| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2018 Eugene Zhulenev <ezhulenev@google.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #define EIGEN_USE_THREADS |
| |
| #include "main.h" |
| |
| #include <Eigen/CXX11/Tensor> |
| |
| using Eigen::ColMajor; |
| using Eigen::RowMajor; |
| using Eigen::Tensor; |
| using Eigen::internal::TiledEvaluation; |
| |
| // A set of tests to verify that different TensorExecutor strategies yields the |
| // same results for all the ops, supporting tiled evaluation. |
| |
| // Default assignment that does no use block evaluation or vectorization. |
| // We assume that default coefficient evaluation is well tested and correct. |
| template <typename Dst, typename Expr> |
| void DefaultAssign(Dst& dst, Expr expr) { |
| using Assign = Eigen::TensorAssignOp<Dst, const Expr>; |
| using Executor = Eigen::internal::TensorExecutor<const Assign, DefaultDevice, |
| /*Vectorizable=*/false, |
| /*Tiling=*/TiledEvaluation::Off>; |
| |
| Executor::run(Assign(dst, expr), DefaultDevice()); |
| } |
| |
| // Assignment with specified device and tiling strategy. |
| template <bool Vectorizable, TiledEvaluation Tiling, typename Device, typename Dst, typename Expr> |
| void DeviceAssign(Device& d, Dst& dst, Expr expr) { |
| using Assign = Eigen::TensorAssignOp<Dst, const Expr>; |
| using Executor = Eigen::internal::TensorExecutor<const Assign, Device, Vectorizable, Tiling>; |
| |
| Executor::run(Assign(dst, expr), d); |
| } |
| |
| template <int NumDims> |
| static array<Index, NumDims> RandomDims(int min_dim = 1, int max_dim = 20) { |
| array<Index, NumDims> dims; |
| for (int i = 0; i < NumDims; ++i) { |
| dims[i] = internal::random<int>(min_dim, max_dim); |
| } |
| return dims; |
| } |
| |
| template <typename T, int NumDims, typename Device, bool Vectorizable, TiledEvaluation Tiling, int Layout> |
| void test_execute_unary_expr(Device d) { |
| static constexpr int Options = 0 | Layout; |
| |
| // Pick a large enough tensor size to bypass small tensor block evaluation |
| // optimization. |
| auto dims = RandomDims<NumDims>(50 / NumDims, 100 / NumDims); |
| |
| Tensor<T, NumDims, Options, Index> src(dims); |
| Tensor<T, NumDims, Options, Index> dst(dims); |
| |
| src.setRandom(); |
| const auto expr = src.square(); |
| |
| using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>; |
| using Executor = internal::TensorExecutor<const Assign, Device, Vectorizable, Tiling>; |
| |
| Executor::run(Assign(dst, expr), d); |
| |
| for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) { |
| T square = src.coeff(i) * src.coeff(i); |
| VERIFY_IS_EQUAL(square, dst.coeff(i)); |
| } |
| } |
| |
| template <typename T, int NumDims, typename Device, bool Vectorizable, TiledEvaluation Tiling, int Layout> |
| void test_execute_binary_expr(Device d) { |
| static constexpr int Options = 0 | Layout; |
| |
| // Pick a large enough tensor size to bypass small tensor block evaluation |
| // optimization. |
| auto dims = RandomDims<NumDims>(50 / NumDims, 100 / NumDims); |
| |
| Tensor<T, NumDims, Options, Index> lhs(dims); |
| Tensor<T, NumDims, Options, Index> rhs(dims); |
| Tensor<T, NumDims, Options, Index> dst(dims); |
| |
| lhs.setRandom(); |
| rhs.setRandom(); |
| |
| const auto expr = lhs + rhs; |
| |
| using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>; |
| using Executor = internal::TensorExecutor<const Assign, Device, Vectorizable, Tiling>; |
| |
| Executor::run(Assign(dst, expr), d); |
| |
| for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) { |
| T sum = lhs.coeff(i) + rhs.coeff(i); |
| VERIFY_IS_EQUAL(sum, dst.coeff(i)); |
| } |
| } |
| |
| template <typename T, int NumDims, typename Device, bool Vectorizable, TiledEvaluation Tiling, int Layout> |
