| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| |
| #include <Eigen/CXX11/Tensor> |
| |
| using Eigen::Tensor; |
| |
| template <typename> |
| static void test_simple_reshape() { |
| Tensor<float, 5> tensor1(2, 3, 1, 7, 1); |
| tensor1.setRandom(); |
| |
| Tensor<float, 3> tensor2(2, 3, 7); |
| Tensor<float, 2> tensor3(6, 7); |
| Tensor<float, 2> tensor4(2, 21); |
| |
| Tensor<float, 3>::Dimensions dim1(2, 3, 7); |
| tensor2 = tensor1.reshape(dim1); |
| Tensor<float, 2>::Dimensions dim2(6, 7); |
| tensor3 = tensor1.reshape(dim2); |
| Tensor<float, 2>::Dimensions dim3(2, 21); |
| tensor4 = tensor1.reshape(dim1).reshape(dim3); |
| |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| for (int k = 0; k < 7; ++k) { |
| VERIFY_IS_EQUAL(tensor1(i, j, 0, k, 0), tensor2(i, j, k)); |
| VERIFY_IS_EQUAL(tensor1(i, j, 0, k, 0), tensor3(i + 2 * j, k)); |
| VERIFY_IS_EQUAL(tensor1(i, j, 0, k, 0), tensor4(i, j + 3 * k)); |
| } |
| } |
| } |
| } |
| |
| template <typename> |
| static void test_static_reshape() { |
| using Eigen::type2index; |
| |
| Tensor<float, 5> tensor(2, 3, 1, 7, 1); |
| tensor.setRandom(); |
| |
| // New dimensions: [2, 3, 7] |
| Eigen::IndexList<type2index<2>, type2index<3>, type2index<7>> dim; |
| Tensor<float, 3> reshaped = tensor.reshape(static_cast<Eigen::DSizes<ptrdiff_t, 3>>(dim)); |
| |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| for (int k = 0; k < 7; ++k) { |
| VERIFY_IS_EQUAL(tensor(i, j, 0, k, 0), reshaped(i, j, k)); |
| } |
| } |
| } |
| } |
| |
| template <typename> |
| static void test_reshape_in_expr() { |
| MatrixXf m1(2, 3 * 5 * 7 * 11); |
| MatrixXf m2(3 * 5 * 7 * 11, 13); |
| m1.setRandom(); |
| m2.setRandom(); |
| MatrixXf m3 = m1 * m2; |
| |
| TensorMap<Tensor<float, 5>> tensor1(m1.data(), 2, 3, 5, 7, 11); |
| TensorMap<Tensor<float, 5>> tensor2(m2.data(), 3, 5, 7, 11, 13); |
| Tensor<float, 2>::Dimensions newDims1(2, 3 * 5 * 7 * 11); |
| Tensor<float, 2>::Dimensions newDims2(3 * 5 * 7 * 11, 13); |
| typedef Tensor<float, 1>::DimensionPair DimPair; |
| array<DimPair, 1> contract_along{{DimPair(1, 0)}}; |
| Tensor<float, 2> tensor3(2, 13); |
| tensor3 = tensor1.reshape(newDims1).contract(tensor2.reshape(newDims2), contract_along); |
| |
| Map<MatrixXf> res(tensor3.data(), 2, 13); |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 13; ++j) { |
| VERIFY_IS_APPROX(res(i, j), m3(i, j)); |
| } |
| } |
| } |
| |
| template <typename> |
| static void test_reshape_as_lvalue() { |
| Tensor<float, 3> tensor(2, 3, 7); |
| tensor.setRandom(); |
| |
| Tensor<float, 2> tensor2d(6, 7); |
| Tensor<float, 3>::Dimensions dim(2, 3, 7); |
| tensor2d.reshape(dim) = tensor; |
| |
| float scratch[2 * 3 * 1 * 7 * 1]; |
