blob: 066221e5d515f61aceae9dc2c0a726f5a48211ad [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016
// Mehdi Goli Codeplay Software Ltd.
// Ralph Potter Codeplay Software Ltd.
// Luke Iwanski Codeplay Software Ltd.
// Contact: <eigen@codeplay.com>
// Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_TEST_NO_COMPLEX
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
#define EIGEN_USE_SYCL
#include "main.h"
#include <Eigen/CXX11/Tensor>
using Eigen::Tensor;
template <typename DataType, typename IndexType>
static void test_simple_swap_sycl(const Eigen::SyclDevice& sycl_device) {
IndexType sizeDim1 = 2;
IndexType sizeDim2 = 3;
IndexType sizeDim3 = 7;
array<IndexType, 3> tensorColRange = {{sizeDim1, sizeDim2, sizeDim3}};
array<IndexType, 3> tensorRowRange = {{sizeDim3, sizeDim2, sizeDim1}};
Tensor<DataType, 3, ColMajor, IndexType> tensor1(tensorColRange);
Tensor<DataType, 3, RowMajor, IndexType> tensor2(tensorRowRange);
tensor1.setRandom();
DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(tensor1.size() * sizeof(DataType)));
DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(tensor2.size() * sizeof(DataType)));
TensorMap<Tensor<DataType, 3, ColMajor, IndexType>> gpu1(gpu_data1, tensorColRange);
TensorMap<Tensor<DataType, 3, RowMajor, IndexType>> gpu2(gpu_data2, tensorRowRange);
sycl_device.memcpyHostToDevice(gpu_data1, tensor1.data(), (tensor1.size()) * sizeof(DataType));
gpu2.device(sycl_device) = gpu1.swap_layout();
sycl_device.memcpyDeviceToHost(tensor2.data(), gpu_data2, (tensor2.size()) * sizeof(DataType));
// Tensor<float, 3, ColMajor> tensor(2,3,7);
// tensor.setRandom();
// Tensor<float, 3, RowMajor> tensor2 = tensor.swap_layout();
VERIFY_IS_EQUAL(tensor1.dimension(0), tensor2.dimension(2));
VERIFY_IS_EQUAL(tensor1.dimension(1), tensor2.dimension(1));
VERIFY_IS_EQUAL(tensor1.dimension(2), tensor2.dimension(0));
for (IndexType i = 0; i < 2; ++i) {
for (IndexType j = 0; j < 3; ++j) {
for (IndexType k = 0; k < 7; ++k) {
VERIFY_IS_EQUAL(tensor1(i, j, k), tensor2(k, j, i));
}
}
}
sycl_device.deallocate(gpu_data1);
sycl_device.deallocate(gpu_data2);
}
template <typename DataType, typename IndexType>
static void test_swap_as_lvalue_sycl(const Eigen::SyclDevice& sycl_device) {
IndexType sizeDim1 = 2;
IndexType sizeDim2 = 3;
IndexType sizeDim3 = 7;
array<IndexType, 3> tensorColRange = {{sizeDim1, sizeDim2, sizeDim3}};
array<IndexType, 3> tensorRowRange = {{sizeDim3, sizeDim2, sizeDim1}};
Tensor<DataType, 3, ColMajor, IndexType> tensor1(tensorColRange);
Tensor<DataType, 3, RowMajor, IndexType> tensor2(tensorRowRange);
tensor1.setRandom();
DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(tensor1.size() * sizeof(DataType)));
DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(tensor2.size() * sizeof(DataType)));
TensorMap<Tensor<DataType, 3, ColMajor, IndexType>> gpu1(gpu_data1, tensorColRange);
TensorMap<Tensor<DataType, 3, RowMajor, IndexType>> gpu2(gpu_data2, tensorRowRange);
sycl_device.memcpyHostToDevice(gpu_data1, tensor1.data(), (tensor1.size()) * sizeof(DataType));
gpu2.swap_layout().device(sycl_device) = gpu1;
sycl_device.memcpyDeviceToHost(tensor2.data(), gpu_data2, (tensor2.size()) * sizeof(DataType));
// Tensor<float, 3, ColMajor> tensor(2,3,7);
// tensor.setRandom();
// Tensor<float, 3, RowMajor> tensor2(7,3,2);
// tensor2.swap_layout() = tensor;
VERIFY_IS_EQUAL(tensor1.dimension(0), tensor2.dimension(2));
VERIFY_IS_EQUAL(tensor1.dimension(1), tensor2.dimension(1));
VERIFY_IS_EQUAL(tensor1.dimension(2), tensor2.dimension(0));
for (IndexType i = 0; i < 2; ++i) {
for (IndexType j = 0; j < 3; ++j) {
for (IndexType k = 0; k < 7; ++k) {
VERIFY_IS_EQUAL(tensor1(i, j, k), tensor2(k, j, i));
}
}
}
sycl_device.deallocate(gpu_data1);
sycl_device.deallocate(gpu_data2);
}
template <typename DataType, typename dev_Selector>
void sycl_tensor_layout_swap_test_per_device(dev_Selector s) {
QueueInterface queueInterface(s);
auto sycl_device = Eigen::SyclDevice(&queueInterface);
test_simple_swap_sycl<DataType, int64_t>(sycl_device);
test_swap_as_lvalue_sycl<DataType, int64_t>(sycl_device);
}
EIGEN_DECLARE_TEST(cxx11_tensor_layout_swap_sycl) {
for (const auto& device : Eigen::get_sycl_supported_devices()) {
CALL_SUBTEST(sycl_tensor_layout_swap_test_per_device<half>(device));
CALL_SUBTEST(sycl_tensor_layout_swap_test_per_device<float>(device));
}
}