| void test_execute_broadcasting(Device d) { |
| static constexpr int Options = 0 | Layout; |
| |
| auto dims = RandomDims<NumDims>(1, 10); |
| Tensor<T, NumDims, Options, Index> src(dims); |
| src.setRandom(); |
| |
| const auto broadcasts = RandomDims<NumDims>(1, 7); |
| const auto expr = src.broadcast(broadcasts); |
| |
| // We assume that broadcasting on a default device is tested and correct, so |
| // we can rely on it to verify correctness of tensor executor and tiling. |
| Tensor<T, NumDims, Options, Index> golden; |
| golden = expr; |
| |
| // Now do the broadcasting using configured tensor executor. |
| Tensor<T, NumDims, Options, Index> dst(golden.dimensions()); |
| |
| using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>; |
| using Executor = internal::TensorExecutor<const Assign, Device, Vectorizable, Tiling>; |
| |
| Executor::run(Assign(dst, expr), d); |
| |
| for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) { |
| VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i)); |
| } |
| } |
| |
| template <typename T, int NumDims, typename Device, bool Vectorizable, TiledEvaluation Tiling, int Layout> |
| struct test_execute_chipping_rvalue_runner { |
| template <int ChipDim> |
| static std::enable_if_t<0 <= ChipDim, void> run_dim(Device& d, const array<Index, NumDims>& dims, |
| const Tensor<T, NumDims, Layout, Index>& src) { |
| const auto offset = internal::random<Index>(0, dims[(ChipDim)] - 1); |
| const auto expr = src.template chip<ChipDim>(offset); |
| |
| Tensor<T, NumDims - 1, Layout, Index> golden; |
| golden = expr; |
| |
| Tensor<T, NumDims - 1, Layout, Index> dst(golden.dimensions()); |
| |
| using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>; |
| using Executor = internal::TensorExecutor<const Assign, Device, Vectorizable, Tiling>; |
| |
| Executor::run(Assign(dst, expr), d); |
| |
| for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) { |
| VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i)); |
| } |
| |
| // Recursively reduce chip dimension. |
| run_dim<ChipDim - 1>(d, dims, src); |
| } |
| |
| template <int ChipDim> |
| static std::enable_if_t < |
| ChipDim<0, void> run_dim(Device&, const array<Index, NumDims>&, const Tensor<T, NumDims, Layout, Index>&) {} |
| |
| static void run(Device d) { |
| auto dims = RandomDims<NumDims>(1, 10); |
| Tensor<T, NumDims, Layout, Index> src(dims); |
| src.setRandom(); |
| run_dim<NumDims - 1>(d, dims, src); |
| } |
| }; |
| |
| template <typename T, int NumDims, typename Device, bool Vectorizable, TiledEvaluation Tiling, int Layout> |
| void test_execute_chipping_rvalue(Device d) { |
| test_execute_chipping_rvalue_runner<T, NumDims, Device, Vectorizable, Tiling, Layout>::run(d); |
| } |
| |
| template <typename T, int NumDims, typename Device, bool Vectorizable, TiledEvaluation Tiling, int Layout> |
| struct test_execute_chipping_lvalue_runner { |
| template <int ChipDim> |
| static std::enable_if_t<0 <= ChipDim> run_dim(Device& d, const array<Index, NumDims>& dims) { |
| /* Generate random data that we'll assign to the chipped tensor dim. */ |
| array<Index, NumDims - 1> src_dims; |
| for (int i = 0; i < NumDims - 1; ++i) { |
| int dim = i < (ChipDim) ? i : i + 1; |
| src_dims[i] = dims[dim]; |
| } |
| |
| Tensor<T, NumDims - 1, Layout, Index> src(src_dims); |
| src.setRandom(); |
| |
| const auto offset = internal::random<Index>(0, dims[(ChipDim)] - 1); |
| |
| Tensor<T, NumDims, Layout, Index> random(dims); |
| random.setZero(); |
| |
| Tensor<T, NumDims, Layout, Index> golden(dims); |
| golden = random; |
| golden.template chip<(ChipDim)>(offset) = src; |
| |
| Tensor<T, NumDims, Layout, Index> dst(dims); |
| dst = random; |
