(i);
std::shuffle(shuffle.begin(), shuffle.end(), std::mt19937());
DSizes<Index, ReshapedDims> reshaped_dims;
reshaped_dims[shuffle[0]] = dims[0] * dims[1];
for (int i = 1; i < ReshapedDims; ++i) reshaped_dims[shuffle[i]] = dims[i + 1];
Tensor<T, ReshapedDims, Options, Index> golden = src.reshape(reshaped_dims);
// Now reshape using configured tensor executor.
Tensor<T, ReshapedDims, Options, Index> dst(golden.dimensions());
auto expr = src.reshape(reshaped_dims);
using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>;
using Executor = internal::TensorExecutor<const Assign, Device, Vectorizable, Tiling>;
Executor::run(Assign(dst, expr), d);
for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i));
}
}
template <typename T, int NumDims, typename Device, bool Vectorizable, TiledEvaluation Tiling, int Layout>
void test_execute_slice_rvalue(Device d) {
static_assert(NumDims >= 2, "NumDims must be greater or equal than 2");
static constexpr int Options = 0 | Layout;
auto dims = RandomDims<NumDims>(5, 10);
Tensor<T, NumDims, Options, Index> src(dims);
src.setRandom();
// Pick a random slice of src tensor.
auto slice_start = DSizes<Index, NumDims>(RandomDims<NumDims>());
auto slice_size = DSizes<Index, NumDims>(RandomDims<NumDims>());
// Make sure that slice start + size do not overflow tensor dims.
for (int i = 0; i < NumDims; ++i) {
slice_start[i] = numext::mini(dims[i] - 1, slice_start[i]);
slice_size[i] = numext::mini(slice_size[i], dims[i] - slice_start[i]);
}
Tensor<T, NumDims, Options, Index> golden = src.slice(slice_start, slice_size);
// Now reshape using configured tensor executor.
Tensor<T, NumDims, Options, Index> dst(golden.dimensions());
auto expr = src.slice(slice_start, slice_size);
using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>;
using Executor = internal::TensorExecutor<const Assign, Device, Vectorizable, Tiling>;
Executor::run(Assign(dst, expr), d);
for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i));
}
}
template <typename T, int NumDims, typename Device, bool Vectorizable, TiledEvaluation Tiling, int Layout>
void test_execute_slice_lvalue(Device d) {
static_assert(NumDims >= 2, "NumDims must be greater or equal than 2");
static constexpr int Options = 0 | Layout;
auto dims = RandomDims<NumDims>(5, 10);
Tensor<T, NumDims, Options, Index> src(dims);
src.setRandom();
// Pick a random slice of src tensor.
auto slice_start = DSizes<Index, NumDims>(RandomDims<NumDims>(1, 10));
auto slice_size = DSizes<Index, NumDims>(RandomDims<NumDims>(1, 10));
// Make sure that slice start + size do not overflow tensor dims.
for (int i = 0; i < NumDims; ++i) {
slice_start[i] = numext::mini(dims[i] - 1, slice_start[i]);
slice_size[i] = numext::mini(slice_size[i], dims[i] - slice_start[i]);
}
Tensor<T, NumDims, Options, Index> slice(slice_size);
slice.setRandom();
// Assign a slice using default executor.
Tensor<T, NumDims, Options, Index> golden = src;
golden.slice(slice_start, slice_size) = slice;
// And using configured execution strategy.
Tensor<T, NumDims, Options, Index> dst = src;
auto expr = dst.slice(slice_start, slice_size);
using Assign = TensorAssignOp<decltype(expr), const decltype(slice)>;
using Executor = internal::TensorExecutor<const Assign, Device, Vectorizable, Tiling>;
Executor::run(Assign(expr, slice), d);
for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i));
}
}
template <typename T, int NumDims, typename Device, bool Vectorizable, TiledEvaluation Tiling, int Layout>
void test_execute_broadcasting_of_forced_eval(Device d) {
static constexpr int Options = 0 | Layout;
auto dims = RandomDims<NumDims>(1, 10);
Tensor<T, NumDims, Options, Index> src(dims);
src.setRandom();
const auto broadcasts = RandomDims<NumDims>(1, 7);
const auto expr = src.square().eval().broadcast(broadcasts);
// We assume that broadcasting on a default device is tested and correct, so
// we can rely on it to verify correctness of tensor executor and tiling.
