| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2016 |
| // Mehdi Goli Codeplay Software Ltd. |
| // Ralph Potter Codeplay Software Ltd. |
| // Luke Iwanski Codeplay Software Ltd. |
| // Contact: <eigen@codeplay.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #define EIGEN_TEST_NO_LONGDOUBLE |
| #define EIGEN_TEST_NO_COMPLEX |
| #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t |
| #define EIGEN_USE_SYCL |
| |
| #include "main.h" |
| #include <unsupported/Eigen/CXX11/Tensor> |
| |
| template <typename DataType, int DataLayout, typename IndexType> |
| static void test_sycl_random_uniform(const Eigen::SyclDevice& sycl_device) { |
| Tensor<DataType, 2, DataLayout, IndexType> out(72, 97); |
| out.setZero(); |
| |
| std::size_t out_bytes = out.size() * sizeof(DataType); |
| |
| IndexType sizeDim0 = 72; |
| IndexType sizeDim1 = 97; |
| |
| array<IndexType, 2> tensorRange = {{sizeDim0, sizeDim1}}; |
| |
| DataType* d_out = static_cast<DataType*>(sycl_device.allocate(out_bytes)); |
| TensorMap<Tensor<DataType, 2, DataLayout, IndexType>> gpu_out(d_out, tensorRange); |
| |
| gpu_out.device(sycl_device) = gpu_out.random(); |
| sycl_device.memcpyDeviceToHost(out.data(), d_out, out_bytes); |
| |
| // For now we just check the code doesn't crash. |
| // TODO: come up with a valid test of randomness |
| sycl_device.deallocate(d_out); |
| } |
| |
| template <typename DataType, int DataLayout, typename IndexType> |
| void test_sycl_random_normal(const Eigen::SyclDevice& sycl_device) { |
| Tensor<DataType, 2, DataLayout, IndexType> out(72, 97); |
| out.setZero(); |
| std::size_t out_bytes = out.size() * sizeof(DataType); |
| |
| IndexType sizeDim0 = 72; |
| IndexType sizeDim1 = 97; |
| |
| array<IndexType, 2> tensorRange = {{sizeDim0, sizeDim1}}; |
| |
| DataType* d_out = static_cast<DataType*>(sycl_device.allocate(out_bytes)); |
| TensorMap<Tensor<DataType, 2, DataLayout, IndexType>> gpu_out(d_out, tensorRange); |
| Eigen::internal::NormalRandomGenerator<DataType> gen(true); |
| gpu_out.device(sycl_device) = gpu_out.random(gen); |
| sycl_device.memcpyDeviceToHost(out.data(), d_out, out_bytes); |
| |
| // For now we just check the code doesn't crash. |
| // TODO: come up with a valid test of randomness |
| sycl_device.deallocate(d_out); |
| } |
| |
| template <typename DataType, typename dev_Selector> |
| void sycl_random_test_per_device(dev_Selector s) { |
| QueueInterface queueInterface(s); |
| auto sycl_device = Eigen::SyclDevice(&queueInterface); |
| test_sycl_random_uniform<DataType, RowMajor, int64_t>(sycl_device); |
| test_sycl_random_uniform<DataType, ColMajor, int64_t>(sycl_device); |
| test_sycl_random_normal<DataType, RowMajor, int64_t>(sycl_device); |
| test_sycl_random_normal<DataType, ColMajor, int64_t>(sycl_device); |
| } |
| EIGEN_DECLARE_TEST(cxx11_tensor_random_sycl) { |
| for (const auto& device : Eigen::get_sycl_supported_devices()) { |
| CALL_SUBTEST(sycl_random_test_per_device<half>(device)); |
| CALL_SUBTEST(sycl_random_test_per_device<float>(device)); |
| #ifdef EIGEN_SYCL_DOUBLE_SUPPORT |
| CALL_SUBTEST(sycl_random_test_per_device<double>(device)); |
| #endif |
| } |
| } |