| auto expr = dst.template chip<(ChipDim)>(offset); |
| |
| using Assign = TensorAssignOp<decltype(expr), const decltype(src)>; |
| using Executor = internal::TensorExecutor<const Assign, Device, Vectorizable, Tiling>; |
| |
| Executor::run(Assign(expr, src), d); |
| |
| for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) { |
| VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i)); |
| } |
| |
| run_dim<ChipDim - 1>(d, dims); |
| } |
| |
| template <int ChipDim> |
| static std::enable_if_t < ChipDim<0, void> run_dim(Device&, const array<Index, NumDims>&) {} |
| |
| static void run(Device d) { |
| auto dims = RandomDims<NumDims>(1, 10); |
| run_dim<NumDims - 1>(d, dims); |
| } |
| }; |
| |
| template <typename T, int NumDims, typename Device, bool Vectorizable, TiledEvaluation Tiling, int Layout> |
| void test_execute_chipping_lvalue(Device d) { |
| test_execute_chipping_lvalue_runner<T, NumDims, Device, Vectorizable, Tiling, Layout>::run(d); |
| } |
| |
| template <typename T, int NumDims, typename Device, bool Vectorizable, TiledEvaluation Tiling, int Layout> |
| void test_execute_shuffle_rvalue(Device d) { |
| static constexpr int Options = 0 | Layout; |
| |
| auto dims = RandomDims<NumDims>(1, 10); |
| Tensor<T, NumDims, Options, Index> src(dims); |
| src.setRandom(); |
| |
| DSizes<Index, NumDims> shuffle; |
| for (int i = 0; i < NumDims; ++i) shuffle[i] = i; |
| |
| // Test all possible shuffle permutations. |
| do { |
| DSizes<Index, NumDims> shuffled_dims; |
| for (int i = 0; i < NumDims; ++i) { |
| shuffled_dims[i] = dims[shuffle[i]]; |
| } |
| |
| const auto expr = src.shuffle(shuffle); |
| |
| // We assume that shuffling on a default device is tested and correct, so |
| // we can rely on it to verify correctness of tensor executor and tiling. |
| Tensor<T, NumDims, Options, Index> golden(shuffled_dims); |
| DefaultAssign(golden, expr); |
| |
| // Now do the shuffling using configured tensor executor. |
| Tensor<T, NumDims, Options, Index> dst(shuffled_dims); |
| DeviceAssign<Vectorizable, Tiling>(d, dst, expr); |
| |
| for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) { |
| VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i)); |
| } |
| |
| } while (std::next_permutation(&shuffle[0], &shuffle[0] + NumDims)); |
| } |
| |
| template <typename T, int NumDims, typename Device, bool Vectorizable, TiledEvaluation Tiling, int Layout> |
| void test_execute_shuffle_lvalue(Device d) { |
| static constexpr int Options = 0 | Layout; |
| |
| auto dims = RandomDims<NumDims>(5, 10); |
| Tensor<T, NumDims, Options, Index> src(dims); |
| src.setRandom(); |
| |
| DSizes<Index, NumDims> shuffle; |
| for (int i = 0; i < NumDims; ++i) shuffle[i] = i; |
| |
| // Test all possible shuffle permutations. |
| do { |
| DSizes<Index, NumDims> shuffled_dims; |
| for (int i = 0; i < NumDims; ++i) shuffled_dims[shuffle[i]] = dims[i]; |
| |
| // We assume that shuffling on a default device is tested and correct, so |
| // we can rely on it to verify correctness of tensor executor and tiling. |
| Tensor<T, NumDims, Options, Index> golden(shuffled_dims); |
| auto golden_shuffle = golden.shuffle(shuffle); |
| DefaultAssign(golden_shuffle, src); |
| |
| // Now do the shuffling using configured tensor executor. |
| Tensor<T, NumDims, Options, Index> dst(shuffled_dims); |
| auto dst_shuffle = dst.shuffle(shuffle); |
| DeviceAssign<Vectorizable, Tiling>(d, dst_shuffle, src); |
| |
| for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) { |
| VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i)); |
| } |
| |
| } while (std::next_permutation(&shuffle[0], &shuffle[0] + NumDims)); |
| } |
| |
| template <typename T, int NumDims, typename Device, bool Vectorizable, TiledEvaluation Tiling, int Layout> |