Tensor<T, NumDims, Options, Index> golden;
golden = expr;
// Now do the broadcasting using configured tensor executor.
Tensor<T, NumDims, Options, Index> dst(golden.dimensions());
using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>;
using Executor = internal::TensorExecutor<const Assign, Device, Vectorizable, Tiling>;
Executor::run(Assign(dst, expr), d);
for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i));
}
}
template <typename T, int NumDims>
struct DummyGenerator {
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T operator()(const array<Index, NumDims>& dims) const {
T result = static_cast<T>(0);
for (int i = 0; i < NumDims; ++i) {
result += static_cast<T>((i + 1) * dims[i]);
}
return result;
}
};
template <typename T, int NumDims, typename Device, bool Vectorizable, TiledEvaluation Tiling, int Layout>
void test_execute_generator_op(Device d) {
static constexpr int Options = 0 | Layout;
auto dims = RandomDims<NumDims>(20, 30);
Tensor<T, NumDims, Options, Index> src(dims);
src.setRandom();
const auto expr = src.generate(DummyGenerator<T, NumDims>());
// We assume that generator on a default device is tested and correct, so
// we can rely on it to verify correctness of tensor executor and tiling.
Tensor<T, NumDims, Options, Index> golden;
golden = expr;
// Now do the broadcasting using configured tensor executor.
Tensor<T, NumDims, Options, Index> dst(golden.dimensions());
using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>;
using Executor = internal::TensorExecutor<const Assign, Device, Vectorizable, Tiling>;
Executor::run(Assign(dst, expr), d);
for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i));
}
}
template <typename T, int NumDims, typename Device, bool Vectorizable, TiledEvaluation Tiling, int Layout>
void test_execute_reverse_rvalue(Device d) {
static constexpr int Options = 0 | Layout;
auto dims = RandomDims<NumDims>(1, numext::pow(1000000.0, 1.0 / NumDims));
Tensor<T, NumDims, Options, Index> src(dims);
src.setRandom();
// Reverse half of the dimensions.
Eigen::array<bool, NumDims> reverse;
for (int i = 0; i < NumDims; ++i) reverse[i] = internal::random<bool>();
const auto expr = src.reverse(reverse);
// We assume that reversing on a default device is tested and correct, so
// we can rely on it to verify correctness of tensor executor and tiling.
Tensor<T, NumDims, Options, Index> golden;
golden = expr;
// Now do the reversing using configured tensor executor.
Tensor<T, NumDims, Options, Index> dst(golden.dimensions());
using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>;
using Executor = internal::TensorExecutor<const Assign, Device, Vectorizable, Tiling>;
Executor::run(Assign(dst, expr), d);
for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i));
}
}
template <typename T, int NumDims, typename Device, bool Vectorizable, TiledEvaluation Tiling, int Layout>
void test_async_execute_unary_expr(Device d) {
static constexpr int Options = 0 | Layout;
// Pick a large enough tensor size to bypass small tensor block evaluation
// optimization.
