| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2016 |
| // Mehdi Goli Codeplay Software Ltd. |
| // Ralph Potter Codeplay Software Ltd. |
| // Luke Iwanski Codeplay Software Ltd. |
| // Contact: <eigen@codeplay.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #define EIGEN_TEST_NO_LONGDOUBLE |
| #define EIGEN_TEST_NO_COMPLEX |
| |
| #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t |
| #define EIGEN_USE_SYCL |
| |
| #include "main.h" |
| #include <unsupported/Eigen/CXX11/Tensor> |
| |
| using Eigen::Tensor; |
| template <typename DataType, int DataLayout, typename IndexType> |
| void test_forced_eval_sycl(const Eigen::SyclDevice& sycl_device) { |
| IndexType sizeDim1 = 100; |
| IndexType sizeDim2 = 20; |
| IndexType sizeDim3 = 20; |
| Eigen::array<IndexType, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}}; |
| Eigen::Tensor<DataType, 3, DataLayout, IndexType> in1(tensorRange); |
| Eigen::Tensor<DataType, 3, DataLayout, IndexType> in2(tensorRange); |
| Eigen::Tensor<DataType, 3, DataLayout, IndexType> out(tensorRange); |
| |
| DataType* gpu_in1_data = |
| static_cast<DataType*>(sycl_device.allocate(in1.dimensions().TotalSize() * sizeof(DataType))); |
| DataType* gpu_in2_data = |
| static_cast<DataType*>(sycl_device.allocate(in2.dimensions().TotalSize() * sizeof(DataType))); |
| DataType* gpu_out_data = |
| static_cast<DataType*>(sycl_device.allocate(out.dimensions().TotalSize() * sizeof(DataType))); |
| |
| in1 = in1.random() + in1.constant(static_cast<DataType>(10.0f)); |
| in2 = in2.random() + in2.constant(static_cast<DataType>(10.0f)); |
| |
| // creating TensorMap from tensor |
| Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType>> gpu_in1(gpu_in1_data, tensorRange); |
| Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType>> gpu_in2(gpu_in2_data, tensorRange); |
| Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType>> gpu_out(gpu_out_data, tensorRange); |
| sycl_device.memcpyHostToDevice(gpu_in1_data, in1.data(), (in1.dimensions().TotalSize()) * sizeof(DataType)); |
| sycl_device.memcpyHostToDevice(gpu_in2_data, in2.data(), (in2.dimensions().TotalSize()) * sizeof(DataType)); |
| /// c=(a+b)*b |
| gpu_out.device(sycl_device) = (gpu_in1 + gpu_in2).eval() * gpu_in2; |
| sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data, (out.dimensions().TotalSize()) * sizeof(DataType)); |
| for (IndexType i = 0; i < sizeDim1; ++i) { |
| for (IndexType j = 0; j < sizeDim2; ++j) { |
| for (IndexType k = 0; k < sizeDim3; ++k) { |
| VERIFY_IS_APPROX(out(i, j, k), (in1(i, j, k) + in2(i, j, k)) * in2(i, j, k)); |
| } |
| } |
| } |
| printf("(a+b)*b Test Passed\n"); |
| sycl_device.deallocate(gpu_in1_data); |
| sycl_device.deallocate(gpu_in2_data); |
| sycl_device.deallocate(gpu_out_data); |
| } |
| |
| template <typename DataType, typename Dev_selector> |
| void tensorForced_evalperDevice(Dev_selector s) { |
| QueueInterface queueInterface(s); |
| auto sycl_device = Eigen::SyclDevice(&queueInterface); |
| test_forced_eval_sycl<DataType, RowMajor, int64_t>(sycl_device); |
| test_forced_eval_sycl<DataType, ColMajor, int64_t>(sycl_device); |
| } |
| EIGEN_DECLARE_TEST(cxx11_tensor_forced_eval_sycl) { |
| for (const auto& device : Eigen::get_sycl_supported_devices()) { |
| CALL_SUBTEST(tensorForced_evalperDevice<float>(device)); |
| CALL_SUBTEST(tensorForced_evalperDevice<half>(device)); |
| } |
| } |