| void test_execute_reshape(Device d) { |
| static_assert(NumDims >= 2, "NumDims must be greater or equal than 2"); |
| |
| static constexpr int ReshapedDims = NumDims - 1; |
| static constexpr int Options = 0 | Layout; |
| |
| auto dims = RandomDims<NumDims>(5, 10); |
| Tensor<T, NumDims, Options, Index> src(dims); |
| src.setRandom(); |
| |
| // Multiple 0th dimension and then shuffle. |
| std::vector<Index> shuffle; |
| for (int i = 0; i < ReshapedDims; ++i) shuffle.push_back(i); |
| std::shuffle(shuffle.begin(), shuffle.end(), std::mt19937()); |
| |
| DSizes<Index, ReshapedDims> reshaped_dims; |
| reshaped_dims[shuffle[0]] = dims[0] * dims[1]; |
| for (int i = 1; i < ReshapedDims; ++i) reshaped_dims[shuffle[i]] = dims[i + 1]; |
| |
| Tensor<T, ReshapedDims, Options, Index> golden = src.reshape(reshaped_dims); |
| |
| // Now reshape using configured tensor executor. |
| Tensor<T, ReshapedDims, Options, Index> dst(golden.dimensions()); |
| |
| auto expr = src.reshape(reshaped_dims); |
| |
| using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>; |
| using Executor = internal::TensorExecutor<const Assign, Device, Vectorizable, Tiling>; |
| |
| Executor::run(Assign(dst, expr), d); |
| |
| for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) { |
| VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i)); |
| } |
| } |
| |
| template <typename T, int NumDims, typename Device, bool Vectorizable, TiledEvaluation Tiling, int Layout> |
| void test_execute_slice_rvalue(Device d) { |
| static_assert(NumDims >= 2, "NumDims must be greater or equal than 2"); |
| static constexpr int Options = 0 | Layout; |
| |
| auto dims = RandomDims<NumDims>(5, 10); |
| Tensor<T, NumDims, Options, Index> src(dims); |
| src.setRandom(); |
| |
| // Pick a random slice of src tensor. |
| auto slice_start = DSizes<Index, NumDims>(RandomDims<NumDims>()); |
| auto slice_size = DSizes<Index, NumDims>(RandomDims<NumDims>()); |
| |
| // Make sure that slice start + size do not overflow tensor dims. |
| for (int i = 0; i < NumDims; ++i) { |
| slice_start[i] = numext::mini(dims[i] - 1, slice_start[i]); |
| slice_size[i] = numext::mini(slice_size[i], dims[i] - slice_start[i]); |
| } |
| |
| Tensor<T, NumDims, Options, Index> golden = src.slice(slice_start, slice_size); |
| |
| // Now reshape using configured tensor executor. |
| Tensor<T, NumDims, Options, Index> dst(golden.dimensions()); |
| |
| auto expr = src.slice(slice_start, slice_size); |
| |
| using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>; |
| using Executor = internal::TensorExecutor<const Assign, Device, Vectorizable, Tiling>; |
| |
| Executor::run(Assign(dst, expr), d); |
| |
| for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) { |
| VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i)); |
| } |
| } |
| |
| template <typename T, int NumDims, typename Device, bool Vectorizable, TiledEvaluation Tiling, int Layout> |
| void test_execute_slice_lvalue(Device d) { |
| static_assert(NumDims >= 2, "NumDims must be greater or equal than 2"); |
| static constexpr int Options = 0 | Layout; |
| |
| auto dims = RandomDims<NumDims>(5, 10); |
| Tensor<T, NumDims, Options, Index> src(dims); |
| src.setRandom(); |
| |
| // Pick a random slice of src tensor. |
| auto slice_start = DSizes<Index, NumDims>(RandomDims<NumDims>(1, 10)); |
| auto slice_size = DSizes<Index, NumDims>(RandomDims<NumDims>(1, 10)); |
| |
| // Make sure that slice start + size do not overflow tensor dims. |
| for (int i = 0; i < NumDims; ++i) { |
| slice_start[i] = numext::mini(dims[i] - 1, slice_start[i]); |
| slice_size[i] = numext::mini(slice_size[i], dims[i] - slice_start[i]); |
| } |
| |