auto dims = RandomDims<NumDims>(50 / NumDims, 100 / NumDims);
Tensor<T, NumDims, Options, Index> src(dims);
Tensor<T, NumDims, Options, Index> dst(dims);
src.setRandom();
const auto expr = src.square();
Eigen::Barrier done(1);
auto on_done = [&done]() { done.Notify(); };
using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>;
using DoneCallback = decltype(on_done);
using Executor = internal::TensorAsyncExecutor<const Assign, Device, DoneCallback, Vectorizable, Tiling>;
Executor::runAsync(Assign(dst, expr), d, on_done);
done.Wait();
for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
T square = src.coeff(i) * src.coeff(i);
VERIFY_IS_EQUAL(square, dst.coeff(i));
}
}
template <typename T, int NumDims, typename Device, bool Vectorizable, TiledEvaluation Tiling, int Layout>
void test_async_execute_binary_expr(Device d) {
static constexpr int Options = 0 | Layout;
// Pick a large enough tensor size to bypass small tensor block evaluation
// optimization.
auto dims = RandomDims<NumDims>(50 / NumDims, 100 / NumDims);
Tensor<T, NumDims, Options, Index> lhs(dims);
Tensor<T, NumDims, Options, Index> rhs(dims);
Tensor<T, NumDims, Options, Index> dst(dims);
lhs.setRandom();
rhs.setRandom();
const auto expr = lhs + rhs;
Eigen::Barrier done(1);
auto on_done = [&done]() { done.Notify(); };
using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>;
using DoneCallback = decltype(on_done);
using Executor = internal::TensorAsyncExecutor<const Assign, Device, DoneCallback, Vectorizable, Tiling>;
Executor::runAsync(Assign(dst, expr), d, on_done);
done.Wait();
for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
T sum = lhs.coeff(i) + rhs.coeff(i);
VERIFY_IS_EQUAL(sum, dst.coeff(i));
}
}
#ifndef EIGEN_DONT_VECTORIZE
#define EIGEN_DONT_VECTORIZE 0
#endif
#define VECTORIZABLE(T, VAL) !EIGEN_DONT_VECTORIZE&& Eigen::internal::packet_traits<T>::Vectorizable&& VAL
#define CALL_SUBTEST_PART(PART) CALL_SUBTEST_##PART
#define CALL_SUBTEST_COMBINATIONS(PART, NAME, T, NUM_DIMS) \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, DefaultDevice, false, TiledEvaluation::Off, ColMajor>(default_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, DefaultDevice, false, TiledEvaluation::On, ColMajor>(default_device))); \
CALL_SUBTEST_PART(PART) \
((NAME<T, NUM_DIMS, DefaultDevice, VECTORIZABLE(T, true), TiledEvaluation::Off, ColMajor>(default_device))); \
CALL_SUBTEST_PART(PART) \
((NAME<T, NUM_DIMS, DefaultDevice, VECTORIZABLE(T, true), TiledEvaluation::On, ColMajor>(default_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, DefaultDevice, false, TiledEvaluation::Off, RowMajor>(default_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, DefaultDevice, false, TiledEvaluation::On, RowMajor>(default_device))); \
CALL_SUBTEST_PART(PART) \
((NAME<T, NUM_DIMS, DefaultDevice, VECTORIZABLE(T, true), TiledEvaluation::Off, RowMajor>(default_device))); \
CALL_SUBTEST_PART(PART) \
((NAME<T, NUM_DIMS, DefaultDevice, VECTORIZABLE(T, true), TiledEvaluation::On, RowMajor>(default_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, false, TiledEvaluation::Off, ColMajor>(tp_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, false, TiledEvaluation::On, ColMajor>(tp_device))); \
CALL_SUBTEST_PART(PART) \
((NAME<T, NUM_DIMS, ThreadPoolDevice, VECTORIZABLE(T, true), TiledEvaluation::Off, ColMajor>(tp_device))); \
CALL_SUBTEST_PART(PART) \
((NAME<T, NUM_DIMS, ThreadPoolDevice, VECTORIZABLE(T, true), TiledEvaluation::On, ColMajor>(tp_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, false, TiledEvaluation::Off, RowMajor>(tp_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, false, TiledEvaluation::On, RowMajor>(tp_device))); \
CALL_SUBTEST_PART(PART) \
((NAME<T, NUM_DIMS, ThreadPoolDevice, VECTORIZABLE(T, true), TiledEvaluation::Off, RowMajor>(tp_device))); \
CALL_SUBTEST_PART(PART) \
((NAME<T, NUM_DIMS, ThreadPoolDevice, VECTORIZABLE(T, true), TiledEvaluation::On, RowMajor>(tp_device)))
// NOTE: Currently only ThreadPoolDevice supports async expression evaluation.