| TensorMap<Tensor<float, 5>> tensor5d(scratch, 2, 3, 1, 7, 1); |
| tensor5d.reshape(dim).device(Eigen::DefaultDevice()) = tensor; |
| |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| for (int k = 0; k < 7; ++k) { |
| VERIFY_IS_EQUAL(tensor2d(i + 2 * j, k), tensor(i, j, k)); |
| VERIFY_IS_EQUAL(tensor5d(i, j, 0, k, 0), tensor(i, j, k)); |
| } |
| } |
| } |
| } |
| |
| template <typename T, int DataLayout> |
| static void test_simple_slice() { |
| Tensor<T, 5, DataLayout> tensor(2, 3, 5, 7, 11); |
| tensor.setRandom(); |
| |
| Tensor<T, 5, DataLayout> slice1(1, 1, 1, 1, 1); |
| Eigen::DSizes<ptrdiff_t, 5> indices(1, 2, 3, 4, 5); |
| Eigen::DSizes<ptrdiff_t, 5> sizes(1, 1, 1, 1, 1); |
| slice1 = tensor.slice(indices, sizes); |
| VERIFY_IS_EQUAL(slice1(0, 0, 0, 0, 0), tensor(1, 2, 3, 4, 5)); |
| |
| Tensor<T, 5, DataLayout> slice2(1, 1, 2, 2, 3); |
| Eigen::DSizes<ptrdiff_t, 5> indices2(1, 1, 3, 4, 5); |
| Eigen::DSizes<ptrdiff_t, 5> sizes2(1, 1, 2, 2, 3); |
| slice2 = tensor.slice(indices2, sizes2); |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 2; ++j) { |
| for (int k = 0; k < 3; ++k) { |
| VERIFY_IS_EQUAL(slice2(0, 0, i, j, k), tensor(1, 1, 3 + i, 4 + j, 5 + k)); |
| } |
| } |
| } |
| } |
| |
| template <typename T> |
| static void test_const_slice() { |
| const T b[1] = {42}; |
| TensorMap<Tensor<const T, 1>> m(b, 1); |
| DSizes<DenseIndex, 1> offsets; |
| offsets[0] = 0; |
| TensorRef<Tensor<const T, 1>> slice_ref(m.slice(offsets, m.dimensions())); |
| VERIFY_IS_EQUAL(slice_ref(0), 42); |
| } |
| |
| template <typename T, int DataLayout> |
| static void test_slice_in_expr() { |
| typedef Matrix<T, Dynamic, Dynamic, DataLayout> Mtx; |
| Mtx m1(7, 7); |
| Mtx m2(3, 3); |
| m1.setRandom(); |
| m2.setRandom(); |
| |
| Mtx m3 = m1.block(1, 2, 3, 3) * m2.block(0, 2, 3, 1); |
| |
| TensorMap<Tensor<T, 2, DataLayout>> tensor1(m1.data(), 7, 7); |
| TensorMap<Tensor<T, 2, DataLayout>> tensor2(m2.data(), 3, 3); |
| Tensor<T, 2, DataLayout> tensor3(3, 1); |
| typedef typename Tensor<T, 1>::DimensionPair DimPair; |
| array<DimPair, 1> contract_along{{DimPair(1, 0)}}; |
| |
| Eigen::DSizes<ptrdiff_t, 2> indices1(1, 2); |
| Eigen::DSizes<ptrdiff_t, 2> sizes1(3, 3); |
| Eigen::DSizes<ptrdiff_t, 2> indices2(0, 2); |
| Eigen::DSizes<ptrdiff_t, 2> sizes2(3, 1); |
| tensor3 = tensor1.slice(indices1, sizes1).contract(tensor2.slice(indices2, sizes2), contract_along); |
| |
| Map<Mtx> res(tensor3.data(), 3, 1); |
| for (int i = 0; i < 3; ++i) { |
| for (int j = 0; j < 1; ++j) { |
| VERIFY_IS_APPROX(res(i, j), m3(i, j)); |
| } |
| } |
| |
| // Take an arbitrary slice of an arbitrarily sized tensor. |
| TensorMap<Tensor<const T, 2, DataLayout>> tensor4(m1.data(), 7, 7); |