| Tensor<T, NumDims, Options, Index> slice(slice_size); |
| slice.setRandom(); |
| |
| // Assign a slice using default executor. |
| Tensor<T, NumDims, Options, Index> golden = src; |
| golden.slice(slice_start, slice_size) = slice; |
| |
| // And using configured execution strategy. |
| Tensor<T, NumDims, Options, Index> dst = src; |
| auto expr = dst.slice(slice_start, slice_size); |
| |
| using Assign = TensorAssignOp<decltype(expr), const decltype(slice)>; |
| using Executor = internal::TensorExecutor<const Assign, Device, Vectorizable, Tiling>; |
| |
| Executor::run(Assign(expr, slice), d); |
| |
| for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) { |
| VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i)); |
| } |
| } |
| |
| template <typename T, int NumDims, typename Device, bool Vectorizable, TiledEvaluation Tiling, int Layout> |
| void test_execute_broadcasting_of_forced_eval(Device d) { |
| static constexpr int Options = 0 | Layout; |
| |
| auto dims = RandomDims<NumDims>(1, 10); |
| Tensor<T, NumDims, Options, Index> src(dims); |
| src.setRandom(); |
| |
| const auto broadcasts = RandomDims<NumDims>(1, 7); |
| const auto expr = src.square().eval().broadcast(broadcasts); |
| |
| // We assume that broadcasting on a default device is tested and correct, so |
| // we can rely on it to verify correctness of tensor executor and tiling. |
| Tensor<T, NumDims, Options, Index> golden; |
| golden = expr; |
| |
| // Now do the broadcasting using configured tensor executor. |
| Tensor<T, NumDims, Options, Index> dst(golden.dimensions()); |
| |
| using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>; |
| using Executor = internal::TensorExecutor<const Assign, Device, Vectorizable, Tiling>; |
| |
| Executor::run(Assign(dst, expr), d); |
| |
| for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) { |
| VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i)); |
| } |
| } |
| |
| template <typename T, int NumDims> |
| struct DummyGenerator { |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T operator()(const array<Index, NumDims>& dims) const { |
| T result = static_cast<T>(0); |
| for (int i = 0; i < NumDims; ++i) { |
| result += static_cast<T>((i + 1) * dims[i]); |
| } |
| return result; |
| } |
| }; |
| |
| template <typename T, int NumDims, typename Device, bool Vectorizable, TiledEvaluation Tiling, int Layout> |
| void test_execute_generator_op(Device d) { |
| static constexpr int Options = 0 | Layout; |
| |
| auto dims = RandomDims<NumDims>(20, 30); |
| Tensor<T, NumDims, Options, Index> src(dims); |
| src.setRandom(); |
| |
| const auto expr = src.generate(DummyGenerator<T, NumDims>()); |
| |
| // We assume that generator on a default device is tested and correct, so |
| // we can rely on it to verify correctness of tensor executor and tiling. |
| Tensor<T, NumDims, Options, Index> golden; |
| golden = expr; |
| |
| // Now do the broadcasting using configured tensor executor. |
| Tensor<T, NumDims, Options, Index> dst(golden.dimensions()); |
| |
| using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>; |
| using Executor = internal::TensorExecutor<const Assign, Device, Vectorizable, Tiling>; |
| |
| Executor::run(Assign(dst, expr), d); |
| |
| for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) { |
| VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i)); |
| } |
| } |
| |
| template <typename T, int NumDims, typename Device, bool Vectorizable, TiledEvaluation Tiling, int Layout> |
| void test_execute_reverse_rvalue(Device d) { |
| static constexpr int Options = 0 | Layout; |
| |
| auto dims = RandomDims<NumDims>(1, numext::pow(1000000.0, 1.0 / NumDims)); |
| Tensor<T, NumDims, Options, Index> src(dims); |
| src.setRandom(); |
| |