#define CALL_ASYNC_SUBTEST_COMBINATIONS(PART, NAME, T, NUM_DIMS) \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, false, TiledEvaluation::Off, ColMajor>(tp_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, false, TiledEvaluation::On, ColMajor>(tp_device))); \
CALL_SUBTEST_PART(PART) \
((NAME<T, NUM_DIMS, ThreadPoolDevice, VECTORIZABLE(T, true), TiledEvaluation::Off, ColMajor>(tp_device))); \
CALL_SUBTEST_PART(PART) \
((NAME<T, NUM_DIMS, ThreadPoolDevice, VECTORIZABLE(T, true), TiledEvaluation::On, ColMajor>(tp_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, false, TiledEvaluation::Off, RowMajor>(tp_device))); \
CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, false, TiledEvaluation::On, RowMajor>(tp_device))); \
CALL_SUBTEST_PART(PART) \
((NAME<T, NUM_DIMS, ThreadPoolDevice, VECTORIZABLE(T, true), TiledEvaluation::Off, RowMajor>(tp_device))); \
CALL_SUBTEST_PART(PART) \
((NAME<T, NUM_DIMS, ThreadPoolDevice, VECTORIZABLE(T, true), TiledEvaluation::On, RowMajor>(tp_device)))
EIGEN_DECLARE_TEST(cxx11_tensor_executor) {
Eigen::DefaultDevice default_device;
// Default device is unused in ASYNC tests.
EIGEN_UNUSED_VARIABLE(default_device);
const auto num_threads = internal::random<int>(20, 24);
Eigen::ThreadPool tp(num_threads);
Eigen::ThreadPoolDevice tp_device(&tp, num_threads);
CALL_SUBTEST_COMBINATIONS(1, test_execute_unary_expr, float, 3);
CALL_SUBTEST_COMBINATIONS(1, test_execute_unary_expr, float, 4);
CALL_SUBTEST_COMBINATIONS(1, test_execute_unary_expr, float, 5);
CALL_SUBTEST_COMBINATIONS(2, test_execute_binary_expr, float, 3);
CALL_SUBTEST_COMBINATIONS(2, test_execute_binary_expr, float, 4);
CALL_SUBTEST_COMBINATIONS(2, test_execute_binary_expr, float, 5);
CALL_SUBTEST_COMBINATIONS(3, test_execute_broadcasting, float, 3);
CALL_SUBTEST_COMBINATIONS(3, test_execute_broadcasting, float, 4);
CALL_SUBTEST_COMBINATIONS(3, test_execute_broadcasting, float, 5);
CALL_SUBTEST_COMBINATIONS(4, test_execute_chipping_rvalue, float, 3);
CALL_SUBTEST_COMBINATIONS(4, test_execute_chipping_rvalue, float, 4);
CALL_SUBTEST_COMBINATIONS(4, test_execute_chipping_rvalue, float, 5);
CALL_SUBTEST_COMBINATIONS(5, test_execute_chipping_lvalue, float, 3);
CALL_SUBTEST_COMBINATIONS(5, test_execute_chipping_lvalue, float, 4);
CALL_SUBTEST_COMBINATIONS(5, test_execute_chipping_lvalue, float, 5);
CALL_SUBTEST_COMBINATIONS(6, test_execute_shuffle_rvalue, float, 3);
CALL_SUBTEST_COMBINATIONS(6, test_execute_shuffle_rvalue, float, 4);
CALL_SUBTEST_COMBINATIONS(6, test_execute_shuffle_rvalue, float, 5);