| Tensor<T, 1, DataLayout> tensor6 = |
| tensor4.reshape(DSizes<ptrdiff_t, 1>(7 * 7)).exp().slice(DSizes<ptrdiff_t, 1>(0), DSizes<ptrdiff_t, 1>(35)); |
| for (int i = 0; i < 35; ++i) { |
| VERIFY_IS_APPROX(tensor6(i), expf(tensor4.data()[i])); |
| } |
| } |
| |
| template <typename T, int DataLayout> |
| static void test_slice_as_lvalue() { |
| Tensor<T, 3, DataLayout> tensor1(2, 2, 7); |
| tensor1.setRandom(); |
| Tensor<T, 3, DataLayout> tensor2(2, 2, 7); |
| tensor2.setRandom(); |
| Tensor<T, 3, DataLayout> tensor3(4, 3, 5); |
| tensor3.setRandom(); |
| Tensor<T, 3, DataLayout> tensor4(4, 3, 2); |
| tensor4.setRandom(); |
| Tensor<T, 3, DataLayout> tensor5(10, 13, 12); |
| tensor5.setRandom(); |
| |
| Tensor<T, 3, DataLayout> result(4, 5, 7); |
| Eigen::DSizes<ptrdiff_t, 3> sizes12(2, 2, 7); |
| Eigen::DSizes<ptrdiff_t, 3> first_slice(0, 0, 0); |
| result.slice(first_slice, sizes12) = tensor1; |
| Eigen::DSizes<ptrdiff_t, 3> second_slice(2, 0, 0); |
| result.slice(second_slice, sizes12).device(Eigen::DefaultDevice()) = tensor2; |
| |
| Eigen::DSizes<ptrdiff_t, 3> sizes3(4, 3, 5); |
| Eigen::DSizes<ptrdiff_t, 3> third_slice(0, 2, 0); |
| result.slice(third_slice, sizes3) = tensor3; |
| |
| Eigen::DSizes<ptrdiff_t, 3> sizes4(4, 3, 2); |
| Eigen::DSizes<ptrdiff_t, 3> fourth_slice(0, 2, 5); |
| result.slice(fourth_slice, sizes4) = tensor4; |
| |
| for (int j = 0; j < 2; ++j) { |
| for (int k = 0; k < 7; ++k) { |
| for (int i = 0; i < 2; ++i) { |
| VERIFY_IS_EQUAL(result(i, j, k), tensor1(i, j, k)); |
| VERIFY_IS_EQUAL(result(i + 2, j, k), tensor2(i, j, k)); |
| } |
| } |
| } |
| for (int i = 0; i < 4; ++i) { |
| for (int j = 2; j < 5; ++j) { |
| for (int k = 0; k < 5; ++k) { |
| VERIFY_IS_EQUAL(result(i, j, k), tensor3(i, j - 2, k)); |
| } |
| for (int k = 5; k < 7; ++k) { |
| VERIFY_IS_EQUAL(result(i, j, k), tensor4(i, j - 2, k - 5)); |
| } |
| } |
| } |
| |
| Eigen::DSizes<ptrdiff_t, 3> sizes5(4, 5, 7); |
| Eigen::DSizes<ptrdiff_t, 3> fifth_slice(0, 0, 0); |
| result.slice(fifth_slice, sizes5) = tensor5.slice(fifth_slice, sizes5); |
| for (int i = 0; i < 4; ++i) { |
| for (int j = 2; j < 5; ++j) { |
| for (int k = 0; k < 7; ++k) { |
| VERIFY_IS_EQUAL(result(i, j, k), tensor5(i, j, k)); |
| } |
| } |
| } |
| } |
| |
| template <typename T, int DataLayout> |
| static void test_slice_raw_data() { |
| Tensor<T, 4, DataLayout> tensor(3, 5, 7, 11); |
| tensor.setRandom(); |
| |
| Eigen::DSizes<ptrdiff_t, 4> offsets(1, 2, 3, 4); |
| Eigen::DSizes<ptrdiff_t, 4> extents(1, 1, 1, 1); |
| typedef TensorEvaluator<decltype(tensor.slice(offsets, extents)), DefaultDevice> SliceEvaluator; |
| auto slice1 = SliceEvaluator(tensor.slice(offsets, extents), DefaultDevice()); |