| // Reverse half of the dimensions. |
| Eigen::array<bool, NumDims> reverse; |
| for (int i = 0; i < NumDims; ++i) reverse[i] = internal::random<bool>(); |
| |
| const auto expr = src.reverse(reverse); |
| |
| // We assume that reversing on a default device is tested and correct, so |
| // we can rely on it to verify correctness of tensor executor and tiling. |
| Tensor<T, NumDims, Options, Index> golden; |
| golden = expr; |
| |
| // Now do the reversing using configured tensor executor. |
| Tensor<T, NumDims, Options, Index> dst(golden.dimensions()); |
| |
| using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>; |
| using Executor = internal::TensorExecutor<const Assign, Device, Vectorizable, Tiling>; |
| |
| Executor::run(Assign(dst, expr), d); |
| |
| for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) { |
| VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i)); |
| } |
| } |
| |
| template <typename T, int NumDims, typename Device, bool Vectorizable, TiledEvaluation Tiling, int Layout> |
| void test_async_execute_unary_expr(Device d) { |
| static constexpr int Options = 0 | Layout; |
| |
| // Pick a large enough tensor size to bypass small tensor block evaluation |
| // optimization. |
| auto dims = RandomDims<NumDims>(50 / NumDims, 100 / NumDims); |
| |
| Tensor<T, NumDims, Options, Index> src(dims); |
| Tensor<T, NumDims, Options, Index> dst(dims); |
| |
| src.setRandom(); |
| const auto expr = src.square(); |
| |
| Eigen::Barrier done(1); |
| auto on_done = [&done]() { done.Notify(); }; |
| |
| using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>; |
| using DoneCallback = decltype(on_done); |
| using Executor = internal::TensorAsyncExecutor<const Assign, Device, DoneCallback, Vectorizable, Tiling>; |
| |
| Executor::runAsync(Assign(dst, expr), d, on_done); |
| done.Wait(); |
| |
| for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) { |
| T square = src.coeff(i) * src.coeff(i); |
| VERIFY_IS_EQUAL(square, dst.coeff(i)); |
| } |
| } |
| |
| template <typename T, int NumDims, typename Device, bool Vectorizable, TiledEvaluation Tiling, int Layout> |
| void test_async_execute_binary_expr(Device d) { |
| static constexpr int Options = 0 | Layout; |
| |
| // Pick a large enough tensor size to bypass small tensor block evaluation |
| // optimization. |
| auto dims = RandomDims<NumDims>(50 / NumDims, 100 / NumDims); |
| |
| Tensor<T, NumDims, Options, Index> lhs(dims); |
| Tensor<T, NumDims, Options, Index> rhs(dims); |
| Tensor<T, NumDims, Options, Index> dst(dims); |
| |
| lhs.setRandom(); |
| rhs.setRandom(); |
| |
| const auto expr = lhs + rhs; |
| |
| Eigen::Barrier done(1); |
| auto on_done = [&done]() { done.Notify(); }; |
| |
| using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>; |
| using DoneCallback = decltype(on_done); |
| using Executor = internal::TensorAsyncExecutor<const Assign, Device, DoneCallback, Vectorizable, Tiling>; |
| |
| Executor::runAsync(Assign(dst, expr), d, on_done); |
| done.Wait(); |
| |
| for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) { |
| T sum = lhs.coeff(i) + rhs.coeff(i); |
| VERIFY_IS_EQUAL(sum, dst.coeff(i)); |
| } |
| } |
| |
| #ifndef EIGEN_DONT_VECTORIZE |
| #define EIGEN_DONT_VECTORIZE 0 |
| #endif |
| #define VECTORIZABLE(T, VAL) !EIGEN_DONT_VECTORIZE&& Eigen::internal::packet_traits<T>::Vectorizable&& VAL |
| |
| #define CALL_SUBTEST_PART(PART) CALL_SUBTEST_##PART |
| |
| #define CALL_SUBTEST_COMBINATIONS(PART, NAME, T, NUM_DIMS) \ |
| CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, DefaultDevice, false, TiledEvaluation::Off, ColMajor>(default_device))); \ |
| CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, DefaultDevice, false, TiledEvaluation::On, ColMajor>(default_device))); \ |