CALL_SUBTEST_COMBINATIONS(7, test_execute_shuffle_lvalue, float, 3);
CALL_SUBTEST_COMBINATIONS(7, test_execute_shuffle_lvalue, float, 4);
CALL_SUBTEST_COMBINATIONS(7, test_execute_shuffle_lvalue, float, 5);
CALL_SUBTEST_COMBINATIONS(9, test_execute_reshape, float, 2);
CALL_SUBTEST_COMBINATIONS(9, test_execute_reshape, float, 3);
CALL_SUBTEST_COMBINATIONS(9, test_execute_reshape, float, 4);
CALL_SUBTEST_COMBINATIONS(9, test_execute_reshape, float, 5);
CALL_SUBTEST_COMBINATIONS(10, test_execute_slice_rvalue, float, 2);
CALL_SUBTEST_COMBINATIONS(10, test_execute_slice_rvalue, float, 3);
CALL_SUBTEST_COMBINATIONS(10, test_execute_slice_rvalue, float, 4);
CALL_SUBTEST_COMBINATIONS(10, test_execute_slice_rvalue, float, 5);
CALL_SUBTEST_COMBINATIONS(11, test_execute_slice_lvalue, float, 2);
CALL_SUBTEST_COMBINATIONS(11, test_execute_slice_lvalue, float, 3);
CALL_SUBTEST_COMBINATIONS(11, test_execute_slice_lvalue, float, 4);
CALL_SUBTEST_COMBINATIONS(11, test_execute_slice_lvalue, float, 5);
CALL_SUBTEST_COMBINATIONS(12, test_execute_broadcasting_of_forced_eval, float, 2);
CALL_SUBTEST_COMBINATIONS(12, test_execute_broadcasting_of_forced_eval, float, 3);
CALL_SUBTEST_COMBINATIONS(12, test_execute_broadcasting_of_forced_eval, float, 4);
CALL_SUBTEST_COMBINATIONS(12, test_execute_broadcasting_of_forced_eval, float, 5);
CALL_SUBTEST_COMBINATIONS(13, test_execute_generator_op, float, 2);
CALL_SUBTEST_COMBINATIONS(13, test_execute_generator_op, float, 3);
CALL_SUBTEST_COMBINATIONS(13, test_execute_generator_op, float, 4);
CALL_SUBTEST_COMBINATIONS(13, test_execute_generator_op, float, 5);
CALL_SUBTEST_COMBINATIONS(14, test_execute_reverse_rvalue, float, 1);
CALL_SUBTEST_COMBINATIONS(14, test_execute_reverse_rvalue, float, 2);
CALL_SUBTEST_COMBINATIONS(14, test_execute_reverse_rvalue, float, 3);
CALL_SUBTEST_COMBINATIONS(14, test_execute_reverse_rvalue, float, 4);
CALL_SUBTEST_COMBINATIONS(14, test_execute_reverse_rvalue, float, 5);
CALL_ASYNC_SUBTEST_COMBINATIONS(15, test_async_execute_unary_expr, float, 3);
CALL_ASYNC_SUBTEST_COMBINATIONS(15, test_async_execute_unary_expr, float, 4);
CALL_ASYNC_SUBTEST_COMBINATIONS(15, test_async_execute_unary_expr, float, 5);
CALL_ASYNC_SUBTEST_COMBINATIONS(16, test_async_execute_binary_expr, float, 3);
CALL_ASYNC_SUBTEST_COMBINATIONS(16, test_async_execute_binary_expr, float, 4);
CALL_ASYNC_SUBTEST_COMBINATIONS(16, test_async_execute_binary_expr, float, 5);
// Force CMake to split this test.
// EIGEN_SUFFIXES;1;2;3;4;5;6;7;8;9;10;11;12;13;14;15;16
}