| VERIFY_IS_EQUAL(slice1.dimensions().TotalSize(), 1); |
| VERIFY_IS_EQUAL(slice1.data()[0], tensor(1, 2, 3, 4)); |
| |
| if (DataLayout == ColMajor) { |
| extents = Eigen::DSizes<ptrdiff_t, 4>(2, 1, 1, 1); |
| auto slice2 = SliceEvaluator(tensor.slice(offsets, extents), DefaultDevice()); |
| VERIFY_IS_EQUAL(slice2.dimensions().TotalSize(), 2); |
| VERIFY_IS_EQUAL(slice2.data()[0], tensor(1, 2, 3, 4)); |
| VERIFY_IS_EQUAL(slice2.data()[1], tensor(2, 2, 3, 4)); |
| } else { |
| extents = Eigen::DSizes<ptrdiff_t, 4>(1, 1, 1, 2); |
| auto slice2 = SliceEvaluator(tensor.slice(offsets, extents), DefaultDevice()); |
| VERIFY_IS_EQUAL(slice2.dimensions().TotalSize(), 2); |
| VERIFY_IS_EQUAL(slice2.data()[0], tensor(1, 2, 3, 4)); |
| VERIFY_IS_EQUAL(slice2.data()[1], tensor(1, 2, 3, 5)); |
| } |
| |
| extents = Eigen::DSizes<ptrdiff_t, 4>(1, 2, 1, 1); |
| auto slice3 = SliceEvaluator(tensor.slice(offsets, extents), DefaultDevice()); |
| VERIFY_IS_EQUAL(slice3.dimensions().TotalSize(), 2); |
| VERIFY_IS_EQUAL(slice3.data(), static_cast<T*>(0)); |
| |
| if (DataLayout == ColMajor) { |
| offsets = Eigen::DSizes<ptrdiff_t, 4>(0, 2, 3, 4); |
| extents = Eigen::DSizes<ptrdiff_t, 4>(3, 2, 1, 1); |
| auto slice4 = SliceEvaluator(tensor.slice(offsets, extents), DefaultDevice()); |
| VERIFY_IS_EQUAL(slice4.dimensions().TotalSize(), 6); |
| for (int i = 0; i < 3; ++i) { |
| for (int j = 0; j < 2; ++j) { |
| VERIFY_IS_EQUAL(slice4.data()[i + 3 * j], tensor(i, 2 + j, 3, 4)); |
| } |
| } |
| } else { |
| offsets = Eigen::DSizes<ptrdiff_t, 4>(1, 2, 3, 0); |
| extents = Eigen::DSizes<ptrdiff_t, 4>(1, 1, 2, 11); |
| auto slice4 = SliceEvaluator(tensor.slice(offsets, extents), DefaultDevice()); |
| VERIFY_IS_EQUAL(slice4.dimensions().TotalSize(), 22); |
| for (int l = 0; l < 11; ++l) { |
| for (int k = 0; k < 2; ++k) { |
| VERIFY_IS_EQUAL(slice4.data()[l + 11 * k], tensor(1, 2, 3 + k, l)); |
| } |
| } |
| } |
| |
| if (DataLayout == ColMajor) { |
| offsets = Eigen::DSizes<ptrdiff_t, 4>(0, 0, 0, 4); |
| extents = Eigen::DSizes<ptrdiff_t, 4>(3, 5, 7, 2); |
| auto slice5 = SliceEvaluator(tensor.slice(offsets, extents), DefaultDevice()); |
| VERIFY_IS_EQUAL(slice5.dimensions().TotalSize(), 210); |
| for (int i = 0; i < 3; ++i) { |
| for (int j = 0; j < 5; ++j) { |
| for (int k = 0; k < 7; ++k) { |
| for (int l = 0; l < 2; ++l) { |
| int slice_index = i + 3 * (j + 5 * (k + 7 * l)); |
| VERIFY_IS_EQUAL(slice5.data()[slice_index], tensor(i, j, k, l + 4)); |
| } |
| } |
| } |
| } |
| } else { |
| offsets = Eigen::DSizes<ptrdiff_t, 4>(1, 0, 0, 0); |
| extents = Eigen::DSizes<ptrdiff_t, 4>(2, 5, 7, 11); |
| auto slice5 = SliceEvaluator(tensor.slice(offsets, extents), DefaultDevice()); |