| CALL_SUBTEST_PART(PART) \ |
| ((NAME<T, NUM_DIMS, DefaultDevice, VECTORIZABLE(T, true), TiledEvaluation::Off, ColMajor>(default_device))); \ |
| CALL_SUBTEST_PART(PART) \ |
| ((NAME<T, NUM_DIMS, DefaultDevice, VECTORIZABLE(T, true), TiledEvaluation::On, ColMajor>(default_device))); \ |
| CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, DefaultDevice, false, TiledEvaluation::Off, RowMajor>(default_device))); \ |
| CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, DefaultDevice, false, TiledEvaluation::On, RowMajor>(default_device))); \ |
| CALL_SUBTEST_PART(PART) \ |
| ((NAME<T, NUM_DIMS, DefaultDevice, VECTORIZABLE(T, true), TiledEvaluation::Off, RowMajor>(default_device))); \ |
| CALL_SUBTEST_PART(PART) \ |
| ((NAME<T, NUM_DIMS, DefaultDevice, VECTORIZABLE(T, true), TiledEvaluation::On, RowMajor>(default_device))); \ |
| CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, false, TiledEvaluation::Off, ColMajor>(tp_device))); \ |
| CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, false, TiledEvaluation::On, ColMajor>(tp_device))); \ |
| CALL_SUBTEST_PART(PART) \ |
| ((NAME<T, NUM_DIMS, ThreadPoolDevice, VECTORIZABLE(T, true), TiledEvaluation::Off, ColMajor>(tp_device))); \ |
| CALL_SUBTEST_PART(PART) \ |
| ((NAME<T, NUM_DIMS, ThreadPoolDevice, VECTORIZABLE(T, true), TiledEvaluation::On, ColMajor>(tp_device))); \ |
| CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, false, TiledEvaluation::Off, RowMajor>(tp_device))); \ |
| CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, false, TiledEvaluation::On, RowMajor>(tp_device))); \ |
| CALL_SUBTEST_PART(PART) \ |
| ((NAME<T, NUM_DIMS, ThreadPoolDevice, VECTORIZABLE(T, true), TiledEvaluation::Off, RowMajor>(tp_device))); \ |
| CALL_SUBTEST_PART(PART) \ |
| ((NAME<T, NUM_DIMS, ThreadPoolDevice, VECTORIZABLE(T, true), TiledEvaluation::On, RowMajor>(tp_device))) |
| |
| // NOTE: Currently only ThreadPoolDevice supports async expression evaluation. |
| #define CALL_ASYNC_SUBTEST_COMBINATIONS(PART, NAME, T, NUM_DIMS) \ |
| CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, false, TiledEvaluation::Off, ColMajor>(tp_device))); \ |
| CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, false, TiledEvaluation::On, ColMajor>(tp_device))); \ |
| CALL_SUBTEST_PART(PART) \ |
| ((NAME<T, NUM_DIMS, ThreadPoolDevice, VECTORIZABLE(T, true), TiledEvaluation::Off, ColMajor>(tp_device))); \ |
| CALL_SUBTEST_PART(PART) \ |
| ((NAME<T, NUM_DIMS, ThreadPoolDevice, VECTORIZABLE(T, true), TiledEvaluation::On, ColMajor>(tp_device))); \ |
| CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, false, TiledEvaluation::Off, RowMajor>(tp_device))); \ |
| CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, false, TiledEvaluation::On, RowMajor>(tp_device))); \ |
| CALL_SUBTEST_PART(PART) \ |
| ((NAME<T, NUM_DIMS, ThreadPoolDevice, VECTORIZABLE(T, true), TiledEvaluation::Off, RowMajor>(tp_device))); \ |
| CALL_SUBTEST_PART(PART) \ |
| ((NAME<T, NUM_DIMS, ThreadPoolDevice, VECTORIZABLE(T, true), TiledEvaluation::On, RowMajor>(tp_device))) |
| |
| EIGEN_DECLARE_TEST(cxx11_tensor_executor) { |
| Eigen::DefaultDevice default_device; |
| // Default device is unused in ASYNC tests. |
| EIGEN_UNUSED_VARIABLE(default_device); |
| |
| const auto num_threads = internal::random<int>(20, 24); |
| Eigen::ThreadPool tp(num_threads); |
| Eigen::ThreadPoolDevice tp_device(&tp, num_threads); |
| |
| CALL_SUBTEST_COMBINATIONS(1, test_execute_unary_expr, float, 3); |
| CALL_SUBTEST_COMBINATIONS(1, test_execute_unary_expr, float, 4); |
| CALL_SUBTEST_COMBINATIONS(1, test_execute_unary_expr, float, 5); |
| |
| CALL_SUBTEST_COMBINATIONS(2, test_execute_binary_expr, float, 3); |