| VERIFY_IS_EQUAL(slice5.dimensions().TotalSize(), 770); |
| for (int l = 0; l < 11; ++l) { |
| for (int k = 0; k < 7; ++k) { |
| for (int j = 0; j < 5; ++j) { |
| for (int i = 0; i < 2; ++i) { |
| int slice_index = l + 11 * (k + 7 * (j + 5 * i)); |
| VERIFY_IS_EQUAL(slice5.data()[slice_index], tensor(i + 1, j, k, l)); |
| } |
| } |
| } |
| } |
| } |
| |
| offsets = Eigen::DSizes<ptrdiff_t, 4>(0, 0, 0, 0); |
| extents = Eigen::DSizes<ptrdiff_t, 4>(3, 5, 7, 11); |
| auto slice6 = SliceEvaluator(tensor.slice(offsets, extents), DefaultDevice()); |
| VERIFY_IS_EQUAL(slice6.dimensions().TotalSize(), 3 * 5 * 7 * 11); |
| VERIFY_IS_EQUAL(slice6.data(), tensor.data()); |
| } |
| |
| template <typename T, int DataLayout> |
| static void test_strided_slice() { |
| typedef Tensor<T, 5, DataLayout> Tensor5f; |
| typedef Eigen::DSizes<Eigen::DenseIndex, 5> Index5; |
| typedef Tensor<T, 2, DataLayout> Tensor2f; |
| typedef Eigen::DSizes<Eigen::DenseIndex, 2> Index2; |
| Tensor<T, 5, DataLayout> tensor(2, 3, 5, 7, 11); |
| Tensor<T, 2, DataLayout> tensor2(7, 11); |
| tensor.setRandom(); |
| tensor2.setRandom(); |
| |
| if (true) { |
| Tensor2f slice(2, 3); |
| Index2 strides(-2, -1); |
| Index2 indicesStart(5, 7); |
| Index2 indicesStop(0, 4); |
| slice = tensor2.stridedSlice(indicesStart, indicesStop, strides); |
| for (int j = 0; j < 2; ++j) { |
| for (int k = 0; k < 3; ++k) { |
| VERIFY_IS_EQUAL(slice(j, k), tensor2(5 - 2 * j, 7 - k)); |
| } |
| } |
| } |
| |
| if (true) { |
| Tensor2f slice(0, 1); |
| Index2 strides(1, 1); |
| Index2 indicesStart(5, 4); |
| Index2 indicesStop(5, 5); |
| slice = tensor2.stridedSlice(indicesStart, indicesStop, strides); |
| } |
| |
| if (true) { // test clamped degenerate interavls |
| Tensor2f slice(7, 11); |
| Index2 strides(1, -1); |
| Index2 indicesStart(-3, 20); // should become 0,10 |
| Index2 indicesStop(20, -11); // should become 11, -1 |
| slice = tensor2.stridedSlice(indicesStart, indicesStop, strides); |
| for (int j = 0; j < 7; ++j) { |
| for (int k = 0; k < 11; ++k) { |
| VERIFY_IS_EQUAL(slice(j, k), tensor2(j, 10 - k)); |
| } |
| } |
| } |
| |
| if (true) { |
| Tensor5f slice1(1, 1, 1, 1, 1); |
| Eigen::DSizes<Eigen::DenseIndex, 5> indicesStart(1, 2, 3, 4, 5); |
| Eigen::DSizes<Eigen::DenseIndex, 5> indicesStop(2, 3, 4, 5, 6); |
| Eigen::DSizes<Eigen::DenseIndex, 5> strides(1, 1, 1, 1, 1); |
| slice1 = tensor.stridedSlice(indicesStart, indicesStop, strides); |
| VERIFY_IS_EQUAL(slice1(0, 0, 0, 0, 0), tensor(1, 2, 3, 4, 5)); |
| } |
| |
| if (true) { |
| Tensor5f slice(1, 1, 2, 2, 3); |
| Index5 start(1, 1, 3, 4, 5); |
| Index5 stop(2, 2, 5, 6, 8); |
| Index5 strides(1, 1, 1, 1, 1); |
| slice = tensor.stridedSlice(start, stop, strides); |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 2; ++j) { |
| for (int k = 0; k < 3; ++k) { |
| VERIFY_IS_EQUAL(slice(0, 0, i, j, k), tensor(1, 1, 3 + i, 4 + j, 5 + k)); |
| } |
| } |
| } |
| } |
| |
| if (true) { |
| Tensor5f slice(1, 1, 2, 2, 3); |
| Index5 strides3(1, 1, -2, 1, -1); |
| Index5 indices3Start(1, 1, 4, 4, 7); |
| Index5 indices3Stop(2, 2, 0, 6, 4); |
| slice = tensor.stridedSlice(indices3Start, indices3Stop, strides3); |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 2; ++j) { |
| for (int k = 0; k < 3; ++k) { |
| VERIFY_IS_EQUAL(slice(0, 0, i, j, k), tensor(1, 1, 4 - 2 * i, 4 + j, 7 - k)); |
| } |
| } |
| } |
| } |
| |
| if (false) { // tests degenerate interval |
| Tensor5f slice(1, 1, 2, 2, 3); |
| Index5 strides3(1, 1, 2, 1, 1); |
| Index5 indices3Start(1, 1, 4, 4, 7); |
| Index5 indices3Stop(2, 2, 0, 6, 4); |
| slice = tensor.stridedSlice(indices3Start, indices3Stop, strides3); |
| } |
| } |
| |
| template <typename T, int DataLayout> |
| static void test_strided_slice_write() { |
| typedef Tensor<T, 2, DataLayout> Tensor2f; |
| typedef Eigen::DSizes<Eigen::DenseIndex, 2> Index2; |
| |
| Tensor<T, 2, DataLayout> tensor(7, 11), tensor2(7, 11); |
| tensor.setRandom(); |
| tensor2 = tensor; |
| Tensor2f slice(2, 3); |
| |
| slice.setRandom(); |
| |
| Index2 strides(1, 1); |
| Index2 indicesStart(3, 4); |
| Index2 indicesStop(5, 7); |
| Index2 lengths(2, 3); |
| |
| tensor.slice(indicesStart, lengths) = slice; |
| tensor2.stridedSlice(indicesStart, indicesStop, strides) = slice; |
| |
| for (int i = 0; i < 7; i++) |
| for (int j = 0; j < 11; j++) { |
| VERIFY_IS_EQUAL(tensor(i, j), tensor2(i, j)); |
| } |
| } |
| |
| template <typename T, int DataLayout> |
| static void test_composition() { |
| Eigen::Tensor<T, 2, DataLayout> matrix(7, 11); |
| matrix.setRandom(); |
| |
| const DSizes<ptrdiff_t, 3> newDims(1, 1, 11); |
| Eigen::Tensor<T, 3, DataLayout> tensor = |
| matrix.slice(DSizes<ptrdiff_t, 2>(2, 0), DSizes<ptrdiff_t, 2>(1, 11)).reshape(newDims); |
| |
| VERIFY_IS_EQUAL(tensor.dimensions().TotalSize(), 11); |
| VERIFY_IS_EQUAL(tensor.dimension(0), 1); |
| VERIFY_IS_EQUAL(tensor.dimension(1), 1); |
| VERIFY_IS_EQUAL(tensor.dimension(2), 11); |
| for (int i = 0; i < 11; ++i) { |
| VERIFY_IS_EQUAL(tensor(0, 0, i), matrix(2, i)); |
| } |
| } |
| |
| template <typename T, int DataLayout> |
| static void test_empty_slice() { |
| Tensor<T, 3, DataLayout> tensor(2, 3, 5); |
| tensor.setRandom(); |
| Tensor<T, 3, DataLayout> copy = tensor; |
| |
| // empty size in first dimension |
| Eigen::DSizes<ptrdiff_t, 3> indices1(1, 2, 3); |
| Eigen::DSizes<ptrdiff_t, 3> sizes1(0, 1, 2); |
| Tensor<T, 3, DataLayout> slice1(0, 1, 2); |