| CALL_SUBTEST_COMBINATIONS(2, test_execute_binary_expr, float, 4); |
| CALL_SUBTEST_COMBINATIONS(2, test_execute_binary_expr, float, 5); |
| |
| CALL_SUBTEST_COMBINATIONS(3, test_execute_broadcasting, float, 3); |
| CALL_SUBTEST_COMBINATIONS(3, test_execute_broadcasting, float, 4); |
| CALL_SUBTEST_COMBINATIONS(3, test_execute_broadcasting, float, 5); |
| |
| CALL_SUBTEST_COMBINATIONS(4, test_execute_chipping_rvalue, float, 3); |
| CALL_SUBTEST_COMBINATIONS(4, test_execute_chipping_rvalue, float, 4); |
| CALL_SUBTEST_COMBINATIONS(4, test_execute_chipping_rvalue, float, 5); |
| |
| CALL_SUBTEST_COMBINATIONS(5, test_execute_chipping_lvalue, float, 3); |
| CALL_SUBTEST_COMBINATIONS(5, test_execute_chipping_lvalue, float, 4); |
| CALL_SUBTEST_COMBINATIONS(5, test_execute_chipping_lvalue, float, 5); |
| |
| CALL_SUBTEST_COMBINATIONS(6, test_execute_shuffle_rvalue, float, 3); |
| CALL_SUBTEST_COMBINATIONS(6, test_execute_shuffle_rvalue, float, 4); |
| CALL_SUBTEST_COMBINATIONS(6, test_execute_shuffle_rvalue, float, 5); |
| |
| CALL_SUBTEST_COMBINATIONS(7, test_execute_shuffle_lvalue, float, 3); |
| CALL_SUBTEST_COMBINATIONS(7, test_execute_shuffle_lvalue, float, 4); |
| CALL_SUBTEST_COMBINATIONS(7, test_execute_shuffle_lvalue, float, 5); |
| |
| CALL_SUBTEST_COMBINATIONS(9, test_execute_reshape, float, 2); |
| CALL_SUBTEST_COMBINATIONS(9, test_execute_reshape, float, 3); |
| CALL_SUBTEST_COMBINATIONS(9, test_execute_reshape, float, 4); |
| CALL_SUBTEST_COMBINATIONS(9, test_execute_reshape, float, 5); |
| |
| CALL_SUBTEST_COMBINATIONS(10, test_execute_slice_rvalue, float, 2); |
| CALL_SUBTEST_COMBINATIONS(10, test_execute_slice_rvalue, float, 3); |
| CALL_SUBTEST_COMBINATIONS(10, test_execute_slice_rvalue, float, 4); |
| CALL_SUBTEST_COMBINATIONS(10, test_execute_slice_rvalue, float, 5); |
| |
| CALL_SUBTEST_COMBINATIONS(11, test_execute_slice_lvalue, float, 2); |
| CALL_SUBTEST_COMBINATIONS(11, test_execute_slice_lvalue, float, 3); |
| CALL_SUBTEST_COMBINATIONS(11, test_execute_slice_lvalue, float, 4); |
| CALL_SUBTEST_COMBINATIONS(11, test_execute_slice_lvalue, float, 5); |
| |
| CALL_SUBTEST_COMBINATIONS(12, test_execute_broadcasting_of_forced_eval, float, 2); |
| CALL_SUBTEST_COMBINATIONS(12, test_execute_broadcasting_of_forced_eval, float, 3); |
| CALL_SUBTEST_COMBINATIONS(12, test_execute_broadcasting_of_forced_eval, float, 4); |
| CALL_SUBTEST_COMBINATIONS(12, test_execute_broadcasting_of_forced_eval, float, 5); |
| |
| CALL_SUBTEST_COMBINATIONS(13, test_execute_generator_op, float, 2); |
| CALL_SUBTEST_COMBINATIONS(13, test_execute_generator_op, float, 3); |
| CALL_SUBTEST_COMBINATIONS(13, test_execute_generator_op, float, 4); |
| CALL_SUBTEST_COMBINATIONS(13, test_execute_generator_op, float, 5); |
| |
| CALL_SUBTEST_COMBINATIONS(14, test_execute_reverse_rvalue, float, 1); |
| CALL_SUBTEST_COMBINATIONS(14, test_execute_reverse_rvalue, float, 2); |
| CALL_SUBTEST_COMBINATIONS(14, test_execute_reverse_rvalue, float, 3); |
| CALL_SUBTEST_COMBINATIONS(14, test_execute_reverse_rvalue, float, 4); |
| CALL_SUBTEST_COMBINATIONS(14, test_execute_reverse_rvalue, float, 5); |
| |
| CALL_ASYNC_SUBTEST_COMBINATIONS(15, test_async_execute_unary_expr, float, 3); |
| CALL_ASYNC_SUBTEST_COMBINATIONS(15, test_async_execute_unary_expr, float, 4); |
| CALL_ASYNC_SUBTEST_COMBINATIONS(15, test_async_execute_unary_expr, float, 5); |
| |
| CALL_ASYNC_SUBTEST_COMBINATIONS(16, test_async_execute_binary_expr, float, 3); |
| CALL_ASYNC_SUBTEST_COMBINATIONS(16, test_async_execute_binary_expr, float, 4); |
| CALL_ASYNC_SUBTEST_COMBINATIONS(16, test_async_execute_binary_expr, float, 5); |
| |
| // Force CMake to split this test. |
| // EIGEN_SUFFIXES;1;2;3;4;5;6;7;8;9;10;11;12;13;14;15;16 |
| } |