| slice1.setRandom(); |
| tensor.slice(indices1, sizes1) = slice1; |
| |
| // empty size in second dimension |
| Eigen::DSizes<ptrdiff_t, 3> indices2(1, 2, 3); |
| Eigen::DSizes<ptrdiff_t, 3> sizes2(1, 0, 2); |
| Tensor<T, 3, DataLayout> slice2(1, 0, 2); |
| slice2.setRandom(); |
| tensor.slice(indices2, sizes2) = slice2; |
| |
| // empty size in third dimension |
| Eigen::DSizes<ptrdiff_t, 3> indices3(1, 2, 3); |
| Eigen::DSizes<ptrdiff_t, 3> sizes3(1, 1, 0); |
| Tensor<T, 3, DataLayout> slice3(1, 1, 0); |
| slice3.setRandom(); |
| tensor.slice(indices3, sizes3) = slice3; |
| |
| // empty size in first and second dimension |
| Eigen::DSizes<ptrdiff_t, 3> indices4(1, 2, 3); |
| Eigen::DSizes<ptrdiff_t, 3> sizes4(0, 0, 2); |
| Tensor<T, 3, DataLayout> slice4(0, 0, 2); |
| slice4.setRandom(); |
| tensor.slice(indices4, sizes4) = slice4; |
| |
| // empty size in second and third dimension |
| Eigen::DSizes<ptrdiff_t, 3> indices5(1, 2, 3); |
| Eigen::DSizes<ptrdiff_t, 3> sizes5(1, 0, 0); |
| Tensor<T, 3, DataLayout> slice5(1, 0, 0); |
| slice5.setRandom(); |
| tensor.slice(indices5, sizes5) = slice5; |
| |
| // empty size in all dimensions |
| Eigen::DSizes<ptrdiff_t, 3> indices6(1, 2, 3); |
| Eigen::DSizes<ptrdiff_t, 3> sizes6(0, 0, 0); |
| Tensor<T, 3, DataLayout> slice6(0, 0, 0); |
| slice6.setRandom(); |
| tensor.slice(indices6, sizes6) = slice6; |
| |
| // none of these operations should change the tensor's components |
| // because all of the rvalue slices have at least one zero dimension |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| for (int k = 0; k < 5; ++k) { |
| VERIFY_IS_EQUAL(tensor(i, j, k), copy(i, j, k)); |
| } |
| } |
| } |
| } |
| |
| #define CALL_SUBTEST_PART(PART) CALL_SUBTEST_##PART |
| |
| #define CALL_SUBTESTS_TYPES_LAYOUTS(PART, NAME) \ |
| CALL_SUBTEST_PART(PART)((NAME<float, ColMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<float, RowMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<bool, ColMajor>())); \ |
| CALL_SUBTEST_PART(PART)((NAME<bool, RowMajor>())) |
| |
| EIGEN_DECLARE_TEST(cxx11_tensor_morphing) { |
| CALL_SUBTEST_1(test_simple_reshape<void>()); |
| CALL_SUBTEST_1(test_static_reshape<void>()); |
| CALL_SUBTEST_1(test_reshape_as_lvalue<void>()); |
| CALL_SUBTEST_1(test_reshape_in_expr<void>()); |
| CALL_SUBTEST_1(test_const_slice<float>()); |
| |
| CALL_SUBTESTS_TYPES_LAYOUTS(2, test_simple_slice); |
| CALL_SUBTESTS_TYPES_LAYOUTS(3, test_slice_as_lvalue); |
| CALL_SUBTESTS_TYPES_LAYOUTS(4, test_slice_raw_data); |
| CALL_SUBTESTS_TYPES_LAYOUTS(5, test_strided_slice_write); |
| CALL_SUBTESTS_TYPES_LAYOUTS(6, test_strided_slice); |
| CALL_SUBTESTS_TYPES_LAYOUTS(7, test_composition); |
| } |